
Disrete adjoint approximations with shoksM.B. Giles1Oxford University Computing Laboratory, Oxford, U.K. giles�omlab.ox.a.uk1 IntrodutionIn reent years there has been onsiderable researh into the use of ad-joint ow equations for design optimisation (e.g. [Jam95℄) and error anal-ysis (e.g. [PG00, BR01℄). In almost every ase, the adjoint equations havebeen formulated under the assumption that the original nonlinear ow so-lution is smooth. Sine most appliations have been for inompressible orsubsoni ow, this has been valid, however there is now inreasing use ofsuh tehniques in transoni design appliations for whih there are shoks.It is therefore of interest to investigate the formulation and disretisation ofadjoint equations when in the presene of shoks.The reason that shoks present a problem is that the adjoint equationsare de�ned to be adjoint to the equations obtained by linearising the originalnonlinear ow equations. Therefore, this raises the whole issue of linearisedperturbations to the shok. The validity of linearised shok apturing for har-monially osillating shoks in utter analysis was investigated by Lindquistand Giles [LG94℄ who showed that the shok apturing produes the orretpredition of integral quantities suh as unsteady lift and moment providedthe shok is smeared over a number of grid points. As a result, linearisedshok apturing is now the standard method of turbomahinery aeroelas-ti analysis [HCL94℄, bene�tting from the omputational advantages of thelinearised approah, without the many drawbaks of shok �tting.There has been very little prior researh into adjoint equations for owswith shoks. Giles and Piere [GP01℄ have shown that the analyti derivationof the adjoint equations for the steady quasi-one-dimensional Euler equationsrequires the spei�ation of an internal adjoint boundary ondition at theshok. However, the numerial evidene [GP98℄ is that the orret adjointsolution is obtained using either the \fully disrete" approah (in whih onelinearises the disrete equations and uses the transpose) or the \ontinuous"approah (in whih one disretises the analyti adjoint equations). It is notlear though that this will remain true in two dimensions, for whih there isa similar adjoint boundary ondition along a shok.In this paper, we onsider unsteady one-dimensional hyperboli equa-tions with a onvex salar ux, and in partiular obtain numerial resultsfor Burgers equation. Tadmor [Tad91℄ developed a Lip' topology for theformulation of adjoint equations for this problem, with appliation to lin-ear post-proessing funtionals. Building on this and the work of Bouhut



2 M.B. Gilesand James [BJ98℄, Ulbrih has very reently introdued the onept of shift-di�erentiability [Ulb02a, Ulb02b℄ to handle nonlinear funtionals of the typeonsidered in this paper. This supplies the analyti adjoint solution againstwhih the numerial solutions in this paper will be ompared. An alternativederivation of this analyti solution is presented in an expanded version of thispaper [Gil02℄.2 Analyti adjoint solutionLet u(x; t) be the solution of the salar equation�u�t + �f(u)�x = 0; 0<x<1; 0<t<Tsubjet to initial onditions u(x; 0) = u0(x). Numerial results will be pre-sented later for the Burgers equation for whih f(u) � 12u2, but here weonsider a general onvex funtion f(u). If the solution u(x; t) is di�er-entiable, then u(x; t) is onstant along straight harateristis de�ned bydx=dt = df=du. We will assume that df=du> 0 at x=0 and df=du< 0 atx=1, and therefore the value of u(x; t) is spei�ed on the two side boundaries.When one is interested in the output funtionalJ(u) = Z 10 G(u(x; T )) dx;the orresponding adjoint solution satis�es the equation�v�t + dfdu �v�x = 0; (1)subjet to the �nal ondition v = dG=du on t = T . The linearised funtionalorresponding to a linearised soure term s(x; t) an then be expressed as~J = Z Z
 vs dx dt; (2)whih an be evaluated without omputing the linearised solution to theoriginal equation. This is the basis of the use of adjoint solutions in bothdesign optimisation and error analysis for spei� output funtionals.When there is a shok, as illustrated in Figure 1, the adjoint equationremains valid on either side of the shok, but along the shok the adjointsolution has value ([G℄=[u℄)t=T , the ratio of the jumps in G(u) and u arossthe shok at the terminal time t = T . This results in the adjoint solutionhaving a uniform value along all harateristis leading bakwards from theshok, as well as a onstant value along eah individual harateristi omingbakwards in time from t=T .
