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Abstract—Code maintainability, performance portability and
future proofing are some of the key challenges in this era of
rapid change in High Performance Computing. Domain Specific
Languages and Active Libraries address these challenges by
focusing on a single application domain and providing a high-level
programming approach, and then subsequently using domain
knowledge to deliver high performance on various hardware.

In this paper, we introduce the OPS high-level abstraction and
active library aimed at multi-block structured grid computations,
and discuss some of its key design points; we demonstrate how
OPS can be embedded in C/C++ and the API made to look like a
traditional library, and how through a combination of simple text
manipulation and back-end logic we can enable execution on a
diverse range of hardware using different parallel programming
approaches.

Relying on the access-execute description of the OPS abstrac-
tion, we introduce a number of automated execution techniques
that enable distributed memory parallelization, optimization
of communication patterns, checkpointing and cache-blocking.
Using performance results from CloverLeaf from the Mantevo
suite of benchmarks, we demonstrate the utility of OPS.

Keywords—Domain Specific Languages, Software Design,
Structured Grid, High Performance Computing

I. INTRODUCTION

Increasingly complex multicore CPU systems, as well as
recently emerged massively parallel platforms, such as graph-
ical processing units (GPUs) or the Xeon Phi, require more
and more hardware-specific knowledge and low-level program-
ming techniques for applications to be able to exploit their
full performance potential. Even more importantly various
hardware platforms often require very different programming
approaches and low-level optimizations, which has prompted
a lot of research into the area [1], [2], exploring how different
algorithmic classes map to different hardware.

At the same time, most scientific codes are primarily
developed by domain scientists, who are often self-educated
in programming. While many codes are well designed with
software sustainability in mind, in some cases the development
strategy is ”as soon as it starts working, it’s done”. In many
cases these codes are used for 10-20 years, with new features
constantly being added and the code being patched, as new
research and methods are integrated - these applications are
then heavily relied upon to deliver scientific results, thus the
software engineering approach is critical to the extensibility

and maintainability of the code. It is increasingly necessary to
apply more and more involved optimisations to achieve high
performance on modern hardware, but the current approach of
porting an application to a specific platform is very expensive
in terms of developer effort, and, perhaps more importantly,
involves a high amount of risk, because it is not clear which
platforms and programming approaches will “win” in the
long term. Therefore, the “future proof” design of scientific
applications has been receiving increasing attention.

Future proofing software for re-use and longevity is not a
new concept in software engineering, there is a general push
towards raising the level of abstraction for programming; to
be able to design any code in a productive way and achieve
high performance. Despite decades of research no language or
programming environment exists that would deliver generality,
productivity and performance. Below, we discuss some of
the most prominent software design approaches aimed at
addressing this challenge.

Classical numerical and software libraries give access to
high performance implementations of a set of algorithms,
such as MKL [3] or MAGMA [4] to Basic Linear Algebra
Subprograms (BLAS), or to a wider set of algorithms, such as
PETSc for the solution of PDEs [5]. By only providing a set of
building blocks, this approach restricts the kinds of algorithms
that can be constructed, furthermore it is very rigid in terms of
data structures, because input data is generally expected to be
laid out in a particular fashion. Some approaches support high-
performance general-purpose computations, but they actually
lower the level of abstraction in terms of expressing paral-
lelism, thereby degrading productivity; languages or language
extensions like OpenCL [6], CUDA [7] or Cilk Plus [8] expect
a very specific, comparatively low-level, programming style.
Other approaches aim to compile high-level languages like
Python down to modern architectures, such as Copperhead [9].

One of the most promising directions for research is
Domain Specific Languages [10] or Active Libraries [11] that
exploit knowledge about a specific problem domain, such as
structured grids, to provide a high-level abstraction that can
be easily used by domain scientists, and at the same time
address the aforementioned programming challenges. There
is a wide range of DSLs being developed, targeting various
problem domains, each using a slightly different program-
ming approach. There are two main classes of DSLs [10],
standalone ones define an entire new language, and embedded
ones are embedded in the host language, utilizing its syntax
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and compilation tools. Most DSLs for scientific computations
are embedded, to various degrees; some rely entirely on the
features of the host language, such as templates and object
oriented programming, and often appear to be classical soft-
ware libraries, but most rely on compilation techniques to
either directly generate machine code, or to generate source
code (via source-to-source translation) that is then fed to
a traditional compiler. Active Libraries look like traditional
libraries, but use code generation to transform an application
code written once to different parallel implementations. The
extent to which DSLs modify the host language varies widely:
some do not change anything (TIDA [12], OP2 [13]), some add
new keywords (STELLA[14]), and most define various new
language constructs: Delite [15], Halide [16], Pochoir [17],
PATUS [18].

