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1 Introduction

In recent years there has been considerable research into the use of ad-
joint flow equations for design optimisation (e.g. [Jam95]) and error anal-
ysis (e.g. [PG00, BRO1]). In almost every case, the adjoint equations have
been formulated under the assumption that the original nonlinear flow so-
lution is smooth. Since most applications have been for incompressible or
subsonic flow, this has been valid, however there is now increasing use of
such techniques in transonic design applications for which there are shocks.
It is therefore of interest to investigate the formulation and discretisation of
adjoint equations when in the presence of shocks.

The reason that shocks present a problem is that the adjoint equations
are defined to be adjoint to the equations obtained by linearising the original
nonlinear flow equations. Therefore, this raises the whole issue of linearised
perturbations to the shock. The validity of linearised shock capturing for har-
monically oscillating shocks in flutter analysis was investigated by Lindquist
and Giles [LG94] who showed that the shock capturing produces the correct
prediction of integral quantities such as unsteady lift and moment provided
the shock is smeared over a number of grid points. As a result, linearised
shock capturing is now the standard method of turbomachinery aeroelas-
tic analysis [HCL94], benefitting from the computational advantages of the
linearised approach, without the many drawbacks of shock fitting.

There has been very little prior research into adjoint equations for flows
with shocks. Giles and Pierce [GP01] have shown that the analytic derivation
of the adjoint equations for the steady quasi-one-dimensional Euler equations
requires the specification of an internal adjoint boundary condition at the
shock. However, the numerical evidence [GP98] is that the correct adjoint
solution is obtained using either the “fully discrete” approach (in which one
linearises the discrete equations and uses the transpose) or the “continuous”
approach (in which one discretises the analytic adjoint equations). It is not
clear though that this will remain true in two dimensions, for which there is
a similar adjoint boundary condition along a shock.

In this paper, we consider unsteady one-dimensional hyperbolic equa-
tions with a convex scalar flux, and in particular obtain numerical results
for Burgers equation. Tadmor [Tad91] developed a Lip’ topology for the
formulation of adjoint equations for this problem, with application to lin-
ear post-processing functionals. Building on this and the work of Bouchut
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and James [BJ98], Ulbrich has very recently introduced the concept of shift-
differentiability [Ulb02a, Ulb02b] to handle nonlinear functionals of the type
considered in this paper. This supplies the analytic adjoint solution against
which the numerical solutions in this paper will be compared. An alternative
derivation of this analytic solution is presented in an expanded version of this
paper [Gil02].

2 Analytic adjoint solution

Let u(zx,t) be the solution of the scalar equation

ot or

du OFW) _ o gcr<1, 0<t<T

subject to initial conditions u(x,0) = ug(z). Numerical results will be pre-
sented later for the Burgers equation for which f(u) = fu?, but here we
consider a general convex function f(u). If the solution u(z,t) is differ-
entiable, then u(z,t) is constant along straight characteristics defined by
dz/dt = df/du. We will assume that df/du>0 at =0 and df/du <0 at
x=1, and therefore the value of u(z,t) is specified on the two side boundaries.

When one is interested in the output functional

1
J(u) :/ G(u(z,T)) de,
0
the corresponding adjoint solution satisfies the equation

dv ~df Oov
B a%—oa (1)

subject to the final condition v = dG/du on t = T'. The linearised functional
corresponding to a linearised source term s(z,t) can then be expressed as

j://ﬂvs dz dt, (2)

which can be evaluated without computing the linearised solution to the
original equation. This is the basis of the use of adjoint solutions in both
design optimisation and error analysis for specific output functionals.

When there is a shock, as illustrated in Figure 1, the adjoint equation
remains valid on either side of the shock, but along the shock the adjoint
solution has value ([G]/[u])¢=r, the ratio of the jumps in G(u) and u across
the shock at the terminal time ¢ = T'. This results in the adjoint solution
having a uniform value along all characteristics leading backwards from the
shock, as well as a constant value along each individual characteristic coming
backwards in time from ¢t=T.
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Fig. 1. Characteristics with a shock forming along x=0.5.

3 Numerical discretisation

We consider a class of explicit finite volume discretisations of the form

i n+1l _ n n __
AtM(U U™) + AF™ =0.