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Fig. 1. Charateristis with a shok forming along x=0:5.3 Numerial disretisationWe onsider a lass of expliit �nite volume disretisations of the form1�tM �Un+1 � Un�+�Fn = 0:Here Un is the vetor of solution values Unj ; 0 � j � J at the nth timestep.M is a diagonal mass matrix whose entries areMjj = 8>><>>: 12 (x1 � x0) j = 0;12 (xj+1 � xj�1) 0 < j < J12 (xJ � xJ�1) j = J;Given a numerial ux Fj+1=2 whih is a funtion of both Uj and Uj+1, theux di�erene �Fn is de�ned as�Fnj =8>><>>:Fn1=2 � f(u(0; tn)) j = 0;Fnj+1=2 � Fnj�1=2 0 < j < Jf(u(1; tn))� FnJ�1=2 j = J:Note that this uses a weak implementation of the Dirihlet boundary ondi-tions, as opposed to expliitly setting the values of Un0 and UnJ . This weaktreatment is preferable beause it leads to a leaner formulation of the adjointdisretisation.



4 M.B. GilesHaving omputed the numerial solution, the disrete form of the nonlin-ear output funtional is evaluated asJ =Xj MjjG(UNj ):The linearised equations with the inlusion of the soure term an bewritten as 1�tM � ~Un+1 � ~Un�+An ~Un =M Sn: (3)In addition, the linearised output funtional is~J = gTM ~UN �Xj �dGdu�Nj Mjj ~UNj :In formulating the disrete adjoint equations, we follow what is oftentermed the \fully disrete" approah in whih the goal is to de�ne the adjointequations in suh a way as to obtain exatly the same value for the disretelinearised funtional. This is in ontrast to the \ontinuous adjoint" approahwhih diretly disretises the adjoint di�erential equation, independently ofthe disretisation of the original nonlinear equation.Considering to begin with the ase in whih Sn = 0 for n > 0, the lineardisrete equations, (3), may be solved to obtain~J = �t gTM �I ��tM�1AN�1� : : : �I ��tM�1A2� �I ��tM�1A1�S0:This may be re-arranged as~J = �t gT �I ��tAN�1M�1� : : : �I ��tA2M�1� �I ��tA1M�1�MS0= �t (V 1)TMS0;where V 1 is obtained by solving the disrete adjoint equation1�t M �V n+1 � V n�+ (An)T V n+1 = 0; (4)subjet to the �nal ondition V N = g.Extending to the general ase in whih Sn is non-zero at all time levels, thede�nition of the adjoint variables is unhanged and the resulting expressionfor the funtional is ~J = �tN�1Xn=0(V n+1)TMSn:Note that this is a disrete equivalent of equation (2).We will ontinue to use the same adjoint disretisation when the owsolution ontains a shok. The question to be investigated is whether this willautomatially apture the orret adjoint solution in the limit of inreasinggrid resolution. As a prelude, we note that only g � dG=du enters into theadjoint alulation as initial data, not [G℄ and so it is not lear that theadjoint alulation has the information neessary to orretly predit theadjoint solution in the neighbourhood of the shok.



