
Dis
rete adjoint approximations with sho
ksM.B. Giles1Oxford University Computing Laboratory, Oxford, U.K. giles�
omlab.ox.a
.uk1 Introdu
tionIn re
ent years there has been 
onsiderable resear
h into the use of ad-joint 
ow equations for design optimisation (e.g. [Jam95℄) and error anal-ysis (e.g. [PG00, BR01℄). In almost every 
ase, the adjoint equations havebeen formulated under the assumption that the original nonlinear 
ow so-lution is smooth. Sin
e most appli
ations have been for in
ompressible orsubsoni
 
ow, this has been valid, however there is now in
reasing use ofsu
h te
hniques in transoni
 design appli
ations for whi
h there are sho
ks.It is therefore of interest to investigate the formulation and dis
retisation ofadjoint equations when in the presen
e of sho
ks.The reason that sho
ks present a problem is that the adjoint equationsare de�ned to be adjoint to the equations obtained by linearising the originalnonlinear 
ow equations. Therefore, this raises the whole issue of linearisedperturbations to the sho
k. The validity of linearised sho
k 
apturing for har-moni
ally os
illating sho
ks in 
utter analysis was investigated by Lindquistand Giles [LG94℄ who showed that the sho
k 
apturing produ
es the 
orre
tpredi
tion of integral quantities su
h as unsteady lift and moment providedthe sho
k is smeared over a number of grid points. As a result, linearisedsho
k 
apturing is now the standard method of turboma
hinery aeroelas-ti
 analysis [HCL94℄, bene�tting from the 
omputational advantages of thelinearised approa
h, without the many drawba
ks of sho
k �tting.There has been very little prior resear
h into adjoint equations for 
owswith sho
ks. Giles and Pier
e [GP01℄ have shown that the analyti
 derivationof the adjoint equations for the steady quasi-one-dimensional Euler equationsrequires the spe
i�
ation of an internal adjoint boundary 
ondition at thesho
k. However, the numeri
al eviden
e [GP98℄ is that the 
orre
t adjointsolution is obtained using either the \fully dis
rete" approa
h (in whi
h onelinearises the dis
rete equations and uses the transpose) or the \
ontinuous"approa
h (in whi
h one dis
retises the analyti
 adjoint equations). It is not
lear though that this will remain true in two dimensions, for whi
h there isa similar adjoint boundary 
ondition along a sho
k.In this paper, we 
onsider unsteady one-dimensional hyperboli
 equa-tions with a 
onvex s
alar 
ux, and in parti
ular obtain numeri
al resultsfor Burgers equation. Tadmor [Tad91℄ developed a Lip' topology for theformulation of adjoint equations for this problem, with appli
ation to lin-ear post-pro
essing fun
tionals. Building on this and the work of Bou
hut



2 M.B. Gilesand James [BJ98℄, Ulbri
h has very re
ently introdu
ed the 
on
ept of shift-di�erentiability [Ulb02a, Ulb02b℄ to handle nonlinear fun
tionals of the type
onsidered in this paper. This supplies the analyti
 adjoint solution againstwhi
h the numeri
al solutions in this paper will be 
ompared. An alternativederivation of this analyti
 solution is presented in an expanded version of thispaper [Gil02℄.2 Analyti
 adjoint solutionLet u(x; t) be the solution of the s
alar equation�u�t + �f(u)�x = 0; 0<x<1; 0<t<Tsubje
t to initial 
onditions u(x; 0) = u0(x). Numeri
al results will be pre-sented later for the Burgers equation for whi
h f(u) � 12u2, but here we
onsider a general 
onvex fun
tion f(u). If the solution u(x; t) is di�er-entiable, then u(x; t) is 
onstant along straight 
hara
teristi
s de�ned bydx=dt = df=du. We will assume that df=du> 0 at x=0 and df=du< 0 atx=1, and therefore the value of u(x; t) is spe
i�ed on the two side boundaries.When one is interested in the output fun
tionalJ(u) = Z 10 G(u(x; T )) dx;the 
orresponding adjoint solution satis�es the equation�v�t + dfdu �v�x = 0; (1)subje
t to the �nal 
ondition v = dG=du on t = T . The linearised fun
tional
orresponding to a linearised sour
e term s(x; t) 
an then be expressed as~J = Z Z
 vs dx dt; (2)whi
h 
an be evaluated without 
omputing the linearised solution to theoriginal equation. This is the basis of the use of adjoint solutions in bothdesign optimisation and error analysis for spe
i�
 output fun
tionals.When there is a sho
k, as illustrated in Figure 1, the adjoint equationremains valid on either side of the sho
k, but along the sho
k the adjointsolution has value ([G℄=[u℄)t=T , the ratio of the jumps in G(u) and u a
rossthe sho
k at the terminal time t = T . This results in the adjoint solutionhaving a uniform value along all 
hara
teristi
s leading ba
kwards from thesho
k, as well as a 
onstant value along ea
h individual 
hara
teristi
 
