
Mesh Independent Loop Fusion for Unstructured Mesh
Applications∗

Carlo Bertolli
Department of Computing
Imperial College London

c.bertolli@imperial.ac.uk

Adam Betts
Department of Computing
Imperial College London
abetts@imperial.ac.uk

Gihan R. Mudalige
Oxford e-Research Centre

University of Oxford
gihan.mudalige@oerc.ox.ac.uk

Paul H.J. Kelly
Department of Computing
Imperial College London
phjk@imperial.ac.uk

Michael B. Giles
Oxford e-Research Centre

University of Oxford
mike.giles@maths.ox.ac.uk

ABSTRACT
Applications based on unstructured meshes are typically
compute intensive, leading to long running times. In princi-
ple, state-of-the-art hardware, such as multi-core CPUs and
many-core GPUs, could be used for their acceleration but
these esoteric architectures require specialised knowledge to
achieve optimal performance. OP2 is a parallel program-
ming layer which attempts to ease this programming burden
by allowing programmers to express parallel iterations over
elements in the unstructured mesh through an API call, a so-
called OP2-loop. The OP2 compiler infrastructure then uses
source-to-source transformations to realise a parallel imple-
mentation of each OP2-loop and discover opportunities for
optimisation.

In this paper, we describe how several compiler techniques
can be effectively utilised in tandem to increase the perfor-
mance of unstructured mesh applications. In particular, we
show how whole-program analysis — which is often inhibited
due to the size of the control flow graph — often becomes
feasible as a result of the OP2 programming model, facili-
tating aggressive optimisation. We subsequently show how
whole-program analysis then becomes an enabler to OP2-
loop optimisations. Based on this, we show how a classical
technique, namely loop fusion, which is typically difficult to
apply to unstructured mesh applications, can be defined at
compile-time. We examine the limits of its application and
show experimental results on a computational fluid dynamic
application benchmark, assessing the performance gains due
to loop fusion.

∗This research is partly funded by EPSRC (grant refer-
ence numbers EP/I00677X/1, EP/I006079/1), the UK Tech-
nology Strategy Board, and Rolls Royce plc through the
SILOET programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’12,May 15–17, 2012, Cagliari, Italy.
Copyright 2012 ACM 978-1-4503-1215-8/12/05 ...$10.00.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming

Keywords
Unstructured Mesh Applications, Compilers, Loop fusion,
Whole Program Control Flow Analysis

1. INTRODUCTION
An unstructured mesh is an irregular collection of linked
vertices, edges, and polygons which provides an effective
abstraction within the computational sciences. For exam-
ple, it can be utilised in the finite volume method that
gives approximate solutions to Partial Differential Equations
(PDEs). To achieve a reasonable degree of accuracy, how-
ever, requires that the unstructured mesh be composed of
many millions of elements, leading to a large amount of com-
putation. One such industrial application is HYDRA, which
is used by Rolls Royce Plc. in turbomachinery design and
is the driving force of our research. In HYDRA the mesh
can grow to sizes of over 100 million edges. Furthermore the
HYDRA software is extremely complex, with about 1000
separate parallel loops over the mesh. For this reason, HY-
DRA is currently accelerated with MPI through the OPlus
library [6, 5], a predecessor of our research work.

One potential solution to the speedup issue is to utilise
multi- and many-core processors, especially because unstruc-
tured mesh computations are massively data parallel. How-
ever, this assumes that the programmer retains sufficient
expertise to program to such a specialised architecture; for
example, using the CUDA programming model. A more
crucial drawback is that performance portability is greatly
inhibited: re-targeting the code base towards different back-
ends requires a fresh implementation, and the idiosyncrasies
imposed by particular hardware to achieve optimal perfor-
mance are unlikely to be satisfied.

A programming layer called OP2 [16, 11, 10] attempts
to simultaneously ease the programming burden and per-
formance portability problems. It provides abstractions to
declare unstructured meshes in an intuitive manner (i.e., as
we show in Section 3, through the sets comprising the mesh)
and to express parallel computations on the mesh in terms of
iterations over particular sets. A program containing calls to

the OP2 API is then compiled using source-to-source trans-
formation tools, before finally being compiled to the target
architecture using a vendor-specific compiler. In this way,
the source-to-source translator becomes crucial to the opti-
misation process because it knows which parallel computa-
tions are to be performed on the mesh (via calls to the OP2
API) and the architecture of choice.

Using OP2 a single application program (written using the
OP2 API) can be transformed to a range of diverse archi-
tectures, including multi- and many-core systems. The op-
timisation challenge is to deliver near optimal performance
for each single architecture, and in turn achieve performance
portability. For the target applications, loop optimisations
are the key to achieve this goal.

This paper investigates the optimisation opportunities ap-
plicable to programs written in OP2. With respect to the
optimisations, we first show how much of the program can
be sliced [18] due to assumptions in the OP2 programming
model, thereby making whole-program analysis feasible. Us-
ing the whole-program Control Flow Graph (CFG) we then
show how to apply loop fusion used to accelerate the parallel
loops over the mesh.

The general optimisation problem that we investigate in
this paper can be formulated as the compile-time fusion of
two loops using non-affine array accesses such as the follow-
ing ones:

! loop over edges
do i = 1 , numberOfEdges
A[n(i , 1)] = ke rn e l 1 (B[m(i , 1) , B[m(i , 2)] , C[i])

enddo

! loop over c e l l s
do j = 1 , numberOfCells
D[j] = ke rn e l 2 (B[p(j , 1) , B[p(j , 2)] , A[j])

enddo

In this example A, B, C, and D are arrays defined for a
mesh set, e.g. there is a tuple of elements in the A array
for each cell in the mesh. With n, m, and p we denote
mappings which relate mesh sets between themselves. For
instance, n maps an edge identifier to a cell identifier (the
second argument of n is used to select one of the cells linked
to an edge) and it is used to access A when iterating over
edges. Finally, kernel1 and kernel2 are user-defined kernel
functions, defined for the generic mesh set element (either
an edge or a cell).

