
AbstratA multigrid method has been developed for the Euler and Navier-Stokes equations on unstrutured hybrid grids in two and three dimen-sions. The oarse grids are automatially generated from the �nest gridthrough element ollapsing. This has been used in preferene to a previ-ous edge-ollapsing tehnique to preserve as muh struture as possiblewithin semi-strutured grids. The performane of the multigrid is sig-ni�antly improved through the use of Jaobi preonditioning withina Runge-Kutta iterative smoother. Results are presented for a varietyof two-dimensional and three-dimensional problems, both invisid andvisous with the Spalart-Allmaras turbulene model.
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1 IntrodutionCFD has to respond to the need for aurate, eÆient and robust algo-rithms for solving omplete desriptions of uid motion over omplexgeometries. When using the Reynolds-averaged Navier-Stokes equationswith an appropriate turbulene model, the omputational mesh has tobe highly resolved in the diretion normal to the wall to aurately rep-resent the steep gradients in a high Reynolds number boundary layer.This results in highly strethed omputational ells whih limit the ef-fetiveness of the numerial algorithms, and inrease onsiderably thesize of the problem to solve, both in term of memory requirements andomputational ost. With the ontinuing rapid development of omput-ers, the size of the problems being addressed is beoming ever larger.Therefore, the hallenge is to obtain an iterative onvergene rate whihis grid-independent. Multigrid is the most popular approah to ahievethis, and it has been very suessful for the Euler equations as well asmost ellipti equations. It is also a very ommon approah for solvingthe Navier-Stokes equations [12, 2, 18, 28℄, despite the problems ausedby the presene of highly strethed ells in the boundary layer.�Researh OÆer, email: moinier�omlab.ox.a.uk, member AIAAyLeturer, email: j.mueller�qub.a.uk, member AIAAzProfessor, email: giles�omlab.ox.a.uk, member AIAA2



The entral idea of multigrid is to transfer the low frequeny solu-tion errors onto a sequene of oarser meshes where they beome highfrequeny errors that are more e�etively smoothed by traditional iter-ative methods. The hoie of an iterative smoother is very important,and a popular expliit multigrid smoother is the semi-disrete shemeproposed by Jameson et al [10℄ whih uses multi-stage Runge-Kuttatime-stepping with oeÆients hosen to promote rapid damping andpropagation of error modes. However, for Navier-Stokes omputationsof high Reynolds number ows, the onvetive error modes in the bound-ary layer are not eÆiently eliminated beause of the high aspet ratioells inside the boundary layer. The resulting numerial sti�ness in on-juntion with the sti�ness assoiated with the turbulene model, resultsin muh poorer onvergene than obtained with the Euler equations.To overome this, one approah is to use a matrix time step, or pre-onditioner, to luster the eigenvalues of the residual operator away fromthe origin into a region of the omplex plane for whih the multi-stagesheme provides rapid damping and propagation of the orrespondingerror modes [1, 31, 24℄. Piere and Giles have shown that for tur-bulent Navier-Stokes alulations on strutured grids, the ombinationof a blok-Jaobi preonditioner and a multigrid method with semi-oarsening aross the boundary layer provides very e�etive damping ofall modes inside the boundary layer, both in theory and in pratie. Thepreonditioner damps all of the onvetive modes, while the multigridstrategy, in whih the grids are oarsened only in the diretion arossthe boundary layer, ensures that all aousti modes disappear [29, 30℄.However, the task of automatially generating blok-strutured gridsfor omplex geometries is very hallenging. An alternative is to use un-strutured grids whih are muh more easily generated, but using purelytetrahedral grids in 3D leads to a lower auray (beause it is muhharder to formulate high order disretisations) and greater omputa-tional ost per grid point (on a hexahedral mesh of N verties, an edge-based �nite volume sheme leads to the evaluation of 3N uxes, whereasthe same mesh subdivided into a tetrahedral mesh requires the evalua-tion of 7N uxes, the e�ets of the boundaries being negleted). Theompromise, whih to some extent o�ers the best of both approahes,is to use hybrid grids in whih the grid is treated as an unstruturedolletion of di�erent ell types (tetrahedra, pyramids, prisms and hex-ahedra). This gives maximum geometri exibility, and at the sametime allows one to use grids whih in ertain regions are strutured orsemi-strutured, giving improved auray and ost per grid point. Forexample, Kallinderis et al have developed visous grid generation meth-ods whih start with a surfae triangulation and then use advaningnormals to produe a boundary layer grid omposed of prismati ele-ments [11, 20℄. These very thin prismati elements are very suitable forthe aurate evaluation of the normal shear stress in the high Reynolds3