Here U™ is the vector of solution values U}',0 < j < .J at the nt" timestep.
M is a diagonal mass matrix whose entries are
(1 — o) j=0,

ijz (Cﬂj+1—$j_1) O0<y<J

= N N

(xg—m521) =1,

Given a numerical flux Fj/; which is a function of both U; and Uj1, the
flux difference AF™ is defined as

12 — F((0,87)  j =0,

AFP =S FIy = F1 0<j<J

f(u(latn)) - F?71/2 .7 =J

Note that this uses a weak implementation of the Dirichlet boundary condi-
tions, as opposed to explicitly setting the values of Uy and U}. This weak
treatment is preferable because it leads to a cleaner formulation of the adjoint
discretisation.
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Having computed the numerical solution, the discrete form of the nonlin-
ear output functional is evaluated as

J =Y Mj;GUN).
J

The linearised equations with the inclusion of the source term can be

written as 1
rrm+1l _ rrn nrm _ n
—AtM(U U)+A 0" = M S (3)

In addition, the linearised output functional is

7 T /TN — dG\ ™ PN
J=¢"MU :Z<£>. M;;UN.
j J

In formulating the discrete adjoint equations, we follow what is often
termed the “fully discrete” approach in which the goal is to define the adjoint
equations in such a way as to obtain exactly the same value for the discrete
linearised functional. This is in contrast to the “continuous adjoint” approach
which directly discretises the adjoint differential equation, independently of
the discretisation of the original nonlinear equation.

Considering to begin with the case in which S™ = 0 for n > 0, the linear
discrete equations, (3), may be solved to obtain

J=At g"M (I — At MTANTY) L (T — At M A?) (I - At M~ A" SO
This may be re-arranged as
J=Atg" (I —AtANTTM 1Y) (T — At A?M ) (I — At APM ) MS°
= At (VHTMS°,
where V! is obtained by solving the discrete adjoint equation

1
T M (VM= V) 4 (AmT V=0, (4)
subject to the final condition VV = g.

Extending to the general case in which S™ is non-zero at all time levels, the
definition of the adjoint variables is unchanged and the resulting expression

for the functional is
N—1

J=Aty (VvrhTmsn.
n=0
Note that this is a discrete equivalent of equation (2).

We will continue to use the same adjoint discretisation when the flow
solution contains a shock. The question to be investigated is whether this will
automatically capture the correct adjoint solution in the limit of increasing
grid resolution. As a prelude, we note that only ¢ = dG/du enters into the
adjoint calculation as initial data, not [G] and so it is not clear that the
adjoint calculation has the information necessary to correctly predict the
adjoint solution in the neighbourhood of the shock.
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4 Numerical tests

The numerical tests are all performed with the Burgers equation, f(u) = %u2,

with initial conditions

1, x<0.25
u(z,0) =< 2 —4x,0.25 <z <0.75
-1, x>0.75

and boundary conditions u(0,¢) =1, u(1,t) = —1. As shown in Figure 1, a
stationary shock forms at £=0.5 at time t=0.25.

To assess the degree to which the solutions are grid converged, numeri-
cal results are obtained on two uniform grids with Az =0.0025,0.005. The
corresponding timesteps are At =0.4Az giving a maximum CFL number of
0.4.

The output functional uses G(u) = u® —wu. This gives g(x) =4 on either
side of the shock. Furthermore, the jump [G] across the shock is equal to zero,
so the analytic solution has v =0 for all backward travelling characteristics
emanating from the shock. Hence the complete adjoint solution is

5

4, <t
v(iz,t) =< 0,t <z <1t
4,2 >1-t

4.1 Riemann flux

The first results use a first order Riemann numerical flux function,

Fluy,us) = %max ((maX(O,ul))2 : (min(o,u2))2) .

The upper two plots in Figure 2 show the nonlinear and adjoint solution
at times t = 0.1,0.4. There is very little difference between the solutions for
the two grids. However it is very clear that the adjoint solution is completely
wrong in the region emanating from the shock, where the computed value is
approximately equal to —1.

The cause for this incorrect value can be seen in the lower two plots which
show the nonlinear and adjoint solutions at the final time ¢t = 0.5, plotted
versus node number relative to the central node at x = 0.5. It is seen that
on both grids the nonlinear solution has a single shock point at which u = 0.
For this point the corresponding adjoint value is ¢ = dG/du(0) = —1, and
a detailed examination of the matrix A reveals that this value is propagated
backward in time along the length of the shock, and along any characteristic
which propagates out of the shock.

An even more dramatic example of incorrect behaviour would be obtained
by using an odd number of cells instead of an even number, so that the shock
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Fig. 2. Nonlinear and adjoint solutions obtained with the Riemann flux function,
for t=0.1,0.4 in the upper plots, and ¢=0.5 in the lower plots.

centre lies half-way between two nodes. In that case, the final solution would
have no interior shock point, and so all of the elements of g would have the
value 4, leading to the entire discrete adjoint solution having value 4.