Obviously, this general loop fusion case cannot be achieved
at compile-time. A fundamental piece of information is un-
known until run-time, i.e. array accesses derived from the
mesh. In this paper we precisely characterise which simpler
sub-cases can and cannot be subject to compile time loop
fusion. More specifically, the paper concludes that:

• If two loops are iterating over the same iteration space,
and one of them is not using indirections (i.e. non-
affine array accesses), then compile-time loop fusion is
possible. This can be done without the knowledge of
the specific details of the meshes on which the program
executes, i.e. in a mesh independent manner.

• In all other cases, loop fusion can only be performed at
run-time, when mesh information (i.e. non-affine ac-
cesses) is known. We will address such cases in future
work.

The actual application of the first case depends on perfor-
mance considerations, which are based on: (i) increased data

locality, in case the two loops access same datasets; (ii) to a
lower extent, reduced global synchronisations.

The described loop fusion case is a recurring one in large-
scale applications. A fundamental trade-off in performance
must be studied to understand if loop fusion is actually de-
livering a performance improvement. In the specific case of
OP2 (but equivalent solutions must be applied to any par-
allel implementation of loops with non-affine array accesses)
a loop using indirections is implemented using colouring to
control the parallelism. This guarantees that no race con-
ditions can happen during the execution, as two iterations
incrementing a common memory location are scheduled se-
rially. Colouring implies that parallelism is reduced from
the iteration space size to the average number of iterations
of the same colour. In contrast, the implementation of a
loop without indirections (henceforth called “direct loop”)
can use a parallelism degree as high as the size of the itera-
tion set. If two such loops are fused, the resulting fused loop
uses indirections, and the implementation is based on colour-
ing. There is hence a decrease in the maximum achievable
parallelism degree when comparing the two loops against
the single fused one. This must be balanced by the bene-
fits gained in the fusion. In this paper we show that in a
two representative examples improvement after loop fusion
is obtained.

Another fundamental step to achieve compile-time loop
fusion is given by the ability of the compiler to define the
relation between two loops, in terms of abstract concepts
as iteration spaces, indirections used to access datasets, and
type of operations. This is obtained in OP2 through the
use of access descriptors, which precisely characterise de-
pendence. Using this abstraction, the compiler is fully ca-
pable of deriving if two loops can be fused without further
analysis.

We validate our approach by applying loop fusion to a
classical computational fluid dynamics application, called
Airfoil. This is a standard benchmark which we use to
characterise the performance of a section of the significantly
more complex HYDRA case. Therefore, any performance
improvement obtained for the Airfoil application will be di-
rectly mapped in specific sections of HYDRA. Our exper-
iments show the performance gains that we obtain on two
main-stream architectures including an Nvidia M2050 GPU,
and an Intel Xeon X5650 “Nehalem” multicore, with 12 2-
way hyperthreaded cores.

The contributions of this paper are:

• We show how program slicing can be defined for OP2
programs, to identify loop optimisation opportunities.

• We show how OP2 access descriptors permit the com-
piler to analyse if loop fusion can be applied, and what
benefits can be obtained.

• We precisely identify in which cases loop fusion can be
applied without the knowledge of the mesh, and which
other cases require instead that knowledge.

• We characterise experimentally the performance bene-
fits due to loop fusion in two representative examples.

The remainder of the paper is organised as follows: Sec-
tion 2 places OP2 into context by reviewing related work.
Section 3 then presents the OP2 programming layer, out-
lines the assumptions which are critical to the optimisations

proposed, and gives an overview of our compiler infrastruc-
ture supporting OP2. Following that, Section 4 formalises
the program model utilised by our optimisation framework,
and it presents how whole-program analysis and slicing and
loop optimisations are applied to the program model. Sec-
tion 5 focuses on loop fusion, motivating its theoretical per-
formance gain in the OP2 implementation, and describing
its feasibility by analysing different loop types. Section 6
evaluates our approach before conclusions are finally drawn
in Section 7.

2. RELATED WORK
OP2 is the second iteration of OPlus (Oxford Parallel Li-
brary for Unstructured Solvers) [6, 5]. OPlus provided an
abstraction framework for performing unstructured mesh
based computations across a distributed-memory cluster, us-
ing a traditional MPI library approach. It is currently used
as the underlying parallelisation library for HYDRA [15, 9]
a CFD application used in turbomachinery design at Rolls-
Royce plc. OP2 builds upon the features provided by its pre-
decessor but develops an“active” library approach with code
generation to exploit parallelism on heterogeneous multi-
core/many-core architectures.

Although OPlus pre-dates it, both OPlus and OP2 can
be viewed as an instantiation of the AEcute (access-execute
descriptor) [13] programming model that separates the spec-
ification of a computational kernel with its parallel iteration
space, from a declarative specification of how each iteration
accesses its data. The decoupled Access/Execute specifi-
cation in turn creates the opportunity to apply powerful
optimisations targeting the underlying hardware.

A number of related research projects have implemented
similar programming frameworks. The most comparable of
these is LISZT [7], which is a domain-specific language based
on the SCALA language targeting unstructured mesh ap-
plications. Unlike OP2, LISZT attempts to synthesise de-
pendence information from the program, by exposing pro-
grammers a stricter programming model. Another notable
framework is described in [14], which shares with OP2 the
library approach but it is based on a C++ framework.

3. THE OP2 MODEL OF COMPUTATION
From the programmer’s point of view, OP2 is an Application
Programming Interface (API) enabling the following to be
declared:

1. The sets constituting the topology of the mesh. These
normally include its vertices, edges, and polygons, but
might incorporate various subsets, such as boundary
edges.

2. How distinct sets relate to each other via mapping
functions. A typical example is the mapping from an
edge to the two vertices to which it is incident.

3. The data associated with elements in the sets, e.g. ver-
tex co-ordinates or edge weights.

4. How a specified function can be applied in parallel to
every element of a particular set.

We demonstrate OP2 through the C++ code shown in
Listing 31, which will serve as a running example through-
out the paper. In this example, we omit the user kernel

code, and we focus on the OP2 details useful to show loop
fusion feasibility in the next sections. The sample applica-
tion is Airfoil, a non-linear 2D inviscid airfoil code that uses
an unstructured mesh. It is a very simple application, but
acts as a forerunner for testing the OP2 library in our com-
piler framework due to its strong similarities to HYDRA, the
CFD application used at Rolls Royce plc. for the simulation
of jet engines.

