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OverviewWhat I'll cover:� the linear algebra viewpoint� the p.d.e. connection

Key point: in all cases we're interested inone or more functionals� objective function and constraintfunctions in design optimisation� mismatch with experimental datain data assimilation� error in key functionals in error analysis
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Linear TheoryWant to evaluate gTu given thatAu= f:The dual form is to evaluate vTf whereATv = g:The equivalence comes fromvTf = vTAu= (ATv)Tu = gTu;or, alternatively,gTu= gT (A�1f) = (gTA�1) f = vTf:Introduction to adjoint analysis 3
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Linear TheorySuppose we want the objective functionfor p di�erent f 's, and m di�erent g's.Choice:either do p di�erent primal calculationsor do m di�erent dual calculationsAdjoint approach is much cheaperwhen m� p.
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Linear TheoryWhat do adjoint variables mean?Answer 1: they give you the inuenceof an arbitrary source term on thefunctional of interestAu= fsource term �! vTffunctional
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Linear TheoryAnswer 2: they are the functional valuecorresponding to Green's functionsConsider fi = (: : : ;0; 1|{z}ith ;0; : : :)T :Then corresponding solution ui is thediscrete equivalent of a Green's functionand vTf = vi = gTui:
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Nonlinear design / data assimilationFor both, problem is to minimise J(U)subject to N(U; �) = 0.For aerodynamic design, may have� � { geometric design variables� J(U) { drag� N(U) { discrete ow equationsFor data assimilation, may have� � { perturbed initial conditions� J(U) { mismatch between model andexperimental data� N(U) { discrete modelling equationsIntroduction to adjoint analysis 7
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Nonlinear design / data assimilationMinimise J(U), subject to N(U; �) = 0.For single �, can linearise about a basesolution U0 to get:dJd� = gTu; Au= fwhereu � dUd�; gT = @J@U ; A= @N@U ; f = �@N@� :For multiple � each has di�erent f ,but same g.
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Nonlinear design / data assimilationTwo drawbacks:1) to add a `hard' constraint J2(U) = 0,we need dJ2d� = gT2uwhich requires a second adjoint calc.Additional `hard' constraints require evenmore adjoint calculations.Alternative is to use `soft' constraintsvia penalties in objective function.Introduction to adjoint analysis 9
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Nonlinear design / data assimilation2) If the objective function is of aleast-squares type,J(U) = 12Xn (pn(U)� Pn)2 ;then dJd�i =Xn @p@U dUd�i (pn(U)� Pn) ;and so d2Jd�id�j �Xn  @p@U dUd�i! @p@U dUd�j! :
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Nonlinear design / data assimilationThus, the direct linear perturbationapproach gives the approximate Hessianmatrix, leading to very rapid convergencefor the optimisation iteration.

By contrast, the adjoint approach providesno information on the Hessian, so the bestoptimisation methods take more steps toconverge.
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Linear error analysisBack to the original linear problem,evaluate gTu subject toAu= f;and the dual problem to evaluate vTfsubject to ATv = gNow suppose, we have approximatesolutions ~u;~v.
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Linear error analysisThen, we havegTu = gT~u+ gT (u� ~u)= gT~u+ vTA(u� ~u)= gT~u+~vTA(u� ~u) + (v � ~v)TA(u� ~u)= gT~u+~vT(f �A~u)| {z }computable +(v � ~v)TA(u� ~u)| {z }very smallNo obvious bene�ts in linear algebra (?),but generalisation to p.d.e.'s is useful ingrid adaptation (to reduce computableerror) and error correction (throughevaluating error).Introduction to adjoint analysis 13
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Linear error analysisOne interpretation of this is that ~u isan exact solution to a problem with aperturbed source termA~u= f + (A~u� f);leading to a functional perturbation ofvT (A~u� f)which has to be subtracted to get back tothe functional for the original problem.
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The PDE connectionSuppose one wants to know (g; u)given that u satis�es the p.d.e.Lu = f;plus homogeneous b.c.'s.The adjoint formulation is (v; f) whereL�v = g;plus homogeneous adjoint b.c.'s.The equivalence comes from(v; f) = (v; Lu) def= (L�v; u) = (g; u):Introduction to adjoint analysis 15
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Example

Lu = dudx � �d2udx2 ; u(0) = u(1) = 0:

(v; Lu) = Z 10 v dudx � �d2udx2! dx= Z 10 u �dvdx � �d2vdx2! dx+ �vu� �vdudx + �udvdx�10= Z 10 u �dvdx � �d2vdx2! dx+ ���vdudx�10 :Introduction to adjoint analysis 16
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ExampleThus, to satisfy the adjoint identity, weneed L�v = �dvdx � �d2vdx2;and the adjoint b.c.'s must bev(0) = v(1) = 0:
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ComplicationsBoundary terms in the primal functionallead to inhomogeneous b.c.'s for the dual(or adjoint).Inhomogeneous b.c.'s for the primalp.d.e. lead to boundary terms in the dualfunctional.In general, there are some well-posednessrestrictions on what can be imposed asb.c.'s and objective functions for the primaland dual problems, but if the primal iswell-posed then so too is the dual.Introduction to adjoint analysis 18
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More examplesPrimal L Adjoint L�dudx � �d2udx2 � dvdx � �d2vdx2r � (kru) r � (krv)@u@t � @2u@x2 ; �@v@t � @2v@x2@u@t + @u@x � @v@t � @v@x
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InterpretationSign changes arise through integration byparts, but what do they really mean?Key is to think about Green's functions,and domains of inuence and dependence.If you have a point source, what isa�ected by it? . . . and how does thefunctional respond?
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One last issueWhen approximating p.d.e.'s there are twooptions in adjoint analysis.� Fully discrete approach: discretiseoriginal p.d.e., linearise discreteequations, and then use the transposefor the adjoint.� `Continuous' approach: lineariseoriginal p.d.e., construct adjointp.d.e. and associated b.c.'s, and thendiscretise.Not yet clear which is best overall.
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Fully discrete approachAdvantages:� in design/data assimilation applications,get exact gradient of discretisedobjective function� creation of adjoint program is astraightforward process, in principle� transposed matrix has same eigenvaluesas original linearised matrix, so standarditeration method is guaranteed toconverge
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Fully discrete approachDisadvantages:� programming can be tedious(but one could use automaticdi�erentiation software?)� may have to store some linearisationmatrices, leading to large memoryrequirements
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Continuous approachAdvantages:� role of adjoint b.c.'s is clearer� adjoint program is perhaps simplerDisadvantages:� computed gradient will be slightlyinconsistent with discrete objectivefunction, so optimisation will notconverge fullyStill very much an open issue as to whichapproach is better; right now �nal choiceseems to come down to personal preference!Introduction to adjoint analysis 24