The use of DSLs as a development strategy was previously
shown to have significant benefits both for developer produc-
tivity and gaining near-optimal performance [19], [20], [21].
However, currently most of these still remain as experimental
research projects and have not yet been adopted by a wider
HPC community. Partly the reason is a lack of DSLs or high-
level frameworks that are actively used at creating production
level applications.

In this paper, we further explore the utility of high-level
abstraction frameworks, and study our approach to designing
and implementing DSLs, and its inherent advantages and
drawbacks. We introduce the OPS (Oxford Parallel library
for Structured mesh solvers) Domain Specific Active Library
targeting the development of parallel multi-block structured
mesh applications. The domain of multi-block structured mesh
applications can be viewed as an unstructured collection of
structured-mesh blocks. It is distinct from the single-block
structured mesh and unstructured mesh applications domains
which are supported by a number of well established DSLs and
active libraries [14], [16], [19], [20]. Thus, the challenges in
developing a good abstraction to represent the description and
declaration of multi-block problems and their efficient solution
on modern massively parallel hardware platforms is unique.
More specifically we make the following contributions:

1) We introduce the OPS abstraction and API for multi-
block structured grid computations.

2) We present how, through this abstraction, automatic
parallelization and data movement can be achieved in
shared memory and distributed memory systems

3) We introduce a novel lazy execution scheme and
discuss what runtime optimizations this enables.

4) We conclude by discussing the benefits and the draw-
backs of our approach to designing a DSL, from the
perspective of both domain scientists and computer
scientists.

We argue that the OPS abstraction covers a wide range
of structured mesh applications and at the same time the
assumptions made and our approach to implementing this
active library are strong enough that OPS can apply a wide
range of optimisations and deliver near-optimal performance.
The remainder of the paper presents evidence to support both
claims; Section II introduces the OPS abstraction and gives
an example of how to use its API. Section III describes how
relying on the abstraction it is possible to utilize various paral-
lel programming approaches to execute on different hardware,
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Fig. 1: Halos in a multi-block setting

introduces a lazy execution scheme used by OPS, and describes
a number of optimizations that rely on the loop chaining
abstraction [22]. Section IV gives an overview of the design
choices of OPS discussing their benefits and drawbacks, and
finally Section VI draws conclusion.

II. THE OPS ABSTRACTION AND API

The Oxford Parallel library for Structured grid computa-
tions (OPS) is a Domain Specific Active Library embedded
in C/C++, targeting computations on multi-block structured
meshes. The abstraction consists of four principal components:

1) Blocks: a collection of structured grid blocks. These
have a dimensionality but no size.

2) Datasets: data defined on blocks, with explicit size.
3) Halos: description of the interface between datasets

defined on different blocks.
4) Computations: description of an elemental operation

applied to grid points, accessing datasets on a given
block.

Given blocks, datasets and halos, an unstructured collection
of structured meshes can be fully described. The principal
assumption of the OPS abstraction is that the order in which
elemental operations are applied to individual grid points dur-
ing a computation may not change the results, within machine
precision (OPS does not enforce bitwise reproducibility). This
is the key assumption that enables OPS to parallelize execution
using a variety of programming techniques.

From a programming perspective, OPS looks like a tra-
ditional software library, with a number of Application Pro-
gramming Interface (API) calls that facilitate the definition
of blocks, datasets and halos, as well as the definition of
computations. From the user point of view, using OPS is like
programming a traditional single-threaded sequential applica-
tion, which makes development and testing intuitive - data and
computations are defined at a high level, making the resulting
code easy to read and maintain.

Take for example a simple multi-block scenario, shown in
Figure 1, with two blocks, one dataset each that are of size
2⇥ 6 and 3⇥ 4 respectively, and with one layer of halo. The
blocks are oriented differently with respect to each other, and
a halo connection is defined between them, as shown in the
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ops_block block1 = ops_decl_block(2,”block1”); 
ops_block block2 = ops_decl_block(2,”block2”); 
int halo_neg[] = {0,0}; int halo_pos[] = {1,0}; 
int size[] = {2,6}; int base[] = {0,0}; 
ops_dat dataset1 = ops_decl_dat(block1, 1, size, 
                                    base, halo_pos, halo_neg, 
                                    “double”,”dataset1”); 
size[0]=3;size[1]=4;halo_pos[0]=0;halo_pos[1]=1; 
ops_dat dataset2 = ops_decl_dat(block2, 1, size, 
                                    base, halo_pos, halo_neg, 
                                    “double”,”dataset2”); 
 
int halo_iter[] = {3,1}; 
int base_from[] = {0,3}; int axes_from[] = {0,1}; 
int base_to[]      = {2,2}; int axes_to[]     = {1,0}; 
ops_halo halo0 = ops_decl_halo(dataset2,dataset1, 
                                  base_from, base_to, 
                                  axes_from, axes_to); 