At the top of Listing 3 is one of the user-supplied ker-
nels, save_soln, contained in the Airfoil application. It has
two formal parameters, namely p_q and p_qold, which are
both arrays of double precision floating-point values. In the
function main, three sets are defined (cells, edges, and
bedges) such that their cardinalities are set to 2, 100, and
10, respectively. Next, data contained in the local variable
declarations q and qold are associated with the set cells
through op_decl_dat, which specifies that there is a vector
of four elements associated to each set element. That is,
the first element of cells has initial values 1.0, 2.0, 3.0, 4.0,
while the second element has initial values 5.0, 6.0, 7.0, 8.0.
The declaration of an op_map is used to define a mapping be-
tween two sets. For instance, pcell is declared as a mapping
between cells and nodes, identifying which nodes (i.e. their
identifiers) are at the border of each cell, and thus also how
cells are connected between themselves through nodes. This
mapping information is obtained from an input array passed
to the related declaration call, and it defines the topology of
the unstructured mesh. The use of indirect dataset address-
ing also classifies these applications as irregular.

We need to clarify at this point the difference between
a loop arising from a programming-language construct, e.g.
due to for statements, and a loop arising from the OP2
programming layer. We shall refer to the former as a loop
and the latter as an OP2-loop.

The remainder of the code contains a doubly-nested loop
with OP2-loops (op_par_loop) that specify parallel itera-
tion over the declared sets. For example, the first call to
op_par_loop states that the save_soln function is to be
applied to each element of the set cells. The next six ac-
tual arguments in the op_par_loop call indicate the OP2
data expected by the kernel function and provide informa-
tion pertaining to their access. These are the so-called access
descriptors.

Since save_soln has two formal parameters, two OP2
data types, p_q and p_qold, are supplied. This means that
there are three actual arguments in the OP2-loop per kernel
formal parameter, which we refer to as an OP2 argument
group. The first OP2 argument group (p_q, -1,OP_ID,
OP_READ) states that the OP2 data type p_q is directly ac-
cessed and is read within the kernel function. Direct access is
expressed by OP_ID and arises from the fact that the sets over
which save_soln iterates, and to which p_q is associated, are
cells; in other words, no mapping is required. In this case,
we say that the OP2-loop is direct, whereas an OP2-loop
containing mappings is indirect. The final argument in this
grouping, OP_READ, signifies read access and arises from the
fact that p_q in save_soln is an r-value. The second OP2
argument group (p_qold, -1, OP_ID, OP_WRITE) expresses
similar semantics, except p_qold is written, i.e. p_qold is
an l-value in save_soln. Note, therefore, how the access
patterns of an OP2-loop are explicitly expressed, thereby

1Unnecessary OP2 declarations are omitted in the code to
make reading easier and confined to essential information.

int main (void) {
// Declare s e t s
op se t c e l l s = o p d e c l s e t (2) ;
op se t edges = op d e c l s e t (100) ;
op se t bedges = op d e c l s e t (10) ;
op se t nodes = op d e c l s e t (100) ;

//Declare maps
op map p c e l l = op dec l map (c e l l s , nodes , 4 ,

map arr) ;

// Declare data
double ∗ q = {1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 ,

5 . 0 , 6 . 0 , 7 . 0 , 8 . 0} ;
op dat p q = op de c l da t (c e l l s , 4 , q) ;

double ∗ qold = {10 .0 , 20 . 0 , 30 . 0 , 40 . 0 ,
50 . 0 , 60 . 0 , 70 . 0 , 8 0 . 0} ;

op dat p qo ld = op de c l da t (c e l l s , 4 , qold) ;

double ∗x = { . . }
op dat p x = op de c l da t (nodes , 2 , x) ;

// . . . other dec l a ra t ions . . .

for (int i = 0 ; i < 1000 ; ++i) {

op par l oop (save so l n , c e l l s ,
op arg dat (p q , −1, OP ID , OP READ) ,
op arg dat (p qold , −1, OP ID , OP WRITE)) ;

for (int j = 0 ; j < 2 ; ++j) {
op par l oop (ad t c a l c , c e l l s ,

op arg dat (p x , 0 , p c e l l , OP READ) ,
op arg dat (p x , 1 , p c e l l , OP READ) ,
op arg dat (p x , 2 , p c e l l , OP READ) ,
op arg dat (p x , 3 , p c e l l , OP READ) ,
op arg dat (p q , −1,OP ID , OP READ) ,
op arg dat (p adt ,−1 ,OP ID ,OP WRITE)) ;

op par l oop (r e s c a l c , edges ,
op arg dat (p x , 0 , pedge , OP READ) ,
op arg dat (p x , 1 , pedge , OP READ) ,
op arg dat (p q , 0 , p e c e l l ,OP READ) ,
op arg dat (p q , 1 , p e c e l l ,OP READ) ,
op arg dat (p adt , 0 , p e c e l l ,OP READ) ,
op arg dat (p adt , 1 , p e c e l l ,OP READ) ,
op arg dat (p re s , 0 , p e c e l l , OP INC) ,
op arg dat (p re s , 1 , p e c e l l , OP INC)) ;

op par l oop (b r e s c a l c , bedges ,
op arg dat (p x , 0 , pbedge , OP READ) ,
op arg dat (p x , 1 , pbedge , OP READ) ,
op arg dat (p q , 0 , pb e c e l l ,OP READ) ,
op arg dat (p adt , 0 , pb e c e l l ,OP READ) ,
op arg dat (p re s , 0 , pb e c e l l , OP INC) ,
op arg dat (p bound ,−1 ,OP ID , OP READ)) ;

rms = 0 . 0 ;

op par l oop (update , c e l l s ,
op arg dat (p qold ,−1 ,OP ID , OP READ) ,
op arg dat (p q , −1,OP ID ,OP WRITE) ,
op arg dat (p re s , −1,OP ID , OPRW) ,
op arg dat (p adt , −1,OP ID , OP READ) ,
op a rg gb l (&rms , OP INC)) ;} \\ i nn e r loop

} \\ oute r loop
return 0 ;

}

Figure 1: Airfoil application implemented in OP2.

allowing the OP2 compiler to precisely characterise the de-
pendencies between OP2-loops without complex data-flow
analyses.