number boundary layer. Outside the boundary layer, the grid reverts totetrahedra to �ll the rest of the domain in whih the ow is essentiallyinvisid.The drawbak of using hybrid grids is that it an ompliate themultigrid proedure, depending on the details of the multigrid strat-egy. If one follows the approah of Mavriplis in using an edge-baseddisretisation and an agglomeration multigrid whih is losely relatedto algebrai multigrid [15, 14℄, the disrete equations on oarser gridlevels are assembled automatially without the expliit reation of aoarse grid. For this method, the use of a hybrid grid does not intro-due any signi�ant additional diÆulties. Agglomeration multigrid is avery powerful approah o�ering simpliity and robustness, but with theNavier-Stokes equations there is the problem that the sum of the orderof auray of multigrid restrition and prolongation violates the on-dition established by Hakbush [9℄ (see setion Sheme Desription) asbeing neessary for grid-independent onvergene. Using an ad ho �x,Mavriplis has nevertheless obtained impressive results [16, 19, 17℄, butin our researh we have preferred the alternative approah of expliitlyonstruting oarse grids from the �nest grid, so that we an ahieve�rst order restrition and seond order prolongation in the multigrid.Our researh started from the edge-ollapsing multigrid approahintrodued by Crumpton and Giles, whih has been shown to be highlysuessful for invisid ows on tetrahedral meshes [6, 5℄. For highReynolds number visous ows, modi�ations had to be introdued toprevent the grid in the boundary layer beoming over-oarsened in thediretion aross the boundary layer. The result is essentially equivalentto a semi-oarsening strategy as used on highly strethed struturedgrids [34, 29℄, and it gives a multigrid algorithm whih is eÆient, ro-bust and appliable to omplex geometries in two and three dimensions[7, 22℄.The subjet of this paper is the extension of the edge-ollapsing ideato hybrid grids. This proved to be more diÆult than initially expeted.Ideally, what one would like is a ollapsing tehnique whih preservesas muh as possible of the struture within the grid. For example, ifthe �ne grid onsists of prisms in the boundary layer, then one wouldideally like the �rst oarse grid to onsist of semi-oarsened prisms in theboundary layer. However, Crumpton's edge-ollapsing algorithm worksby ollapsing an edge, ombining its two nodes into one, and onnetingthe new node to the faes of the avity formed by the removal of theedge and all assoiated ells. When starting from a prismati grid, thisquikly results in a grid onsisting solely of tetrahedra. Even worse,with a hexahedral grid it an result in a oarse grid whih has fewernodes, but an inreased number of ells, many of whih are tetrahedra[25℄.We will show that these problems are avoided by modifying the4



algorithm to ollapse ells rather than edges, ensuring that the numberof ells and edges is always redued, as well as the number of nodes. Theuse of heap-based dynami sorting to selet the next ell for ollapse,and limits to prevent exess ollapsing, lead to patterns of ollapse whihresult in the oarsened grid retaining most of the inherent strutureof the original grid in highly strethed regions. The multigrid CFDalgorithm is also desribed and results are presented for a range of testases to show the multigrid onvergene rates whih are ahieved.2 Edge-ollapsing MultigridThe oarser meshes used in the alulations have been generated usingan element-ollapsing algorithm [25℄ that primarily onsiders the graphof edges of the mesh. In this graph, any set of edges an be ollapsed ifthe geometry is still valid after the ollapse and none of the neighboringedges exeeds a ertain multiple of its original length. The �rst riterionis obvious; we annot tolerate negative volumes due to folded grids. Theseond riterion expresses the design priniple of multigrid to inreasethe mesh spaing in order to drop the high frequeny omponents whihthe relaxation sheme suessfully smoothened.In a triangular or tetrahedral mesh, ollapsing a single edge removesall elements that are formed with that edge. In a hybrid mesh this is notthe ase; in order to make an element disappear we may have to ollapseseveral edges. In our urrent implementation we hoose to ollapse theshortest edge of an element and the other edges whih are topologially\parallel" that is they onnet the same two faes. An element ollapsethen happens by two faes of an element falling onto eah other.The implementation of this algorithm for isotropi meshes is straight-forward. Given a �ne mesh, we tag eah edge with its length times agrowth fator, say 2, as maximum length. The elements are sorted ina heap list for smallest volume and we try to ollapse the shortest edgeand its parallel siblings. Fixing a ertain maximum angle for the ele-ments in the ollapsed geometry, in the 2D examples 135Æ, guaranteesa minimum quality of the oarser mesh as well as positive volumes.This test is done by looping over all elements that are formed withany of the ollapsed edges and onsidering the "remainder" of eah ele-ment whih still has a non-zero volume. Other edges on these elementsmay have been ollapsed in earlier steps. E.g. a quadrilateral with oneollapsed edge beomes a triangle, a doubly ollapsed quadrilateral van-ishes. Various ollapsed shapes derived from a hexahedron are shownin �gure 1. The algorithm terminates one there are no edges left to beollapsed. All remaining elements and nodes are then identi�ed and aoarsened grid is reated.The algorithm has to be modi�ed to ahieve diretional oarsening in5



