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Abstract

This entry describes the Crank-Nicolson time-marching discretisa-
tion and its numerical properties. It also presents the Rannacher startup
procedure which is required to achieve second order accuracy for the op-
tion value and its first and second derivatives, and discusses extensions
to nonlinear and multi-factor applications.
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1 Algorithm and key features

In a paper published in 1947 [2], John Crank and Phyllis Nicolson pre-
sented a numerical method for the approximation of diffusion equations.
Starting from the simplest example
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,

a spatial approximation on a uniform grid with spacing h leads to the
semi-discrete equations
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= h−2 δ2

j Vj ,

where Vj(t) is an approximation to V (xj , t), and δ2
j Vj ≡ Vj+1−2Vj+Vj−1

is a central second difference. Crank-Nicolson time-marching discretises
this in time with a uniform timestep k using the approximation
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which can be re-arranged to give
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This can be viewed as the θ= 1

2
case of the more general θ-scheme

(

1 − θ kh−2δ2
j

)

V n+1

j =
(

1 + (1−θ) kh−2δ2
j

)

V n
j .

θ = 0 corresponds to explicit Euler time-marching, while θ = 1 corre-
sponds to fully-implicit Euler time-marching. For θ > 0, the θ-scheme
defines a tri-diagonal system of simultaneous equations which can be
solved very efficiently using the Thomas algorithm to obtain the values
for V n+1

j . The scheme is unconditionally stable in the L2 norm, mean-
ing that the L2 norm of the solution does not increase for any value of
k, provided θ ≥

1

2
. The Crank-Nicolson scheme is thus on the boundary

of unconditional stability. It is also special in having a numerical error
for smooth initial data which is O(h2, k2), whereas the error is O(h2, k)
for other values of θ. The unconditional L2 stability means that one
can choose to make k proportional to h, and together with the second
order accuracy this makes the scheme both accurate and efficient, and
hence a very popular choice for approximating parabolic PDEs.

2 Application to Black-Scholes equation

The Crank-Nicolson method is used extensively in mathematical finance
for approximating parabolic PDEs such as the Black-Scholes equation
(EQF12/003) which can be written in reversed-time form (with τ ≡ T−t
being the time to maturity T ) as

∂V

∂τ
= −rV + rS

∂V

∂S
+ 1

2
σ2S2 ∂2V

∂S2
.

Switching to the new coordinate x ≡ log S gives the transformed equa-
tion

∂V

∂τ
= −rV +
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,

and its Crank-Nicolson discretisation on a grid with uniform timestep
k and uniform grid spacing h is

(I + 1

2
D)V n+1

j = (I −
1

2
D)V n

j

where the discrete operator D is defined by

D = r k −
1

2
kh−1

(

r − 1

2
σ2

)

δ2j −
1

2
kh−2 σ2 δ2

j ,

with the central first difference operator δ2j defined by δ2jVj ≡ Vj+1 −

Vj−1.
For a European call option with strike K, the initial data at maturity

is V (S, 0) = max(S−K, 0). The top-left plot in Figure 1 shows the
numerical solution V (S, 2) for parameter values r=0.05, σ=0.2, K =1,
and timestep/spacing ratio λ ≡ k/h = 10. The agreement between
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the numerical solution and the known analytic solution appears quite
good, but the other two left-hand plots show much poorer agreement
for the approximations to ∆ ≡ ∂V/∂S and Γ ≡ ∂2V/∂S2 (EQF07/017,
EQF07/018) obtained by central differencing of the numerical solution
V n

j . In particular, note that the maximum error in the computed value
for Γ occurs at S =1, which is the location of the discontinuity in the first
derivative of the initial data. The left-hand plots in Figure 2 show the
behaviour of the maximum error as the computational grid is refined,
keeping fixed the ratio λ ≡ k/h. It can be seen that for largest value of
λ the numerical solution Vj exhibits first order convergence, while the
discrete approximation to ∆ does not converge, and the approximation
to Γ diverges. For smaller values of λ it appears the convergence is
better, but in fact the asymptotic behaviour is exactly the same except
that it becomes evident only on much finer grids.