The second OP2-loop iterates over cells and it includes as
first parameter an indirectly accessed op_dat. The related

argument line indicates that: the op_dat p_x is accessed; as
p_x is associated with the node set, the mapping (pcell) is
used to translates a cell identifier (i.e. an iteration index)
to one of the 4 corresponding node identifiers. The second
argument of the op_arg function is used to specify which one
of the four nodes connected to the current cell (on which
the user kernel is applied at each loop iteration) is to be
consider as actual parameter. In this loop we pass all four
nodes information related to each cell to the kernel. As
this adt_calc loop includes one or more indirectly accessed
op_dat arguments, it is then classified as indirect.

Finally, consider the res_calc OP2-loop, which iterates
over edges, and accesses the p_res dataset through an indi-
rection (from edges to cells) by incrementing it (OP INC).
This means that two iterations of the same loop can in prin-
ciple increment the same data at the same time (i.e. in
parallel, as required by OP2-loop semantics). To solve this
parallelism control issue, OP2 takes different strategies, each
optimised for a different target architecture. For the sake of
loop fusion discussed in this paper, we only consider the case
of GPUs and multicores. For these architectures a colour-
ing technique is used, where different colours are assigned
to possible conflicting iterations, and then execution paral-
lelises iterations with the same colour, but it sequentialises
those with different colours. This — OP INC over indirect
argument — is the only way in which the user can rely on
OP2 to avoid potential race conditions. If the user declares
a OP WRITE access to an indirect argument, then it is the
user’s task to guarantee that no two iterations can modify
the same data, through a proper selection of the mapping
data.

3.1 OP2 Assumptions
OP2 makes several important assumptions:

• For any indirect OP2-loop, there is only one level of
indirection in retrieving the data.

• The order in which elements of a set are processed in
an OP2-loop does not affect the final result, thereby
providing the compiler and run-time support great flex-
ibility in ordering the computations.

• How the data are accessed in OP2-loops is correctly
given by the programmer.

• The data associated with sets are not written outside
of the parallel iteration space, that is, in the sequential
parts of code. In essence, once the data pass into OP2
territory, further modifications to the data can only
occur opaquely through the OP2 API. As we observe in
Section 5, this property facilitates aggressive program
slicing and whole-program analysis.

3.2 OP2 Compiler Infrastructure
Producing a binary for a specific hardware from an OP2
program requires several compilation steps. The first of
these utilises source-to-source transformation to transpose
the OP2-loops into a parallel implementation compliant with
the architecture of choice, e.g. CUDA. The second step then
simply compiles the generated code using a vendor-specific
compiler.

In order to realise the source-to-source translation, our
OP2 compiler, illustrated in Figure 2, performs the following
steps:

Figure 2: Overview of OP2 Compiler Framework.

• Parses the source code, using the parsers provided by
ROSE [1], to obtain the Abstract Syntax Tree (AST)
that forms the basis of all subsequent analyses. Cur-
rently we support Fortran 77-2003 and C/C++.

• Optimisations of OP2-loops using the AST and the
techniques outlined in Section 5.

• Re-writing of the AST to generate functions imple-
menting the parallel computation and replacing calls
to OP2-loops with calls to the generated functions. For
instance, if CUDA is the target programming model,
this step involves generation of the host stub and the
CUDA kernel functions. Each OP2-loop call is sub-
sequently replaced by a call to the appropriate host
stub.

• Re-writing of the kernel functions supplied by the user.
In the case of CUDA, for example, this is needed to
label the kernel as a device subroutine.

• Unparsing of the AST to output the generated code
using the ROSE unparsers.

Our compiler currently supports generation of CUDA and
OpenMP for both Fortran and C/C++, while OpenCL and
SSE/AVX backends are in development for C/C++.

Note that the final step in Figure 2 includes linking the
generated code against an OP2 library; this provides run-
time support to partition the iteration sets (to parallelise)
and to colour partitions (to avoid race conditions). Both
Fortran and C/C++ generated programs utilise the same
implementation of the colouring and partitioning algorithms,
which are written in C. As shown in [3], this incurs a small
(∼5%)) performance cost for Fortran generated programs
due to interoperating with C.

4. PROGRAMMODEL AND SLICING
The previous section gave an overview of OP2 from the pro-
grammatic point of view. Here we formalise the model ex-
tracted from the analysis stage of our compiler, which serves
as the basis of the optimisation process.

An OP2 program consists of several subprograms each of
which is characterised by its CFG:

Definition 1. The CFG C = 〈VC , EC , s, t〉 of a subpro-
gram is a directed graph such that:

• VC are vertices representing basic blocks, which are
maximal sequences of statements, such that there is
only one entry point and a single exit point.

• s, t ∈ VC are distinguished (dummy) vertices, respec-
tively, such that s has no predecessors (the entry ver-
tex) and t has no successors (the exit vertex).

• EC models the branches and fall-throughs between basic
blocks. Or, every entry point to the function has s as
a predecessor and every exit point of the function has
t as a successor.

This paper assumes that the CFGs are constructed from
the AST after parsing of the source code during the compila-
tion process. For this reason, OP2 parallel loop calls merely
appear as unique basic blocks in the CFG.

The CFG of the OP2 program appearing in Figure 3 is
provided to the left of Figure 3. The outer loop with a bound
of 1000 is represented by vertex L1 and exits to vertex E1,
its outer scope. Similarly, the inner loop with bound 2 is
represented by vertex L2 and exits to vertex E2.