Figure 1: Collapsing edges on a hexahedron.strethed layers. All long edges in strethed regions have to be preventedfrom ollapsing. For this we need to identify short edges in strethedregions. A �rst riterion is that these edges are shorter by a givenfator, say 3, ompared to the largest neighboring edge. Additionallywe require that there is at least one other neighboring edge that isshort and points in the same diretion, to within some tolerane. Thisriterion ensures that single short edges in very irregular unstruturedgrids do not de�ne a strethed region.If an element is in a strethed region, all neighboring long edgesof the ones to be ollapsed are prevented from any ollapse. In two-dimensional grids one only has to deal with only two length sales, forexample streamwise and in the diretion normal to a boundary layer.In three-dimensional there an be di�erent grid resolutions in three di-retions, e.g. in a wing body juntion where boundary layers on thewing and on the body are resolved di�erently. In the desribed formthe algorithm does selet the orret edges to be ollapsed also in theseases. A hexahedron at the leading edge of a wing in visous owwould exhibit a nearly square ross-setion perpendiular to the span-wise diretion, while the span-wise resolution would be muh larger. Inthis ase only the 4 span-wise edges would be lassi�ed as "long" and"two-dimensional" oarsening applies allowing the ollapse of the other8 edges. Conversely, a ell near the wing tip ould have a long stream-wise extension, a medium one span-wise to apture wing-tip e�ets, sayb < 1=3a, and a small one perpendiular to the wing surfae to apturethe boundary layer,  < 1=3b. In this ase "one-dimensional" oarseningonly in the surfae-normal diretion would apply.One the strethed regions have been diretionally oarsened in thisway, the isotropi proess ollapses the rest of the domain. Figures 9and 10 show the results of the grid oarsening for a hybrid grid arounda RAE 2822 airfoil. It an be seen that the strethed part of the gridlose to the airfoil remains regular and is oarsened exatly 1:2. Theouter part of the strutured region whih is not strethed loses someregularity and the quadrilaterals ollapse into larger quadrilaterals and6



triangles.3 Sheme DesriptionThe pre-onditioned semi-disrete Navier-Stokes equation appears asP�1dQdt +R(Q) = 0;where Q denotes the set of onservative variables, R(Q) the residualvetor of the spatial disretisation and P�1 the loal preonditionerwhih is a point-impliit blok-Jaobi preonditioner [23, 1℄.Using a �nite volume approah, the disrete approximation of theresidual for an interior grid point isRj = 1Vj Xi2Ej Fij 4 sij 8j;where Vj is the measure of the ontrol volume (the median-dual [3℄)assoiated with index j, Ej the set of all nodes onneted to node jvia an edge, 4sij a distane (2D) or area (3D) assoiated with theedge, and Fij is the numerial ux. In a previous paper [26℄, we arguedthat a desirable feature of disretisations on hybrid grids was that allspatial operators should be `linear preserving', giving the exat integralfor any linear funtion. However, to obtain this for grids whih arenot tetrahedral requires the addition of many new edges, and so herewe have assumed that in strutured or semi-strutured regions there issuÆient smoothness in the grid to use the simple median-dual edgeweights with negligible loss of auray.At a solid wall, an extra term from the boundary faes assoiatedwith the node is added. Tangeny and no-slip wall onditions are en-fored by zeroing out the momentum omponents assoiated with theorresponding wall ondition, whereas the far �eld boundary is treatedby adding an extra upwinded ux di�erene. The invisid ux dis-retization is based on the ux-di�erening ideas of Roe [32℄, ombiningentral di�erening of the non-linear invisid uxes with a smoothingterm based on one-dimensional harateristi variables. This numeri-al dissipation is a blend of seond and fourth harateristi di�ereneswith a limiter [7℄. The visous ux is approximated half-way along eahedge and uses the usual integration rule around eah volume (i.e. in-tegration over the ontrol volume using the divergene theorem [21℄),giving a onsistent �nite volume treatment of the invisid and visousterms. To aount for the e�et of turbulene, the one equation tur-bulene model of Spalart and Allmaras [33℄ is used with a �rst orderspatial disretisation. Other than an impliit treatment of the soure7