Disrete adjoint approximations with shoks 54 Numerial testsThe numerial tests are all performed with the Burgers equation, f(u) � 12u2,with initial onditionsu(x; 0) = 8><>: 1; x < 0:252� 4x; 0:25 � x � 0:75�1; x > 0:75and boundary onditions u(0; t) = 1; u(1; t) =�1. As shown in Figure 1, astationary shok forms at x=0:5 at time t=0:25.To assess the degree to whih the solutions are grid onverged, numeri-al results are obtained on two uniform grids with �x= 0:0025; 0:005. Theorresponding timesteps are �t=0:4�x giving a maximum CFL number of0:4.The output funtional uses G(u) = u5�u. This gives g(x) = 4 on eitherside of the shok. Furthermore, the jump [G℄ aross the shok is equal to zero,so the analyti solution has v=0 for all bakward travelling harateristisemanating from the shok. Hene the omplete adjoint solution isv(x; t) =8><>:4; x < t0; t < x < 1�t4; x > 1�t4.1 Riemann uxThe �rst results use a �rst order Riemann numerial ux funtion,F (u1; u2) = 12 max�(max(0; u1))2 ; (min(0; u2))2� :The upper two plots in Figure 2 show the nonlinear and adjoint solutionat times t = 0:1; 0:4. There is very little di�erene between the solutions forthe two grids. However it is very lear that the adjoint solution is ompletelywrong in the region emanating from the shok, where the omputed value isapproximately equal to �1.The ause for this inorret value an be seen in the lower two plots whihshow the nonlinear and adjoint solutions at the �nal time t = 0:5, plottedversus node number relative to the entral node at x = 0:5. It is seen thaton both grids the nonlinear solution has a single shok point at whih u = 0.For this point the orresponding adjoint value is g = dG=du(0) = �1, anda detailed examination of the matrix A reveals that this value is propagatedbakward in time along the length of the shok, and along any harateristiwhih propagates out of the shok.An even more dramati example of inorret behaviour would be obtainedby using an odd number of ells instead of an even number, so that the shok
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Fig. 2. Nonlinear and adjoint solutions obtained with the Riemann ux funtion,for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.entre lies half-way between two nodes. In that ase, the �nal solution wouldhave no interior shok point, and so all of the elements of g would have thevalue 4, leading to the entire disrete adjoint solution having value 4.4.2 Lax-Friedrihs uxThe rest of the results all use a simple Lax-Friedrihs ux, ombining a entralaverage ux with additional �rst order smoothing,F (u1; u2) = 12 (f(u2)+f(u1))� � (u2�u1) :Figure 3 shows results for �=0:25. The values omputed on the two gridsare almost idential. In the viinity of the shok, the nonlinear solution isvery lose to a self-similar steady-state solution whih depends solely on �and the grid ratio �t=�x, and with this level of smoothing there is againonly one grid point in the middle of the shok. The adjoint solution appearsgrid onverged, but to a value whih is inorret.Figure 4 shows results for �=1:0. There are now many grid points arossthe shok, and therefore fairly good resolution of the di�ering values of g =dG=du for u ranging from 1 on the left of the shok to �1 on the right ofthe shok. The numerial adjoint solution now has a value very lose to theanalyti value of zero in the entral part of the domain.
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Fig. 3. Nonlinear and adjoint solutions obtained with the Lax-Friedrihs ux withsmoothing �=0:25, for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
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Fig. 4. Nonlinear and adjoint solutions obtained with the Lax-Friedrihs ux withsmoothing �=1:0, for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
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Fig. 5. Error in the omputed value for v(0:5; 0) as a funtion of the numerialsmoothing oeÆient �.
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Fig. 6. Solutions at t = 0:1; 0:4 obtained with the Lax-Friedrihs ux with dif-ferent levels of smoothing in the nonlinear and adjoint alulations. Upper re-sults: �(nonlinear) = 0:25, �(adjoint) = 1:0. Lower results: �(nonlinear) = 1:0;,�(adjoint)=0:25.Figure 5 plots the error in the omputed value for v(0:5; 0) versus thevalue of the smoothing oeÆient �. It appears from these results that theerror dereases exponentially with the value of � and hene the number ofgrid points aross the shok.Figure 6 presents results obtained by using di�erent values for � in thenonlinear and adjoint alulations. The upper results use � = 0:25 for thenonlinear alulations, and � = 1:0 for the adjoint alulation. The higher