omingba
kwards in time from t=T .



Dis
rete adjoint approximations with sho
ks 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

t

Fig. 1. Chara
teristi
s with a sho
k forming along x=0:5.3 Numeri
al dis
retisationWe 
onsider a 
lass of expli
it �nite volume dis
retisations of the form1�tM �Un+1 � Un�+�Fn = 0:Here Un is the ve
tor of solution values Unj ; 0 � j � J at the nth timestep.M is a diagonal mass matrix whose entries areMjj = 8>><>>: 12 (x1 � x0) j = 0;12 (xj+1 � xj�1) 0 < j < J12 (xJ � xJ�1) j = J;Given a numeri
al 
ux Fj+1=2 whi
h is a fun
tion of both Uj and Uj+1, the
ux di�eren
e �Fn is de�ned as�Fnj =8>><>>:Fn1=2 � f(u(0; tn)) j = 0;Fnj+1=2 � Fnj�1=2 0 < j < Jf(u(1; tn))� FnJ�1=2 j = J:Note that this uses a weak implementation of the Diri
hlet boundary 
ondi-tions, as opposed to expli
itly setting the values of Un0 and UnJ . This weaktreatment is preferable be
ause it leads to a 
leaner formulation of the adjointdis
retisation.



4 M.B. GilesHaving 
omputed the numeri
al solution, the dis
rete form of the nonlin-ear output fun
tional is evaluated asJ =Xj MjjG(UNj ):The linearised equations with the in
lusion of the sour
e term 
an bewritten as 1�tM � ~Un+1 � ~Un�+An ~Un =M Sn: (3)In addition, the linearised output fun
tional is~J = gTM ~UN �Xj �dGdu�Nj Mjj ~UNj :In formulating the dis
rete adjoint equations, we follow what is oftentermed the \fully dis
rete" approa
h in whi
h the goal is to de�ne the adjointequations in su
h a way as to obtain exa
tly the same value for the dis
retelinearised fun
tional. This is in 
ontrast to the \
ontinuous adjoint" approa
hwhi
h dire
tly dis
retises the adjoint di�erential equation, independently ofthe dis
retisation of the original nonlinear equation.Considering to begin with the 
ase in whi
h Sn = 0 for n > 0, the lineardis
rete equations, (3), may be solved to obtain~J = �t gTM �I ��tM�1AN�1� : : : �I ��tM�1A2� �I ��tM�1A1�S0:This may be re-arranged as~J = �t gT �I ��tAN�1M�1� : : : �I ��tA2M�1� �I ��tA1M�1�MS0= �t (V 1)TMS0;where V 1 is obtained by solving the dis
rete adjoint equation1�t M �V n+1 � V n�+ (An)T V n+1 = 0; (4)subje
t to the �nal 
ondition V N = g.Extending to the general 
ase in whi
h Sn is non-zero at all time levels, thede�nition of the adjoint variables is un
hanged and the resulting expressionfor the fun
tional is ~J = �tN�1Xn=0(V n+1)TMSn:Note that this is a dis
rete equivalent of equation (2).We will 
ontinue to use the same adjoint dis
retisation when the 
owsolution 
ontains a sho
k. The question to be investigated is whether this willautomati
ally 
apture the 
orre
t adjoint solution in the limit of in
reasinggrid resolution. As a prelude, we note that only g � dG=du enters into theadjoint 
al
ulation as initial data, not [G℄ and so it is not 
lear that theadjoint 
al
ulation has the information ne
essary to 
orre
tly predi
t theadjoint solution in the neighbourhood of the sho
k.
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ks 54 Numeri
al testsThe numeri
al tests are all performed with the Burgers equation, f(u) � 12u2,with initial 
onditionsu(x; 0) = 8><>: 1; x < 0:252� 4x; 0:25 � x � 0:75�1; x > 0:75and boundary 
onditions u(0; t) = 1; u(1; t) =�1. As shown in Figure 1, astationary sho
k forms at x=0:5 at time t=0:25.To assess the degree to whi
h the solutions are grid 
onverged, numeri-
al results are obtained on two uniform grids with �x= 0:0025; 0:005. The
orresponding timesteps are �t=0:4�x giving a maximum CFL number of0:4.The output fun