term, it is solved using the same 5-stage Runge-Kutta method [13℄ asused for the ow equations.The preonditioner P is based on a loal linearisation of the 3DNavier-Stokes equations about a uniform ow, and built by extratingthe terms orresponding to the entral node. As the ux an be split intoinvisid and visous parts, the matrix preonditioner has ontributionsoming from both, and is written asP�1j = �P Ij ��1 + �P Vj ��1 ;where the supersripts I and V stand for Invisid and Visous, respe-tively. Even though a high-order method with limiters is used to de�nethe residual, the preonditioner is based on a �rst order harateristismoothing. This approximation is aeptable sine the resulting matrixtimestep will be only underestimated. This is slightly di�erent from thestrutured approah, where the blok-Jaobi preonditioner remains thesame for both shemes [29℄. The visous ontribution is only alulatedfor interior grid points sine there is no visous ontribution for a nodewhih lies on a adiabati solid wall. Following a linearizing proedure,a key fator for the implementation is that all ross derivatives arenegleted in the preonditioner. On the oarse grids for whih the pre-onditioner is also evaluated, the deterioration of the mesh does notinuene this assumption sine these ross derivatives are visous termsand on these levels the ow is mainly invisid.To form the blok-Jaobi preonditioner, the invisid and visousJaobians need to be alulated at eah node of the grid. However, atthe wall, as already mentioned, the visous Jaobian does not have tobe evaluated. In fat, only a no-slip ondition has to be satis�ed whihis ahieved by setting all momentum omponents in the residual to zero.For Euler alulations, the proedure is slightly di�erent. In additionto the orretions made on the residual, the preonditioner is modi�edat the wall in order that the ondition u:n = 0 is satis�ed; u andn denote respetively the veloity vetor and the unit normal vetorto the wall. This is aomplished by re-evaluating the matrix in theoordinate system (xn; xt1 ; xt2), by using a rotation matrix T from theoriginal (x; y; z) oordinate system to the new one. xn is the oordinatein the diretion normal to the surfae and the other two are mutuallyorthogonal tangential oordinates. One done, it is transformed bakto the original oordinate system. Thus, the original equation beomes�P�1 � T�1ST (P�1 � I)� dQdt =MR(Q) ;where M = (I � T�1ST ) with S the matrix whih sets the normalmomentum omponent to zero. T�1ST only involves the unit normalvetor, and so is easily onstruted [8℄.8



As explained in the previous setion, the multigrid uses a sequene ofoarse grids generated from an initial �ne grid by an automati elementremoval algorithm. This algorithm produes a pointer from eah �negrid node to the oarse grid node into whih it has ollapsed. Themultigrid restrition uses this to ompute a volume-weighted average ofthe ow. In a similar way, the most obvious hoie for the restritionof the residual is volume weightingRHj = Pi2Kj V hi RhiPi2Kj V hi ;where H and h refer to a oarse and a �ne grid, respetively. Thisassumes that V Hj � Pi2Kj V hi , whih is true for the majority of thegrids, however, near boundaries where the surfae is onstrained, V Hjan be onsiderably larger than Pi2Kj V hi . Consequently the followinglimited volume weighting is used,RHj = Pi2Kj V hi Rhjmax(V Hj ;Pi2Kj V hi ) :For the prolongation, a linear interpolation is used through the reon-strution of the gradient of the orretions. The auray of the transferoperators thus de�ned is suÆient to guarantee good onvergene rates,sine it satis�es the neessary relation for ensuring multigrid eÆieny[9℄ OP +OR > OE ;where OP and OR are de�ned as the highest degree plus one of thepolynomials that are interpolated exatly by the prolongation and re-strition operator and OE is the order of the di�erential equation, whihequals 2 for the Navier-Stokes equations.All of the results to be presented were obtained using V-yle multi-grid, with Full Multigrid startup, and one iteration of the Runge-Kuttasmoother before restrition and after prolongation, exept where oth-erwise stated. Thus, one multigrid yle on the �nest grid level hasa omputational ost whih is approximately double that of a single5-stage time-step on the �nest grid.In their experiene with the oarsening algorithm the authors havenot found a pronouned sensitivity of the onvergene rate to the ut-o�parameter for the strething. Any values between 2 and 5 give very sim-ilar results. Values muh larger than 10 often led to onvergene prob-lems with Euler alulations on strutured meshes where strething inthe far-�eld ours due to the onstraints on the mesh. The lengtheningparameter an be adjusted to values between 2 and 2:5 without havinga signi�ant e�et on the onvergene rate or the resulting grid sizes.9