Fig. 2: OPS definition of blocks, datasets and halos as shown in
Figure 1

figure. Here we briefly introduce the key components of the
OPS API and give a sample code that defines the necessary
data structures to describe the multi-block situation in Figure
1, using a sequence of OPS calls, as shown in Figure 2. Further
details can be found in [23]:

ops_block ops_decl_block(num_dims,..) de-
fines a structured block, which will serve to link datasets
defined on the same block together.

ops_dat ops_decl_dat(block,size[],..) de-
fines a dataset on a specific block with a given size; not all
datasets have to have the same size (consider data on cells vs.
faces, or a multigrid setup). Ownership of data is transferred to
OPS, it may not be accessed directly, only via the ops_dat
opaque handles.

ops_halo ops_decl_halo(...) defines a halo in-
terface between two datasets with arbitrary range and orienta-
tion, as illustrated in Figure 1. Currently, this is restricted to
a one-to-one matching between grid points.

void ops_halo_transfer(halos) triggers the
halo exchange between the listed datasets.

void ops_par_loop( void (*kernel)(...),
block, ndim, range[], arg1,..., argN) defines
a parallel loop over a given block with a specific iteration
range, applying the user kernel kernel (a function pointer)
to every grid point in the iteration range, passing data pointers,
described by the ops_arg arguments:

ops_arg ops_arg_dat(dataset, stencil,
type, accss) gives access to a dataset, passing a
pointer to the user kernel that may be dereferenced with the
given stencil points, and read, written, read and written, or
incremented according to the access specification.

ops_arg ops_arg_gbl(data, size, type,
access) facilitates passing data to the user kernel that is not
defined on any block, such as global variables, and enables
global reductions.

int range[4] = {12,50,12,50}; 
for (int j = range[2]; j < range[3]; j++) { 
  for (int i = range[0]; i < range[1]; i++) { 
    a[j][i] = b[j][i] + b[j+1][i] + b[j][i+1]; 
  } 
} 

Fig. 3: A classical 2D stencil computation

//user kernel 
void calc(double *a, const double *b) { 
  a[OPS_ACC0(0,0)] = b[OPS_ACC1(0,0)] + 
                                      b[OPS_ACC1(0,1)] + 
                                      b[OPS_ACC1(1,0)]; 
} 
... 
int range[4] = {12,50,12,50}; 
ops_par_loop(calc, block, 2, range, 
        ops_arg_dat(a,S2D_0,”double”,OPS_WRITE), 
        ops_arg_dat(b,S2D_1,”double”,OPS_READ)); 

Fig. 4: A parallel loop defined using the OPS API

Take for example a classic nested loop performing a
stencil operation as shown in Figure 3. The description of this
operation using the OPS API is shown in Figure 4; it defines
an iteration over the grid points specified by range, executing
the user kernel calc on each, passing pointers to datasets a
and b, a is written using a one-point stencil and b is read, using
a three point stencil - these stencils are described by the data
structures S2D_0 and S2D_1 respectively. The OPS_ACC
macros are used to compute the index offsets required to
access the different stencil points, these are set up by OPS
automatically.

An application implemented once using the above API
can be immediately compiled using a common C++ compiler
(such as GNU g++ or Intel icpc), and tested for accuracy and
correctness - this is facilitated by a header file that provides
a single-threaded implementation of the parallel loops and the
halo exchanges.

The high-level application code is built to rely entirely on
the OPS API to carry out computations and to access data;
after an initial setup phase where data is passed to OPS using
either existing pointers or HDF5 files, OPS takes ownership
of all data, and it may only be accessed via API calls. This
enables OPS to make transformations to data structures that
facilitate efficient parallel execution.

This abstraction and API can be viewed as an instantia-
tion of the AEcute (Access-Execute descriptor) programming
model [24] that separates the abstract definition of a computa-
tion from how it is executed and how it accesses data, this in
turn gives OPS the opportunity to apply powerful optimisations
and re-organize execution. The basic semantics and rules of
execution are as follows:

1) For any given ops_par_loop, the order in which
grid points are executed may be arbitrary.

2) Subsequent parallel loops over the same block respect
data dependencies (e.g. one loop writes data that the
other reads).

3) Subsequent parallel loops over different blocks do not
have a fixed order of execution.

4) Only halo exchanges between blocks introduce a
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 Fig. 5: OPS code generation and build process

data dependency and therefore a prescribed order of
execution between blocks.

In this paper, we argue that a wide range of structured
mesh applications can be implemented using this API, which
we demonstrate with two industrially representative codes,
CloverLeaf [25] and ROTORSIM [26]. Furthermore, we claim
that the above API is expressive enough that no language
extensions or custom compilers are required to enable exe-
cution on a variety of hardware platforms, utilizing a range of
different parallel programming abstractions and environments.
Finally, we demonstrate near-optimal performance matching
or outperforming the hand-coded original, substantiating these
claims.