tional uses G(u) = u5�u. This gives g(x) = 4 on eitherside of the sho
k. Furthermore, the jump [G℄ a
ross the sho
k is equal to zero,so the analyti
 solution has v=0 for all ba
kward travelling 
hara
teristi
semanating from the sho
k. Hen
e the 
omplete adjoint solution isv(x; t) =8><>:4; x < t0; t < x < 1�t4; x > 1�t4.1 Riemann 
uxThe �rst results use a �rst order Riemann numeri
al 
ux fun
tion,F (u1; u2) = 12 max�(max(0; u1))2 ; (min(0; u2))2� :The upper two plots in Figure 2 show the nonlinear and adjoint solutionat times t = 0:1; 0:4. There is very little di�eren
e between the solutions forthe two grids. However it is very 
lear that the adjoint solution is 
ompletelywrong in the region emanating from the sho
k, where the 
omputed value isapproximately equal to �1.The 
ause for this in
orre
t value 
an be seen in the lower two plots whi
hshow the nonlinear and adjoint solutions at the �nal time t = 0:5, plottedversus node number relative to the 
entral node at x = 0:5. It is seen thaton both grids the nonlinear solution has a single sho
k point at whi
h u = 0.For this point the 
orresponding adjoint value is g = dG=du(0) = �1, anda detailed examination of the matrix A reveals that this value is propagatedba
kward in time along the length of the sho
k, and along any 
hara
teristi
whi
h propagates out of the sho
k.An even more dramati
 example of in
orre
t behaviour would be obtainedby using an odd number of 
ells instead of an even number, so that the sho
k
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Fig. 2. Nonlinear and adjoint solutions obtained with the Riemann 
ux fun
tion,for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
entre lies half-way between two nodes. In that 
ase, the �nal solution wouldhave no interior sho
k point, and so all of the elements of g would have thevalue 4, leading to the entire dis
rete adjoint solution having value 4.4.2 Lax-Friedri
hs 
uxThe rest of the results all use a simple Lax-Friedri
hs 
ux, 
ombining a 
entralaverage 
ux with additional �rst order smoothing,F (u1; u2) = 12 (f(u2)+f(u1))� � (u2�u1) :Figure 3 shows results for �=0:25. The values 
omputed on the two gridsare almost identi
al. In the vi
inity of the sho
k, the nonlinear solution isvery 
lose to a self-similar steady-state solution whi
h depends solely on �and the grid ratio �t=�x, and with this level of smoothing there is againonly one grid point in the middle of the sho
k. The adjoint solution appearsgrid 
onverged, but to a value whi
h is in
orre
t.Figure 4 shows results for �=1:0. There are now many grid points a
rossthe sho
k, and therefore fairly good resolution of the di�ering values of g =dG=du for u ranging from 1 on the left of the sho
k to �1 on the right ofthe sho
k. The numeri
al adjoint solution now has a value very 
lose to theanalyti
 value of zero in the 
entral part of the domain.
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Fig. 3. Nonlinear and adjoint solutions obtained with the Lax-Friedri
hs 
ux withsmoothing �=0:25, for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
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Fig. 4. Nonlinear and adjoint solutions obtained with the Lax-Friedri
hs 
ux withsmoothing �=1:0, for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
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Fig. 5. Error in the 
omputed value for v(0:5; 0) as a fun
tion of the numeri
alsmoothing 
oeÆ
ient �.
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Fig. 6. Solutions at t = 0:1; 0:4 obtained with the Lax-Friedri