The optimisations proposed in this paper assume that nat-
ural loops in a CFG can be identified, which are loops with
a single entry point, called the header. Transitions from
within a loop to the header are called loop-back edges. The
nesting relationship between loops can then be represented
hierarchically through a Loop-Nesting Tree (LNT):

Definition 2. For a CFG C = 〈VC , EC ∪ {t → s}, s, t〉,
its LNT TC

L = 〈VTC
L

= VC ,H, ETC
L
, r〉 is a tree with the

following properties2:

• H ⊆ VC is the set of internal vertices representing the
headers identified in C.

• VC \ H is the set of leaves.

• ETC
L

= {(header(v), v)|header(v) ∈ H, v ∈ VC \ H}
where header(v) is the representative header of the in-
nermost enclosing loop in which v is contained.

For example, in the CFG of Figure 3, there are two loop-
back edges, update → L2 and E2 → L1. The LNT is de-
picted to the right in Figure 3 where internal vertices L1 and
L2 represent the respective loops. This figure also shows
that: L2 is nested in L1; the innermost enclosing loop of
save_soln is L1; the innermost enclosing loop of adt_calc,
res_calc, bres_calc, update is L2.

The final program model that our optimisation framework
needs is the call graph, which represents inter-procedural
relations between subprograms is needed:

Definition 3. A call graph C = 〈VC, EC,B,ω〉 of a pro-
gram is a digraph in which:

• VC is the set of vertices representing subprograms.

2We explicitly add the edge t → s to the CFG C to ensure
that it becomes strongly connected. Therefore, all vertices
in C are enclosed in a loop and the nesting relationship
between loops can be captured in a tree as opposed to a
disjoint union of trees, i.e. a forest.

bresCalc

saveSoln

adtCalc

resCalc

s

t

L1

L2

E1

E2

update

saveSoln

bresCalc

resCalc

adtCalc

L1

L2

update

Figure 3: Example CFG and LNT.

• EC is the set of edges representing the calling relation
between subprograms. In particular, for any (u, v) ∈
EC, subprogram u calls subprogram v.

• B is the set of basic blocks in the program that transfer
control flow to a different subprogram, i.e. the call
sites.

• ω : EC)→ (2B \ ∅) is a function mapping a call to the
call sites leading to that call.

In this paper, we assume that all indirect function call des-
tinations have been resolved and that there is no recursion
so that the call graph is acyclic.

4.1 Slicing to Enable Whole-Program Analy-
sis

Whole-program analysis is a technique that provides vis-
ibility to the entire CFG of the program. It is particu-
larly desirable because it opens up optimisation opportu-
nities not available to the typical module-wide analyses of
modern compilers. However, the size of a whole-program
CFG grows exponentially due to the need to duplicate CFG
from callees into callers at every call site; that is, for a callee
CFG C = 〈VC , EC , s, t〉, each inline increases the size of the
caller CFG C′ by (|VC |+ |EC |)n, where n is the number of
of calls from C′ to C.

In practice, the number of vertices and edges inlined can
be eased considerably by slicing away portions of CFGs
which do not apply to the analysis. This is particularly
relevant to OP2 as it presumes that the data it effectively
owns are not modified in the sequential parts of the code
(see Section 3). For this reason, aggressive program slicing
can be applied and whole-program analysis enabled. In HY-
DRA, for instance, there are a mere 700 OP2-loops, vastly
reducing the complexity of the whole-program CFG.

The slice of interest in our case is the OP2-loops and the
decisions on which their execution is dependent. The latter
parts are needed to maintain the basic shape of control flow,
such as loops in which OP2-loops are contained or the con-
ditional controlling entry into a specific OP2-loop. This is
needed in the subsequent optimisation phase to reason about
which loops can safely be fused or split, without changing
the semantics of the code.

Build-OP2-CFG(C, C1, . . . , C|VC|)

1 foreach v ∈ VC in reverse post-order do
2 Compute the control-dependence graph of CFG Cv

3 Slice Cv with respect to the OP2-loops
4 foreach s ∈ succ(v) do
5 foreach c ∈ ω(v, s) do
6 Inline Cs into Cv at c

Figure 4: Algorithm to construct the whole-program
CFG.

Figure 4 gives the algorithm to produce the whole-program
CFG given the call graph C and the CFGs C1, . . . C|VC |) of
the program. It moves up the call graph in a bottom-up
fashion (Lines 1- 6). For each vertex in the call graph v,
we compute the control-dependence relation of its CFG Cv

(Line 2), for which there are known algorithms [4]. This
allows us to slice the program accordingly with respect to
the OP2-loops (Line 3). Every callee s of v is then analysed
(Line 4), and at each call site c leading to a call of s (Line 5),
we inline the CFG Cs (Line 6).

4.2 Loop unrolling
The biggest hurdle in fusing loops is discovering oppor-

tunities in the code, as a user typically writes OP2-loops
in an optimised way; that is, a programmer usually spots
when two sequentially-composed OP2-loops can be merged
as they iterate over the same set. For instance, the code in
Listing 3 does not contain any obvious fusion opportunities.

OP2-loop fusion is enabled inside our compiler by un-
rolling specific loops. In particular, we ignore loops with
early exits, as these complicate the unrolling process due to
code duplication, and those for which the bound cannot be
determined at compile time, since it is impossible to deter-
mine the unroll factor. Note that there are known techniques
to determine the upper bounds of loops [2, 12, 8]. Armed
with this information, the LNT of the whole-program CFG
is then traversed in a bottom-up fashion and, as each loop
is analysed, we attempt to fully unroll the body of the loop.

We then search in the body of the unrolled loop for max-
imal sequences of basic blocks that contain OP2-loops over
the same set, and fuse depending on the chosen backend ar-

resCalc

bresCalc

resCalc

bresCalc

saveSoln
adtCalc

adtCalc

s

t

L1

E1

update

update

Figure 5: The CFG of Figure 3 after Unrolling and
Fusion Transformations.

chitecture. For example, it is not always beneficial to fuse
in the case of CUDA, because each thread can only assume
the availability of a limited number of registers, otherwise
spillage into the L1 cache occurs. Observe that, when com-
plete unrolling becomes too costly due to a large loop bound,
we instead limit the unroll factor to a small positive number.