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Fig. 7. Two objetive funtions G(u).value for � in the adjoint alulation leads to rapid di�usion bringing intothe shok region the larger values for the adjoint solution v(x; t) on eitherside of the shok, leading to inorret values in the shok region. The lowerresults use �=1:0 for the nonlinear alulations, and �=0:25 for the adjointalulation. The lower value for � in the adjoint alulation leads to verylittle di�usion, and so the adjoint solution value g = �1 at the entre ofthe smeared shok is onveted bakwards in time leading to v(x; t) � �1throughout the shok region. These results show the importane of usingthe same value of � in both alulations, so that the adjoint disretisationorresponds orretly to the linearisation of the nonlinear disretisation.5 DisussionOne lear onlusion from these numerial results is that there must be on-sisteny between the nonlinear and adjoint alulations regarding the levelof numerial smoothing. Also, for onvergene it is neessary that as the gridresolution improves, the numerial smoothing varies in a way whih inreasesthe number of points aross the shok, while at the same time the overallwidth of the shok dereases.To understand why this latter point is fundamental, and not just a featureof the partiular numerial experiments onduted, we need to onsider theinformation supplied to the adjoint ode. The analyti solution has a valuealong the shok whih depends on the jump [G(u)℄ aross the shok at the�nal time t=T . However, the end onditions for the numerial adjoint solu-tion are given by the values of dG=du for the �nal values of u obtained fromthe nonlinear alulation. These means that the numerial solution must im-pliitly evaluate [G(u)℄ by some proess whih e�etively integrates dG=du



10 M.B. Gilesaross the smeared shok. For this to be done aurately requires adequateresolution of the variation in dG=du.This point is illustrated in Figure 7. The smoother of the two urves isG(u)=u5�u, the objetive funtion in the numerial experiments. The sym-bols orrespond to the values of u at the �nal time t= T in Figure 4. Theseond urve is G(u) = u5�u + tanh 20(u�0:2). This funtion has almostidential gradient values at the indiated sampling points, and therefore pro-dues a numerial adjoint solution whih is visually indistinguishable fromFigure 4. However, the analyti solution has a di�erent jump in G(u) arossthe shok, and so the analyti solution is quite di�erent. This shows that forany numerial disretisation with a �xed number of points aross the shok,it is easy to onstrut an objetive funtion for whih the numerial adjointsolution will not onverge.Referenes[BJ98℄ F. Bouhut and F. James. One-dimensional transport equations with dis-ontinuous oeÆients. Nonlinear Analysis, 32:891{933, 1998.[BR01℄ R. Beker and R. Rannaher. An optimal ontrol approah to error on-trol and mesh adaptation. In A. Iserles, editor, Ata Numeria 2001.Cambridge University Press, 2001.[Gil02℄ M.B. Giles. Adjoint equations and disrete approximations in the pres-ene of shoks. Tehnial Report NA02/10, Oxford University ComputingLaboratory, 2002.[GP98℄ M.B. Giles and N.A. Piere. On the properties of solutions of the ad-joint Euler equations. In M. Baines, editor, Numerial Methods for FluidDynamis VI. ICFD, Jun 1998.[GP01℄ M.B. Giles and N.A. Piere. Analyti adjoint solutions for the quasi-one-dimensional Euler equations. J. Fluid Meh., 426:327{345, 2001.[HCL94℄ K.C. Hall, W.S. Clark, and C.B. Lorene. A linearized Euler analysis ofunsteady transoni ows in turbomahinery. J. Turbomahinery, 116:477{488, 1994.[Jam95℄ A. Jameson. Optimum aerodynami design using ontrol theory. InM. Hafez and K. Oshima, editors, Computational Fluid Dynamis Review1995, pages 495{528. John Wiley & Sons, 1995.[LG94℄ D.R. Lindquist and M.B. Giles. Validity of linearized unsteady Eulerequations with shok apturing. AIAA J., 32(1):46, 1994.[PG00℄ N.A. Piere and M.B. Giles. Adjoint reovery of superonvergent fun-tionals from PDE approximations. SIAM Rev., 42(2):247{264, 2000.[Tad91℄ E. Tadmor. Loal error estimates for disontinuous solutions of nonlinearhyperboli equations. SIAM J. Numer. Anal., 28:891{906, 1991.[Ulb02a℄ S. Ulbrih. Adjoint-based derivative omputations for the optimal ontrolof disontinuous solutions of hyperboli onservation laws. Systems &Control Letters, to appear, 2002.[Ulb02b℄ S. Ulbrih. A sensitivity and adjoint alulus for disontinuous solutionsof hyperboli onservation laws with soure terms. SIAM J. Control andOptim., to appear, 2002.