Table 1: Grid sizes; number of verties1st ollapse 2nd ollapse 3rd ollapse 4th ollapse�ne mesh (20800 vert.) 9200 4000 1600 680The value of 2:2 worked most robustly and was adopted as a default.One an however inrease this value by improving the smoothing rate ofthe relaxation sheme. Sine a �rst order aurate smoother is appliedon the oarser grids the lengthening fator ould be inreased there. Inour examples the lengthening fator was ramped with a fator of 1:1 to1:2 for the generation of eah oarser level.4 ResultsIn this setion we present results for a set of invisid and visous owsover geometries of varying omplexity. First, results are presented for atwo-dimensional problem. The performane of the ollapsing multigridalgorithm with the hybrid approah is ompared with previous resultsobtained by Piere using strutured grids [27℄. The test ase is a stan-dard transoni NACA0012 ase with M1 = 0:8 and � = 1:25o, givinga strong shok on the sution surfae and a weak shok on the pressuresurfae. The �ne grid, shown in Figure 2, ontains 20480 quadrilateralsand is exatly the same as used by Piere. A sequene of four oarserhybrid meshes was generated following the element ollapsing proe-dure; the �rst and last of these is shown in Figures 3 and 4. The sizeof eah grids is listed in Table 1.It an been seen that the oarsening proedure maintains the gen-eral topology of the domain, with the oarse grids omposed mainlyof quadrilaterals. The omputed pressure distribution and the on-vergene history using both methods are presented in �gures 5 and 6.Both methods onverge similarly to mahine auray with very littledi�erene in the asymptoti onvergene rate.We next present a alulation over a geometry of inreased omplex-ity. It involves the solution of invisid transoni ow over a businessjet. The geometry onsists of a half omplete airraft on�gurationbounded by a symmetry plane. The �ne grid has 156000 verties and847000 tetrahedra. Two oarser grids are derived by the element ol-lapsing algorithm and ontain respetively, 58500 and 9800 grid points.The ollapsing algorithm is based on several riterion driving the ol-lapsing proedure. In this ase, the low oarsening ratio between the�nest and the �rst oarser mesh is due to the poor quality of the initialmesh whih has elements with a dihedral angle of more than 180o. The10



freestream onditions are M1 = 0:85 and � = 2o. Figures 7 and 8 showthe onvergene history and the Mah ontour plot where the shokpatterns are evident. Convergene to mahine auray is ahieved in249 multigrid iterations.The �rst test ase involving a turbulent ow is over a single airfoil.The geometry is an RAE2822 airfoil, withM1 = 0:73, Re = 6:5 million,and � = 2:8o.In order to make a qualitative study of our multigrid eÆieny, wehave used two meshes of di�erent sizes and generated in eah ase asequene of four oarser levels. The �rst mesh ontains 5400 grid pointsand the seond one 19100. The latest is depited in Figure 9 along withits �rst ollapse. These two meshes are hybrid and have a struturedpart, with elements strethed in the diretion along the airfoil, the restof the domain being �lled with triangles. The size of eah grid is listedin Table 2. Figure 14 shows the omputed pressure distributions. Asexpeted, a �ne mesh is neessary to well resolve the boundary layer,so that the �nal results ompare well with the experimental data [4℄,although the turbulene model produes here a shok loation forwardof the experimental loation, behaviour whih has been previously ob-served [33, 27℄. The shok indues a separation bubble measuring about5% of hord. Convergene history for the �rst mesh is shown, in Fig-ure 11. Here we ompare the onvergene when using the blok-Jaobipreonditioner and when using the standard approah of salar preon-ditioning, with semi-oarsened multigrid. Both methods onverge tomahine auray, along with the turbulene model. The Jaobi ap-proah onverges quite smoothly and rapidly to engineering aurayin approximately 50 multigrid iteration, but starts degrading after 4 or-ders of magnitude. Overall in term of CPU time, the Jaobi approahis approximately 3:6 times faster. A similar result is observed with theseond mesh for whih the degradation of the onvergene after 4 or-ders of magnitude is a lot more severe (Fig. 12). Freezing the valuesof the turbulene model at a ertain point in the alulation providesthe seond onvergene history in the same �gure. This indiates it isthe turbulene model whih is largely responsible for the onvergenedegradation in the �rst alulation.Finally, in Fig. 13 we are plotting the multigrid onvergene of thetwo meshes in order to assess the grid-independent onvergene rate ofour multigrid algorithm. Although partiular attention to the design ofthe restrition and prolongation operators has been made to meet theneessary auray onditions, the results seem to show that grid inde-pendeny is not ahieved, even when looking at the �rst four orders ofonvergene for whih the turbulene model should not ause too muhtrouble. This is attributed to the well-known ow alignment problemwhih auses some onvetive modes to deouple preventing ertain os-illatory modes from being damped. In areas suh as a boundary layer,11