Let us re-consider the (whole-program) CFG and its LNT
in Figure 3. Using our technique, loop L2 is the first encoun-
tered during the bottom-up traversal of the LNT; its body
is then completely unrolled because its bound is two. This
immediately exposes two obvious OP2-loop fusion opportu-
nities which are not feasible without unrolling: save_soln
and adt_calc because they both iterate over the set cells
(see Listing 3); similarly, update and adt_calc. The CFG
with L2 unrolled and the OP2-loops fused is presented in
Figure 5. Note that completely unrolling loop L1 is too
costly as its upper bound is one thousand; however, un-
rolling it once would expose another opportunity since, in
the CFG of Figure 5, update is the last OP2-loop executed,
while the fused OP2-loop save_soln/adt_calc is the first
OP2-loop executed, and both iterate over cells.

5. OP2-LOOP FUSION
The program analysis presented in the previous section en-

ables us to spot loop optimisation opportunities, specifically
related to OP2-loops fusion. In this section we discuss the
benefits deriving from applying loop fusion in the case of the
GPU compiler back-end, and the restrictions that we have so
far discovered to its application in our programming model.
For brevity, we omit a full discussion related to the OpenMP
back-end of our compiler. However, the same implementa-
tion scheme, based on a so-called scratchpad memory (see
below), is used also on multicores, to minimise cache misses.
Loop fusion is thus valid also in this case.

5.1 Motivation
The CUDA implementation of an OP2-loop proceeds in

the following manner. First, data declared by the user to be
owned by OP2 (through op_decl_dat) is transferred at elab-
oration time into global device memory through the OP2
run-time support. Second, when control reaches an OP2-
loop in the program (generated by our OP2 compiler), a

host stub is called. In the host stub, the grid dimensions,
the thread-block dimensions, and the size of dynamically al-
located shared memory are set for the CUDA kernel launch.
Third, the CUDA kernel is called, which itself consists of
three principal steps. In this implementation, the mesh is
partitioned and an instance of CUDA kernel is applied to
each partition. The kernel steps are:

1. Data needed by the user-supplied kernel is staged in
from global device memory into shared memory. In
doing so, the compiler coalesces in shared memory the
data scattered in device memory, this last being a typ-
ical feature of unstructured mesh applications. This
means that the shared memory implements a scratch-
pad memory for the partition execution.

2. The user-supplied kernel is called with the data resi-
dent in shared memory.

3. Data is staged out back to global device memory. Evi-
dently, this allows subsequent calls to the OP2-loop to
observe changes to the data.

Staging data in and out of the global device memory is
a costly activity. In the general case these costs cannot be
avoided, since there can be arbitrary control flow between
different invocations of an OP2-loop. However, when there
are at least two sequentially-composed OP2-loops iterating
over the same set which share some data, the overhead can
be reduced through loop fusion, potentially leading to sig-
nificant performance benefits. In addition, the current OP2
CUDA and OpenMP implementation requires a full thread
synchronisation between loops (i.e. OP2-loops). Such a syn-
chronisation can be avoided when loop fusion is applied.

Fusing OP2-loops is generally more straightforward than
fusing (ordinary) loops since the dependencies between data
are explicitly represented in the OP2 programming layer by
means of access descriptors. The fusion element, therefore,
equates to concatenating several user-supplied kernel func-
tion bodies and unioning their formal parameters to create
a single, monolithic function. Later we show an example to
clarify the fusion process.

5.2 Feasibility of Loop Fusion in OP2
Loop fusion is a well-known technique always applied by
optimising compilers to regular applications. However, for
irregular applications, using indirect data accesses instanti-
ated at run-time as it is the case of unstructured meshes, this
technique is difficult to apply automatically. In this paper
we consider syntactic loop fusion, where the compiler is able
to transform the input program fusing loops. This is pos-
sible only in some simple albeit effective cases, as we show
in the experiments section, thanks to the use of OP2 access
descriptors. In fact, these permit us to analyse straightfor-
wardly dependencies between successive OP2-loops, and to
automatically decide if loop fusion is feasible and possibly
efficient.

Let’s consider that our whole program analysis has spot-
ted that two successive loops can be potentially fused. A
first analysis for loop fusion feasibility considers the itera-
tion sets of each loop:

• If the two loops iterate over different sets, we do not
apply loop fusion. This is mainly due to the impos-
sibility of easily relating iterations defined over two
different spaces.

• If the two loops iterate over the same sets, then loop
fusion might be applied, depending on the analysis of
the access descriptors.

We further analyse the second case, when the two OP2-
loops iterate over the same set. A further loop fusion feasi-
bility classification can be done by considering if two OP2-
loops use indirect datasets accesses (i.e. op_maps):

• If the two OP2-loops are direct (no indirect accesses)
then loop fusion is feasible. As there are no indirect
accesses, an iteration i of the second loop can only de-
pends on the values produced by the same iteration i of
the previous loop. The resulting fused loop applies, for
each iteration, successively the first and second loops’
kernels.

• Consider the case in which the two OP2-loops are indi-
rect. If these have a read-after-write dependency (the
first loop using OP INC) on a dataset indirectly ac-
cesses, then it is possible than iteration i from the sec-
ond loop can depend on two iterations (e.g. j and k) of
the first loop. As a consequence, no simple scheduling
without the knowledge of the precise iteration set sizes
and mapping information can be applied at compile-
time, hence no loop fusion can be defined at compile-
time. If no data sharing is present, then there is no
actual performance gain (see below) derives from loop
fusion, even if it is feasible.

• Finally, consider the cases when a direct OP2-loop is
followed by an indirect loop, or viceversa. The con-
dition of the previous case cannot hold, as the direct
loops cannot access datasets indirectly, and as a con-
sequence a one-to-one dependency between loop iter-
ations is defined. Notice that data sharing can only
happen through directly accessed datasets. Loop fu-
sion is hence feasible for these cases, and the resulting
single fused loop will have indirect datasets accesses
(i.e. it is an indirect loop).