hs 
ux with dif-ferent levels of smoothing in the nonlinear and adjoint 
al
ulations. Upper re-sults: �(nonlinear) = 0:25, �(adjoint) = 1:0. Lower results: �(nonlinear) = 1:0;,�(adjoint)=0:25.Figure 5 plots the error in the 
omputed value for v(0:5; 0) versus thevalue of the smoothing 
oeÆ
ient �. It appears from these results that theerror de
reases exponentially with the value of � and hen
e the number ofgrid points a
ross the sho
k.Figure 6 presents results obtained by using di�erent values for � in thenonlinear and adjoint 
al
ulations. The upper results use � = 0:25 for thenonlinear 
al
ulations, and � = 1:0 for the adjoint 
al
ulation. The higher
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Fig. 7. Two obje
tive fun
tions G(u).value for � in the adjoint 
al
ulation leads to rapid di�usion bringing intothe sho
k region the larger values for the adjoint solution v(x; t) on eitherside of the sho
k, leading to in
orre
t values in the sho
k region. The lowerresults use �=1:0 for the nonlinear 
al
ulations, and �=0:25 for the adjoint
al
ulation. The lower value for � in the adjoint 
al
ulation leads to verylittle di�usion, and so the adjoint solution value g = �1 at the 
entre ofthe smeared sho
k is 
onve
ted ba
kwards in time leading to v(x; t) � �1throughout the sho
k region. These results show the importan
e of usingthe same value of � in both 
al
ulations, so that the adjoint dis
retisation
orresponds 
orre
tly to the linearisation of the nonlinear dis
retisation.5 Dis
ussionOne 
lear 
on
lusion from these numeri
al results is that there must be 
on-sisten
y between the nonlinear and adjoint 
al
ulations regarding the levelof numeri
al smoothing. Also, for 
onvergen
e it is ne
essary that as the gridresolution improves, the numeri
al smoothing varies in a way whi
h in
reasesthe number of points a
ross the sho
k, while at the same time the overallwidth of the sho
k de
reases.To understand why this latter point is fundamental, and not just a featureof the parti
ular numeri
al experiments 
ondu
ted, we need to 
onsider theinformation supplied to the adjoint 
ode. The analyti
 solution has a valuealong the sho
k whi
h depends on the jump [G(u)℄ a
ross the sho
k at the�nal time t=T . However, the end 
onditions for the numeri
al adjoint solu-tion are given by the values of dG=du for the �nal values of u obtained fromthe nonlinear 
al
ulation. These means that the numeri
al solution must im-pli
itly evaluate [G(u)℄ by some pro
ess whi
h e�e
tively integrates dG=du
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ross the smeared sho
k. For this to be done a

urately requires adequateresolution of the variation in dG=du.This point is illustrated in Figure 7. The smoother of the two 
urves isG(u)=u5�u, the obje
tive fun
tion in the numeri
al experiments. The sym-bols 
orrespond to the values of u at the �nal time t= T in Figure 4. These
ond 
urve is G(u) = u5�u + tanh 20(u�0:2). This fun
tion has almostidenti
al gradient values at the indi
ated sampling points, and therefore pro-du
es a numeri
al adjoint solution whi
h is visually indistinguishable fromFigure 4. However, the analyti
 solution has a di�erent jump in G(u) a
rossthe sho
k, and so the analyti
 solution is quite di�erent. This shows that forany numeri
al dis
retisation with a �xed number of points a
ross the sho
k,it is easy to 
onstru
t an obje
tive fun
tion for whi
h the numeri
al adjointsolution will not 
onverge.Referen
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