Table 2: Grid sizes; number of verties1st ollapse 2nd ollapse 3rd ollapse 4th ollapse�rst mesh (19100 vert.) 2500 1200 1000 400seond mesh (5400 vert.) 8900 4400 2300 1400the visosity eliminates a large fration of these error modes, but inother areas suh as in the wake where this mehanism does not our,and where there is a high onentration of high aspet ratio ells, thisproblem still persists and is thought to be responsible for the degrada-tion of the onvergene rate. It an be noted that for the �rst ordersof magnitude, where the aousti error modes are the dominant ones,the algorithm is highly eÆient and onvergene is grid independent.More investigation would be neessary if one wanted to improve theasymptoti onvergene rate.The �nal example is the ow through the 3D bypass dut of a tur-bofan engine. The geometry is omposed of ten struts and a pylon.The �ne grid has 274000 grid points and is onstruted by stakinga sequene of 2D grids. Convergene history and Mah ontours anbe seen in Figures 15 and 16. From the �ne grid, two oarser gridsare produed ontaining respetively 138000 and 79300 verties. Theoarsening ratio is low beause the multigrid semi-oarsening strategyis essentially only removing points in one-dimension in the areas of highstrething, whih is both through the boundary layer and radially. Theradial strething is a onsequene of the grid being omposed of staked2D grids with a �xed radial step. This leaves a high aspet ratio in theradial diretion in all regions of the 2D grid that have a muh smallermesh spaing than the radial step. For an inow Mah number of 0:55,with zero inidene and a Reynolds number of 6 million around thestruts, onvergene to 6 orders of magnitude is reahed in 250 multi-grid yles (the pylon is here treated as invisid, beause the purposeof studying this geometry did not require the pylon boundary layer tobe resolved).5 ConlusionsIn this paper we have presented a new multigrid method for the solutionof the Euler and Navier-Stokes equations on unstrutured hybrid grids.Unlike the agglomeration multigrid method, it involves the onstrutionof a sequene of oarse hybrid grids on whih the same residual operatoran be applied. The bene�t of this approah is that linear orretionsan be prolonged exatly, thereby satisfying a key requirement for grid12
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Figure 2: NACA0012; �ne grid

16



                                                                                Figure 3: NACA0012; �rst oarsening
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                                                                                Figure 4: NACA0012; fourth oarsening

18



                                                                                

 Length 

-Cp     

   0.00     0.37     0.73     1.10  
  -1.20  

  -0.40  

   0.40  

   1.20  

Hybrid Code

structured Code

Figure 5: NACA0012; oeÆient of pressure
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Figure 6: NACA0012; onvergene history
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Figure 7: Business jet, onvergene history
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                                                                                Figure 8: Business jet, Mah number ontours
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Figure 9: RAE2822; �ne grid.
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Figure 10: RAE2822; �rst ollapse
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Figure 11: RAE2822; onvergene history - First mesh.
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Figure 12: RAE2822; onvergene history - Seond mesh.
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Figure 13: RAE2822; assesment of the multigrid onvergene regarding to themesh size.
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Figure 14: RAE2822; oeÆient of pressure
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Figure 15: 3D Bypass dut; onvergene history
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                                                                                Figure 16: 3D Bypass dut; Mah number ontours
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