OP2-Loop 1

OP2-Loop 2

A B

C D

op_par_loop (k1, cells, ..)

op_par_loop (k2, cells, ..)

V1

V3

V4
V2V1

V3

V4
V2

Figure 6: Example of infeasibility of loop fusion,
when two indirect loops, iterating over cells, ac-
cess the same dataset defined over nodes using some
mapping.

Figure 6 show a visual representation of the second case.
Two successive OP2-loops iterate over cells, the first incre-
menting data associated to nodes, and the second reading
it. In the figure, we show the details of two iterations (i.e.
two cells) for each loop. The shared data on nodes is related
to nodes V1 and V2. As iteration A and B modify these
nodes, then both iterations C and D depends on them, i.e.
on the results that they produce. Therefore, no loop fu-
sion of iterations can be performed without the knowledge
of which nodes connect which cells (i.e. the mesh).

The first case (two direct loops) always delivers a per-
formance improvement if there is data sharing between the
loops and the scratchpad memory is efficiently used. The
efficiency of the third case depends on the trade-off between
the improved data sharing between the loops, and the re-
duced parallelism degree achievable for the direct loop in-
volved, as the fused loop will be an indirect one, inevitably
using parallelism control techniques (e.g. colouring in the
considered architectures).

By applying this analysis to the Airfoil application with
the inner loop unrolled (see Section 4), we are able to apply
loop fusion to the following OP2-loop pairs: save_soln and
adt_calc; update and adt_calc. These pairs both iterate
over cells, and they include a direct and indirect loop (third
case described above).

When loop fusion cannot be defined at compile-time, in a
syntactic manner, then run-time loop fusion can be pursued,
by properly synthesising fusing code in the compiler. A sup-
port for run-time loop fusion can be based on the building of
a task graph of the iterations of the two loops, where depen-
dencies between iterations are derived from OP2 maps. This
kind of technique can be expressed by using similar frame-
works enabling the application of other techniques, like those
underlying sparse tiling, as described in [17]. In future work
we will introduce this modelling framework in our compiler
to achieve run-time loop fusion.

6. EVALUATION
To evaluate the effectiveness of loop fusion we applied it
“manually” to the unrolled version of the Airfoil program.
We generated three versions of the Airfoil:

• The original version, denoted as original, as presented
in the previous sections.

• A version with a single loop fusion of the save_soln
and adt_calc loops, denoted with single fusion. This
version is achieved by un-rolling the inner loop, as
showed in Section 4.

• A version extending the previous one with a further
fusion of the update and adt_calc, again feasible due
to the loop unrolling of the inner loop. This version is
called double fusion.

We then translated the related Airfoil program into CUDA
and OpenMP using our OP2 compiler, and executed them
respectively on an Nvidia M2050 GPU, and on a multicore
node supporting two Intel Xeon X5650 “Nehalem” proces-
sors, each including 6 2-way hyperthreaded cores. Configu-
ration parameters for the CUDA architecture are the size of
the unstructured mesh partition, which has a direct impact
on the size of shared memory/cache needed for the execu-
tion of each partition, and the number of threads in a block

(called block size), executing in parallel the iterations in a
same partition (see [3] for implementation details). For the
multicore architecture we have again the partition size as a
parameter, and the number of threads used in the execution
of the OP2-loops, which we instantiate to 4, 8, 12 and 16.
Notice that the last value is larger than the actual maxi-
mum parallelism degree supported by the multicore. This
last cases does not map each thread to a physical core, but
the hyperthreading support is used.

The following experiments are related to an Airfoil pro-
gram using double precision floating point values as datasets,
applied to an unstructured mesh including approximately
1.5 million edges, and 700 hundreds thousands nodes and
cells. The actual working version of the Airfoil used in these
experiments is written in Fortran. It is compiled by our
OP2 compiler to the Nvidia GPU, and then compiled again
to its executable form using both the PGI CUDA Fortran
compiler and the Nvidia CUDA compiler (nvcc). Options
passed to this last compilation step are “-fast -O2”. For the
multicore implementation, we used the Intel Fortran and C
compiler, using the following options: “-O3 -parallel”

0

10

20

30

40

50

64 128 256 512

Ti
m

e
(s

ec
on

ds
)

Mini-Partition size

No Fusion Fused All Fused

Figure 7: Results of three Airfoil versions in com-
parison. For each group, the original version has
the leftmost darker line; the single fusion one the
medium dark middle line; the double fusion version
the rightmost lighter line. On the X-axis the par-
tition size is displayed, and on the Y-axis the total
execution time.

Figure 7 shows the results of the execution of respectively
the original (darker line), single fusion (medium dark line),
and double fusion (lighter line) versions on the GPU. The
figures have on the X-axis the partition size, which in these
experiments is equal to the CUDA thread block size. In
the Y-axis the execution times in seconds is shown, while
different bands for the same X-axis value denote the three
different versions of the airfoil. Results indicate that the
incremental loop fusion application delivers increasing per-
formance, i.e. smaller execution times, for the three differ-
ent configurations. In particular, the best configuration (i.e.
partition size equal to 64) results in a 6.124% improvement
for the double fusion version and 2.19% for the single fusion
one.

This performance gain is small compared to the total ex-
ecution time. This is mainly due to the fact that a loop
that is not subject to optimisation, i.e. the res_calc loop,

is the most expensive one in this program. Loop optimisa-
tions applied to other more lightweight kernels affect only
slightly the total performance. However, this result also
means that loop fusion delivers a performance improvement
even on lightweight OP2-loops.