III. WHAT THE ABSTRACTION LETS US DO
The principal idea of the OPS abstraction and API is the

separation of the abstract definition of computations from their
parallel implementation and execution. Because computations
are described in such a descriptive manner, explicitly stating
how and what data is accessed, we show that it is possi-
ble to dynamically organise parallelism and data movement,
tailoring it to different target architectures. While input data
structures are fixed, based on their description OPS can apply
transformations to have them better suited for different hard-
ware. OPS uses two fundamental techniques in combination
to utilise different parallel programming environments and
to organize execution and data movement; code generation
and back-end logic. Code generation is used to produce the
parallel implementation of individual parallel loops targeted at
different hardware architectures and programming languages,
and back-end logic is used to factor out common operations,
and to organize execution and communication in a way that
satisfies data dependencies and improves parallelism, locality
or resilience. Figure 5 gives an overview of the OPS workflow;
a structured mesh application is implemented using the OPS
C/C++ API, handed to the code generator which creates the
platform specific optimized implementations. This can then be
compiled using conventional compilers, such as icc, gcc or
nvcc, and linked against the platform specific back-end. The
resulting executable may use the built-in capabilities of OPS
to read HDF5 files in parallel, and is executed on the target
architecture(s).

A. Code generation
Although an OPS application can be immediately com-

piled, the header file implementation of ops_par_loop is
very general, and prohibits a number of optimizations that a

#define OPS_ACC0(j,i) j*xdim0+i 
#define OPS_ACC1(j,i) j*xdim1+i 
 
//user kernel 
void calc(double *a, const double *b) {...} 
 
void ops_par_loop_calc(int ndim, int range, 
                                       ops_arg arg0, ops_arg arg1){ 
//set up pointers and strides 
double *p_a0 = (double*)ops_base_ptr(range, arg0); 
double *p_a1 = (double*)ops_base_ptr(range, arg1); 
xim0 = arg0.dat->size[0]; xim1 = arg1.dat->size[0]; 
//do the computation 
for(int j = 0; j < range[3]-range[2]; j++) { 
  for(int i = 0; i < range[1]-range[0]; i++) { 
    calc(&p_a0[j*xdim0+i],&p_a1[j*xdim1+i]); 
  } 
} 

Fig. 6: A simple example of code generated by OPS

compiler would carry out on hand-coded nested for loops
with stencil computations, such as the one shown in Figure
3. However, a key point in designing the OPS API was to
supply all the necessary information that could be used to re-
construct this formulation, thereby enabling the same, if not
further, compiler optimizations.

Figure 6 shows a simple example of code generated for
sequential execution of the loop in Figure 4; observe that all
the information required to generate this code is present in
the body of the ops_par_loop call. This is a key property
of the OPS API: it is sufficient to extract information from
the ops_par_loop call, therefore we have chosen not to
implement a full-fledged compiler system, rather to have a
simple python script that looks for parallel loop calls in the
source code and assembles data structures that contain all the
information about the individual loops,

Using code generation, OPS targets optimized single
threaded execution of loop nests as well as different shared-
memory parallel execution techniques, such as OpenMP, Ope-
nACC, CUDA and OpenCL. Because these programming
approaches benefit greatly from compiler optimizations, the
code generated is as specific to the given loop as possible, and
it also includes a number of optimizations that were developed
experimentally using one-off hand-coded implementations and
then generalized for the code generator. Below, we list some of
the main properties of code generated for different platforms:

1) Based on the iteration range, the size and halos
of datasets, base pointers are calculated for each
argument.

2) Based on the stencil stride, the iteration range and the
properties of the dataset, pointer offsets are calculated
that can be applied to the base pointer when iterating
over the mesh.

3) Single-threaded execution: a nested loop is gener-
ated, with pointers being incremented at every level
and passed to the user kernel. To achieve auto-
vectorization, the innermost loop is sectioned (or
strip-mined).

4) OpenMP: the outermost loop is split into equal
partitions and picked up by the individual threads,
the inner loops are implemented the same way as
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for single-threaded execution. Partial reductions for
each thread are set up (the only possible carried
dependence).

5) OpenACC: a simple nested loop is generated with
explicit pointer computations as opposed to pointer
increments, and the appropriate pragmas are added.

6) CUDA and OpenCL: a grid is launched and a single
thread (or work-item) assigned to each grid point,
calculating the appropriate offsets and passing the
pointers to the user kernel. All data movement is
managed by the back-end.

As new programming models and hardware are released,
it is not necessary to alter the high-level user code; rather it
is sufficient to adapt the code generator to support the new
language or to use optimization techniques specific to new
generations of hardware; a good example would be the use of
caching loads on NVIDIA Kepler generation GPUs for loading
read-only data. Because the code generators only use simple
text manipulation, it is almost trivial to add new optimizations
and then deploy those optimizations on large-scale codes -
something that may require going through the entire user code
by hand in case of applications that do not use a DSL. OPS
generates a separate executable for each combination of back-
ends, it is up to the user to determine which one is appropriate
for a given system.