4.2 Lax-Friedrichs flux

The rest of the results all use a simple Lax-Friedrichs flux, combining a central
average flux with additional first order smoothing,

Fui,uz) = 5 (f(uz)+f(u1)) — p(ua—u1).

N | =

Figure 3 shows results for ©=0.25. The values computed on the two grids
are almost identical. In the vicinity of the shock, the nonlinear solution is
very close to a self-similar steady-state solution which depends solely on p
and the grid ratio At/Axz, and with this level of smoothing there is again
only one grid point in the middle of the shock. The adjoint solution appears
grid converged, but to a value which is incorrect.

Figure 4 shows results for gy =1.0. There are now many grid points across
the shock, and therefore fairly good resolution of the differing values of g =
dG/du for u ranging from 1 on the left of the shock to —1 on the right of
the shock. The numerical adjoint solution now has a value very close to the
analytic value of zero in the central part of the domain.
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Fig. 3. Nonlinear and adjoint solutions obtained with the Lax-Friedrichs flux with
smoothing p=0.25, for t=0.1,0.4 in the upper plots, and ¢=0.5 in the lower plots.
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Fig. 4. Nonlinear and adjoint solutions obtained with the Lax-Friedrichs flux with
smoothing p=1.0, for £=0.1,0.4 in the upper plots, and ¢=0.5 in the lower plots.
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Fig. 5. Error in the computed value for v(0.5,0) as a function of the numerical
smoothing coefficient p.
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Fig. 6. Solutions at ¢ = 0.1,0.4 obtained with the Lax-Friedrichs flux with dif-
ferent levels of smoothing in the nonlinear and adjoint calculations. Upper re-
sults: p(nonlinear) = 0.25, p(adjoint) = 1.0. Lower results: p(nonlinear) = 1.0,,
p(adjoint) =0.25.

Figure 5 plots the error in the computed value for v(0.5,0) versus the
value of the smoothing coefficient u. It appears from these results that the
error decreases exponentially with the value of y and hence the number of
grid points across the shock.

Figure 6 presents results obtained by using different values for p in the
nonlinear and adjoint calculations. The upper results use u = 0.25 for the
nonlinear calculations, and g = 1.0 for the adjoint calculation. The higher
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Fig. 7. Two objective functions G(u).

value for p in the adjoint calculation leads to rapid diffusion bringing into
the shock region the larger values for the adjoint solution v(z,t) on either
side of the shock, leading to incorrect values in the shock region. The lower
results use p=1.0 for the nonlinear calculations, and ©=0.25 for the adjoint
calculation. The lower value for p in the adjoint calculation leads to very
little diffusion, and so the adjoint solution value g = —1 at the centre of
the smeared shock is convected backwards in time leading to v(z,t) ~ —1
throughout the shock region. These results show the importance of using
the same value of p in both calculations, so that the adjoint discretisation
corresponds correctly to the linearisation of the nonlinear discretisation.

5 Discussion

One clear conclusion from these numerical results is that there must be con-
sistency between the nonlinear and adjoint calculations regarding the level
of numerical smoothing. Also, for convergence it is necessary that as the grid
resolution improves, the numerical smoothing varies in a way which increases
the number of points across the shock, while at the same time the overall
width of the shock decreases.

To understand why this latter point is fundamental, and not just a feature
of the particular numerical experiments conducted, we need to consider the
information supplied to the adjoint code. The analytic solution has a value
along the shock which depends on the jump [G(u)] across the shock at the
final time t=T. However, the end conditions for the numerical adjoint solu-
tion are given by the values of dG/du for the final values of 4 obtained from
the nonlinear calculation. These means that the numerical solution must im-
plicitly evaluate [G(u)] by some process which effectively integrates dG/du
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across the smeared shock. For this to be done accurately requires adequate
resolution of the variation in dG/du.

This point is illustrated in Figure 7. The smoother of the two curves is
G(u) =u’—u, the objective function in the numerical experiments. The sym-
bols correspond to the values of u at the final time ¢ =T in Figure 4. The
second curve is G(u) = u® —u + tanh 20(u —0.2). This function has almost
identical gradient values at the indicated sampling points, and therefore pro-
duces a numerical adjoint solution which is visually indistinguishable from
Figure 4. However, the analytic solution has a different jump in G(u) across
the shock, and so the analytic solution is quite different. This shows that for
any numerical discretisation with a fixed number of points across the shock,
it is easy to construct an objective function for which the numerical adjoint
solution will not converge.
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