0

10

20

30

40

50

60

70

80

90

100

110

120

64 128 256 512

Ti
m

e
(s

ec
on

ds
)

Mini-Partition size

No Fusion Fused All Fused

Figure 8: Results of three Airfoil versions in com-
parison for 12 OpenMP threads. For each group,
the original version has the leftmost darker line; the
single fusion one the medium dark middle line; the
double fusion version the rightmost lighter line. On
the X-axis the partition size is displayed, and on the
Y-axis the total execution time

0

10

20

30

40

50

60

70

80

90

100

110

120

64 128 256 512

Ti
m

e
(s

ec
on

ds
)

Mini-Partition size

No Fusion Fused All Fused

Figure 9: Results of three Airfoil versions in com-
parison for 16 OpenMP threads. For each group,
the original version has the leftmost darker line; the
single fusion one the medium dark middle line; the
double fusion version the rightmost lighter line. On
the X-axis the partition size is displayed, and on the
Y-axis the total execution time

Figure 8 and 9 show the results of the experiments on the
multicore processor for 12 and 16 OpenMP threads. Again,
the X-axis models increasing partition sizes and the Y-axis
the execution time in seconds. In this paper we only report
results for parallelism degrees giving the best performance.
The different columns for the same X-axis value are related
to one of the three versions of the Airfoil application, as for
CUDA experiments.

In general, it can be noticed that a performance improve-
ment is obtained by the single fusion version, with a peak
performance improvement of 20.76%. However, the double
fusion version is showing generally worse performance. This
is mainly given by a cache pollution effect: as in this case
the shared op dat between the two second fused loops is not
staged into cache, then fusion benefits are only based on the
ability of increasing data locality, against the cache pollution
effects.

7. CONCLUSION
OP2 is a programming library which enables parallel itera-
tion over elements of unstructured meshes to be expressed
without being tied to a particular implementation. This pa-
per proposes using whole-program analysis to optimise these
applications, which is made feasible by aggressively slicing
the sequential parts of the code. The whole-program con-
trol flow graph then enables loops in the OP2 layer to be
fused or split according to the best choice for a particular
architecture.

Since a programmer typically writes OP2-loops in an opti-
mal way w.r.t. sequential composition, we showed how loop
unrolling can increase the opportunities for fusion. To as-
sess the benefits and practicality of these optimisations, we
analysed the Airfoil application, a representative program
heavily used in the computational fluid dynamics domain.
Our results showed a small performance improvement for
GPUs, and a greater one for multicore, due to a better use
of respectively shared and cache memory. This suggests us
that loop fusion represents generally a performance improve-
ment. Extensive studies of more complex forms of run-time
loop fusion to cover the unfeasible cases showed in this paper
will deliver additional and higher optimisations to unstruc-
tured mesh applications.

8. REFERENCES
[1] The ROSE compiler. http://wwww.rosecompiler.org/.
[2] M. Bartlett, I. Bate, and D. Kazakov. Guaranteed

loop bound identification from program traces for
wcet. In Proceedings of the 15th Real-Time Technology
and Applications Symposium (RTAS’09), April 2009.

[3] C. Bertolli, A. Betts, G. Mudalige, M. B. Giles, and
P. H.J. Kelly. Design and performance of the OP2
library for unstructured mesh applications. In
Euro-Par 2001 Parallel Processing Workshops, LNCS.
Springer, 2011.

[4] G. Bilardi and K. Pingali. A framework for generalized
control dependence. SIGPLAN Not., 31, May 1996.

[5] D.A. Burgess, P.I. Crumpton, and M.B. Giles. A
parallel framework for unstructured grid solvers. In
K.M. Decker and R.M. Rehmann, editors,
Programming Environments for Massively Parallel
Distributed Systems, pages 97–106, 1994.

[6] P.I. Crumpton and M.B. Giles. Parallel Computational
Fluid Dynamics: Implementations and Results Using
Parallel Computers, chapter Multigrid aircraft
computations using the OPlus parallel library, pages
339–346. 1996.

[7] Z. DeVito, N. Joubert, F. Palacios, S. Oakley,
M. Medina, M. Barrientos, E. Elsen, F. Ham,
A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: a domain specific language for
building portable mesh-based pde solvers. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 9:1–9:12, New York, NY, USA,
2011. ACM.

[8] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde,
and B. Lisper. Loop bound analysis based on a
combination of program slicing, abstract
interpretation, and invariant analysis. In Proceedings
of the 7th Int’l. Workshop on Worst Case Execution
Time (WCET) Analysis, July 2007.

[9] M. B. Giles, M. C. Duta, J. D. Muller, and N. A.
Pierce. Algorithm developments for discrete adjoint
methods. AIAA Journal, 42(2):198–205, 2003.

[10] M.B. Giles, G.R. Mudalige, Z. Sharif, G. Markall, and
P. H.J. Kelly. Performance analysis and optimisation
of the OP2 framework on many-core architectures.
The Computer Journal, 2011.

[11] M.B. Giles, G.R. Mudalige, Z. Sharif, G. Markall, and
P. H.J. Kelly. Performance analysis of the OP2
framework on many-core architectures. SIGMETRICS
Perform. Eval. Rev., 38(4):9–15, March 2011.

[12] C. A. Healy, M. Sjödin, V. Rustagi, D. Whalley, and
R. van Engelen. Supporting timing analysis by
automatic bounding of loops iterations. Real-Time
Systems, 18(2-3):129–156, May 2000.

[13] Lee W. Howes, Anton Lokhmotov, Alastair F.
Donaldson, and Paul H.J. Kelly. Deriving efficient
data movement from decoupled access/execute
specifications. In Proceedings of the 4th International.
Conference on High Performance Embedded
Architectures and Compilers, HiPEAC ’09, 2009.

[14] J. S. Meredith, R. Sisneros, D. Pugmire, and S. Ahern.
A distributed data-parallel framework for analysis and
visualization algorithm development. In Proceedings of
the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units, GPGPU-5,
pages 11–19, New York, NY, USA, 2012. ACM.

[15] P. Moinier, J. D. Muller, and M. B. Giles. Edge-based
multigrid and preconditioning for hybrid grids. AIAA
Journal, 40(10):1954–1960, 2002.

[16] http://www.oerc.ox.ac.uk/research/op2.
[17] M. Strout, L. Carter, and J. Ferrante. Compile-time

composition of run-time data and iteration
reorderings. In Proceedings of the 2003 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2003.

[18] Mark Weiser. Program slicing. In Proceedings of the
5th Int’l. conference on Software engineering, ICSE
’81, 1981.