B. Back-end logic
While code generation is necessary to enable low-level

optimizations that affect each iteration of a nested loop, there
are a number of techniques that are applied at a much higher
level: the granularity of individual parallel loops. This is
possible, because ops_par_loop calls represent operations
over blocks in an atomic way, and provide a lot of information
that can be used to reason about execution patterns. Assuming
that the blocks have a reasonable size, the overhead of added
logic before or after the actual computations is negligible, but
it lets OPS apply radical changes to execution.

Functionality implemented in the back-end ranges from
simple data management in heterogenous systems, through
enabling distributed memory execution, to complex changes
to execution patterns facilitated by lazy execution. Here, we
present an informal, high-level discussion of these, illustrated
with simple examples, but do not go into any implementation
details, as those are often very convoluted to support arbitrary
structured mesh computations. The the algorithms described
in this section are all implemented and deployed in the trunk
of the OPS repository [23].

1) Distributed memory parallelism: The most fundamental
feature is distributed memory execution; OPS can automat-
ically distribute a collection of structured blocks as well as
individual blocks across MPI processes. When decomposing
individual blocks, using the knowledge about iteration ranges
and access patterns, it can satisfy data dependencies by means
of ghost cells and automatic intra-block halo exchanges -
note the difference from inter-block halo exchanges, which
are triggered explicitly using an API call.

Given a number of datasets, OPS will partition a structured
block among a number of MPI processes and allocate the
ghost cells in a way that aims to minimize communication
requirements and achieve good load balance. Communication
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Fig. 7: A simple example distributed memory execution in OPS

is set up using MPI’s Cartesian topology, optionally using
MPI datatypes to send and receive non-contiguous data along
the faces - albeit for some MPI distributions we have noticed
poor performance compared to a hand-coded implementation
of the same functionality. Our distributed memory execution
strategy uses the traditional approach to satisfying data depen-
dencies in structured mesh computations: on-demand messages
exchanged before computations that need them, While in many
existing codes exchanges need to be triggered explicitly, and
with a user-specified depth (number of ghost cell layers, based
on stencil size), OPS can reason about data dependencies based
on information provided to the abstraction, and it can exchange
the minimum amount of data required.

In OPS, each dataset has dirty bit fields in each dimension,
direction and for different depths from the boundary; these
keep track of what regions of the data were modified. At the
beginning of each parallel loop, based on the access patterns
of datasets, the iteration range, and the partitions held by
different processes, each MPI rank can compute the number
of halo layers that it needs to send or receive to satisfy data
dependencies. After the computations, given the iteration range
and a list of datasets modified, the dirty-bits are updated.
Figure 7 illustrates various aspects of this logic; the execution
range may not cover all MPI processes, but given a 3-point
stencil, communication may still be necessary (indicated by
the large arrows at the sides), but only if ghost cell data
is outdated (dirty). Furthermore, in many cases, stencils are
not symmetric, therefore bidirectional exchange may not be
necessary. To reduce the number of MPI messages, halo data
from different datasets in the same loop are aggregated and
sent together.

2) Checkpointing and recovery: To ensure the resiliency
of large-scale simulations, many codes implement some form
of checkpointing; this consists of periodically saving the state
space to disk, and in the event of a failure re-launching the
application, fast-forwarding to the last checkpoint, restoring
the state space and continuing as normal. Manual implemen-
tation of checkpointing is often very tedious, especially when
the state space is large, as it is difficult to reason about what
data needs to be saved and what doesn’t. Due to the fact
that OPS takes ownership of all data, and that data “leaving”
the realm of OPS only happens through API calls (such as
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reductions, the results of which might be used to alter control
flow), it is possible for us to keep track of what, when and
how data is modified, and therefore to reason about the state
space. The fundamental observation behind our checkpointing
strategy is that if a dataset is overwritten immediately after the
checkpoint, then that dataset does not need to be saved. The
question therefore becomes: when to create a checkpoint, and
out of all datasets defined, which ones to save.

The execution of an application from an OPS point of
view essentially comes down to a sequence of parallel loop
calls, each of which read certain datasets and write others.
However, any given loop usually only accesses a small subset
of all datasets, therefore reasoning about the state space at
any particular parallel loop, given the data it accesses, is
not sufficient; this leads to the introduction of “checkpointing
regions”: the beginning of the region is the location of the
checkpoint in the classical sense, but the actual process spans
several subsequent parallel loops. The only modification in the
user code is a call to the OPS API during initialization that
specifies the checkpointing frequency. During execution, OPS
will save the value of global reductions for each loop that
includes one, and when a timer triggers checkpointing, it will
automatically find the next entry into a “checkpointing region”
and execute the algorithm below, saving data to a HDF5 file.