At first sight, this is a little surprising as textbooks almost always
describe the Crank-Nicolson method as unconditionally stable and sec-
ond order accurate. The key is that it is only unconditionally stable
in the L2 norm, and this only ensures convergence in the L2 norm for
initial data which has a finite L2 norm [9]. Furthermore, the order of
convergence may be less than second order for initial data which is not
smooth; for example, the L2 order of convergence for discontinuous ini-
tial data is 1

2
. With the European call Black-Scholes application, the

initial data for V lies in L2, as does its first derivative, but the second
derivative is the Dirac delta function which does not lie in L2. This is
the root cause of the observed failure to converge as the grid is refined.
Furthermore, it is the maximum error, the L∞ error, which is most
relevant in financial applications.

One solution to this problem is to use an alternative second order
backward difference method, but these methods require special startup
procedures because they require more than one previous time level,
and they are usually less accurate than the Crank-Nicolson method for
the same number of timesteps. Better alternatives are higher order
backward difference methods [5] or the Rannacher startup procedure
described next.

3 Rannacher startup procedure

Rannacher analysed this problem of poor L2 convergence of convection-
diffusion approximations with discontinuous initial data [8], and recov-
ered second order convergence by replacing the Crank-Nicolson approx-
imation for the very first timestep by two half-timesteps of implicit
Euler time integration, and using a finite element projection of the dis-
continuous initial data onto the computational grid. This technique,
often referred to as Rannacher timestepping, has been used with suc-
cess in approximations of the Black-Scholes equations [6, 7], with the
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half-timestep implicit Euler discretisation given by

(I + 1

2
D)V

n+1/2

j = V n
j .

The problem has been further investigated by Giles and Carter [4]
who analysed the maximum errors in finance applications and proved
it is necessary to go further and replace the first two Crank-Nicolson
timesteps by four half-timesteps of implicit Euler to achieve second
order accuracy in the L∞ norm for V , ∆ and Γ for put, call and digital
options. The improved accuracy is demonstrated by the right-hand
plots in Figures 1–2.

4 Nonlinear and multi-factor extensions

The use of a nonlinear penalty function in approximating American
options (EQF12/002) leads to a nonlinear discretisation of the form [3]

(I + 1

2
D)V n+1

j = (I −
1

2
D)V n

j + P (V n+1

j ),

where the nonlinear penalty term P (V n+1

j ) is negligible in the region

where the option is not exercised, and elsewhere ensures that V n+1

j is
approximately equal to the exercise value.

This nonlinear system of equations can be solved using a Newton
iteration, starting with V n+1,0

j =V n
j and defining the m+1th iterate to

be V n+1,m+1

j =V n+1,m
j +∆Vj with the correction ∆Vj given by the linear

equations

(
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)
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2
D)V n+1,m

j + (I −
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2
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j ),

Alternatively, one can use just one step of the Newton iteration, in
which case one has V n+1

j = V n
j + ∆Vj with the change ∆Vj given by

(

I + 1

2
D −

∂P

∂V

)

∆Vj = −D V n
j + P (V n

j ).

In one dimension, the linear equations are a tridiagonal system which
can be solved very efficiently. In higher dimensions the direct solution
cost is much greater and alternative approaches are usually adopted.
One is to use an ADI (alternative direction implicit) approximate fac-
torisation into a product of operators, each of which involves differences
in only one direction [9]. To maintain second order accuracy it is nec-
essary to use the Craig-Sneyd treatment for any cross-derivative term
[1]. Another approach is to use a preconditioned iterative solver such
as BiCGStab with ILU preconditioning.
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Figure 1: V , ∆ and Γ for a European call option, with λ ≡ k/h = 10
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Figure 2: Grid convergence for a European call option, with fixed λ ≡ k/h
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