A high-level description of the algorithm is as follows:

1) If a dataset was never modified (as might be the case
with e.g. mesh coordinates), then it is not saved at
all.

2) The results of global reductions in loops are saved for
every occurrence of the loop because data returned
after a loop is out of the hands of OPS, and may be
used for control decisions.

3) When checkpoint creation is triggered, then enter
“checkpointing region” upon reaching the first par-
allel loop, and before executing that loop:

a) Save datasets accessed that are not write-
only.

b) Drop datasets that are write-only in the loop
from the checkpoint.

c) Flag all other datasets that are not used by
this loop, but do not save them yet.

4) When already in a “checkpointing region” (previous
point), start executing subsequent loops to determine
whether datasets that were not yet saved nor dropped
(i.e. are flagged) would have to be saved:

a) If a flagged dataset is encountered, save it
if it’s not write-only, otherwise drop it and
remove the flag.

b) If a flagged dataset is not encountered within
a reasonable timeframe allocated for the
“checkpointing region”, then save it.

In the event of a failure, the application needs to be
restarted, and if a checkpoint file is found then “restore mode”
is enabled, during which calls to ops_par_loop do not carry
out any computations, just set the value of reduction variables.
Once the location of the last checkpoint is reached, the state
space is restored from the HDF5 file, “restore mode” ends,
and execution returns to normal.

One of the key challenges is deciding where exactly to
enter the “checkpointing region” so that the state space that
has to be saved is minimal; entering it at the first loop
that has a write-only dataset may only be locally optimal.
There are several possible algorithms that can help predict
when it is optimal to enter checkpointing mode, based on
the observation that most simulations have periodic execution
patterns, however we have chosen to utilize our lazy execution
scheme that gives OPS a view of a sequence of future parallel
loops to choose from, details are described in Section III-C4.

3) Lazy execution: Following the same reasoning as in the
previous section, it is easy to see that if all the data is owned
by OPS and any user access to it can only happen through
OPS, then an ops_par_loop without reductions does not
have to be executed immediately before execution proceeds to
the next instruction in the user code (i.e. synchronously). This
makes it possible to delay execution of a sequence of parallel
loops until some data has to be returned to the user, typically
the result of a reduction.

Lazy or delayed execution is easily introduced in OPS;
ops_par_loop calls create a data structure, storing all the
arguments as well as a function pointer to the implementation
of the actual computations, then this structure is stored in
a queue before returning. The enqueueing process is imple-
mented in the back-end; when a parallel loop with a reduction
is encountered, execution is triggered; OPS loops over the
sequence of kernels, and uses the function pointer stored in
the data structure to invoke the actual computations.

C. Advanced optimizations
Knowing the details of a sequence of operations without

having executed them yet enables OPS to carry out analysis
and apply optimisations across a number of parallel loops and
to reason about data dependencies and data movement at a
much higher level; essentially relying on the loop chaining
abstraction [22]. In subsequent sections we present a number
of optimization opportunities that the loop chaining scheme
enables OPS to apply - these have not yet been fully imple-
mented in the OPS repository.

1) MPI messaging: The way of OPS keeping track of
changes to datasets helps minimize the number and size
of messages - but the method of on-demand messaging as
described in Section III-B1 still results in a large number
of messages, each of which suffers from the latency of MPI
communications. By analysing a sequence of parallel loops and
mapping out data dependencies between them, it is possible
to aggregate messages across multiple parallel loops if not all
data produced is consumed immediately in the following loop.

The sequence of parallel loops queued can be described
with an ordered graph G = (V,E), where vertices repre-
sent parallel loops and there exists a special vertex v0 that
represents the state space at the beginning of the queue. A
directed edge ei,j,k exists between two vertices i and j, i < j
if i modifies dataset k that j reads in a way that requires
a halo exchange (i.e. iteration ranges overlap and the stencil
is non-trivial). Any dataset that was modified before the first
loop in the queue is considered to be changed by loop 0,
any dependency in subsequent loops gives an edge from v0.
Clearly, before loop j can be executed, all data dependencies
represented by edges ei,j,k, i < j have to be satisfied by way
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Fig. 8: MPI messaging optimization strategies

of a halo exchange - something we shall refer to as cutting
edge ei,j,k.

The most trivial optimization is that when a halo exchange
is triggered, cut as many edges as possible, thereby aggregating
messages together to reduce latency. Strategy 1: for a given
loop j, if 9ei,j,ki < j, then cut all previously uncut edges
em,n,k,m < j, n � j. This strategy makes it possible for
subsequent loops to have their data dependencies satisfied
before execution reaches them, thereby eliminating messaging
latency that the classical on-demand exchanges introduce.
Figure 8(a) shows a simple example where it is advantageous
to aggregate two messages that would otherwise be sent one-
by-one.

The second strategy, potentially used in conjunction with
Strategy 1 is to use computations, the execution of loops,
to hide the latency of messaging; commonly referred to as
latency hiding. However, unlike classical latency hiding strate-
gies which require the separation of execution of a single
parallel loop into interior and boundary parts (by way of
peeling), Strategy 2 hides the messaging latency that has to
be completed before executing loop j with the execution
of loop i, i < j. Thus, before initiating execution of loop
i, if 9en,j,k, n < i, j > i, then that edge may be cut,
and asynchronous communications can be started, only to be
finished before the execution of loop j. This may be a good
strategy even if there exists a dependency between loops i
and j, because smaller messages have lower latency. Figure
8(b) shows a simple example where communication may be
overlapped with execution; v3 may be executed concurrently
with the halo exchange required for the execution of v3.

Finally, if no direct or indirect dependency exists between
two loops i and j, i < j, then the execution of the two loops
may be interchanged; Strategy 3. This strategy is most useful
in combination with the above two strategies, if for example
there exists a dependency between loop i and i + 1, but no
dependency between i� 1 and either i or i+1, then i may be
executed first, and the communication latency between i and
i + 1 can be hidden by the execution of i � 1. Figure 8(c)
shows a simple example where by exchanging the execution
of loops v1 and v2, latency hiding becomes possible.

The optimal combination of these optimization strategies
for any given sequence of parallel loops is a subject of intense
research, but out of scope of this paper.

2) Communication avoidance: While the above MPI mes-
saging strategies help minimize the number of messages and
hide their latency, the total amount of data that needs to be
exchanged remains the same, and if a number of subsequent
parallel loops have back-to-back data dependencies, then the
incurred communication costs are still significant. Using the
lazy execution technique, it is possible for OPS to auto-
matically apply a communication avoiding execution scheme
that uses redundant computations along partition boundaries
- similar to [27], [28]. This technique relies on having a
sequence of parallel loops, and then it works backwards,
extending iteration ranges to satisfy data dependencies between
parallel loops. An overview of the algorithm, given a sequence
of loops i = 1..N is as follows:

1) For loop N , record the dependency range (iteration
range extended by stencil widths) for each dataset
that is read (or incremented, or read-and-written).

2) For each loop i = N � 1...1:
a) Take the union of the iteration range and

the recorded data dependency ranges of all
datasets that are modified by loop i, and set
it as the new iteration range of loop i.

b) Remove recorded dependency ranges for
datasets that are write-only in loop i.

c) Record the dependency ranges of all datasets
read by loop i, by extending the new iteration
range by the stencil widths.

3) Before loop 1, exchange extended halos of all datasets
with a recorded dependency range.

4) Execute loops 1...N using their extended iteration
range. No communication is necessary.

The above algorithm uses redundant computations to re-
solve all data dependencies, therefore the results of the com-
putations are going to be the same; the only issue that would
arise is the result of reductions when computing on extended
iteration ranges - however the lazy execution scheme’s list
of parallel loops may only have a reduction loop at the very
end, and the iteration range of the last loop is not extended,
therefore this is not an issue.

This optimization can be applied to any sequence of loops,
but in practice it may not be advantageous to do so for a
long sequence, as it may extend data dependency ranges and
iteration ranges to the extent that the initial communication
costs and the fraction of redundant computations to useful
computations become too large. Therefore it is an important
optimization challenge to find the optimal sequence of loops.
In general this is a difficult problem, but in practice many codes
are structured in a way that in some regions there are back-to-
back dependencies between a number of loops. Often, these
are preceded and followed by other loops where this is not the
case; therefore restricting the application of this algorithm to
these regions and combining it with the latency hiding strategy
described in the previous section is a good heuristic.

3) Tiling: Most scientific computations are structured so
that operations are carried out on the entire domain, followed
by the next operation carried out again on the entire domain.
This often means accessing the same data again and again,
however, if the size of the datasets is larger than the size
of the on-chip cache, then this data will be moved in from
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Fig. 9: An illustration of cache-blocking, or tiling, to reduce data movement. Tile 0 is executed first, then 1, 2 and 3

main memory repeatedly - an extremely expensive operation
compared to accessing data in cache. The underlying idea of
the communication avoiding algorithm naturally leads to the
algorithm commonly referred to as tiling or cache blocking;
partitioning the computational domain into smaller pieces that
can fit in the cache. Tiling is the target of intense research
[29], [17], although most publications only consider the case
where the same stencil is applied repeatedly to the same data,
which in practice is rarely the case. Furthermore, most of them
use various compilation techniques which may struggle with
a sequence of complex loops, especially if various parameters
are unknown at compile time.

By using lazy execution, OPS has a lot of run-time infor-
mation available, such as iteration ranges, datasets accessed
and stencils, which makes it much easier to reason about data
dependencies. Figure 9 illustrates the idea of tiling with a
simple 1D example and a 3-point stencil; given the execution
on a number of grid points (first row), data dependencies are
then resolved for a subset of those grid points for the next
iteration, etc. We have chosen skewed tiling for OPS as it does
not require redundant computations or the redundant storage of
data, the high-level overview of the algorithm for a sequence
of loops i = 1..N is as follows for a 1D problem:

1) Create K tiles of the full iteration range (number
and size of tiles is an optimization parameter), and
construct a data structure holding iteration range for
loops i = 1..N , as well as data dependency range for
any dataset modified during these loops

2) Initialize the data dependency range of each dataset
in each tile by first computing the intersection of the
tile’s iteration range with the full iteration range of
loops that modified the dataset, and then taking the
union of these.

3) For tile j = 1..K, iterate over loops in reverse order
i = N...1:

a) Take the union of data dependency ranges of
datasets that loop i modifies in tile (j), minus
the intersection with the iteration range of
loop i in tile (j�1), and set it as the iteration
range of loop i for tile (j)

b) For datasets that are read by loop i in tile
(j), set the new data dependency range as
the iteration range, extended by the stencil
used to access the datasets, but not beyond
the original size of the dataset.

4) Execute tiles in-order, calling loops with the iteration
range specific to the tile-loop combination, as com-
puted above.

The above algorithm is described for 1D problems, but

is trivially extendable for higher dimensions. For the simple
example in Figure 9 the algorithm will construct tiles 1 through
3, and then execute them in the order 0-1-2-3. The optimization
of the size and number of tiles depends on the number of loops
tiled over, the number of datasets accessed and the size of
the on-chip cache. The tile construction algorithm, while not
particularly expensive, can take a while to construct especially
for small tiles, therefore in OPS, we cache the tile execution
plans and re-use them when the same sequence of loops is
encountered.

4) Optimal checkpointing: As discussed in Section III-B2,
it is easy to find a locally optimal checkpoint location, however
in order to globally minimize the amount of data that needs
to be saved, it is necessary to find a regularly occurring point
during execution where entering checkpointing mode results
in the least amount of data saved. By utilizing lazy execution,
it is possible to reason about state space not only locally, but
over a sequence of parallel loops. Therefore, the decision can
be improved by calculating the amount of data that would
be saved if checkpointing started at any of the loops in the
sequence, and a database is built based on this information
that records the loop at which checkpointing mode is entered,
the subsequent list of loops and the amount of data to be saved.
Later on, when it is time to do the actual checkpoint, one of
the most frequently occurring checkpointing locations with the
smallest size is chosen by matching the sequence of loops in
the record and the lazy execution queue.

IV. SUMMARY OF THE OPS APPROACH

We have presented the OPS abstraction and API, which
covers a variety of use cases, however it does have some re-
strictions. We already have a number of preliminary abstraction
and API designs that could tackle multigrid situations where
two datasets are accessed in the same loop with a different
resolution, as well as sliding planes where the connectivity
between datasets in different blocks may change over time
(due to e.g. rotating geometries). These will naturally extend
the existing API without changes to existing functionality, and
we believe this will be possible for future extensions as well,
such as non-matching dataset interfaces (where interpolation
is necessary) or support for linear solvers.

Our choice to conform fully to the C standard (plus
templates) in the API design is motivated by the fact that as
we have shown it is not necessary to implement and maintain
a compiler. Indeed, one of the main challenges in the adoption
of Domain Specific Languages is the uncertainty about who
is going to support and maintain them in the long-term.
By only needing limited code parsing and text manipulation
capabilities it is possible to keep the code generation part
of OPS relatively simple; this is attractive to our academic
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(b) NVIDIA K20 GPU
Fig. 10: CloverLeaf performance, comparing various original hand-coded and tuned implementations with the auto-generated implementations
produced by OPS (lower is better)

and industrial partners who may not have the resources and
expertise to maintain a complex compiler system. At the same
time, we are aware that this somewhat restricts the range
of possible optimizations we can apply; a good example is
the use of different parallel programming techniques. While
our current approach works well with SMP (Simultaneous
Multiprocessing, e.g. OpenMP) and SIMT (Single Instruction
Multiple Threads, e.g. CUDA) programming abstractions, it
struggles with SIMD (Single Instruction Multiple Data, e.g.
AVX vector intrinsics) - currently we have to rely on the
compiler’s ability to auto-vectorize the innermost loop; so far
with generally positive results. We have explored the use of
vector classes to wrap vector intrinsics before [30], [31], but
currently there is no reliable way of modifying user code to
use them (branching is particularly problematic). Furthermore,
as we shown in the next section, our implementations closely
match or outperform the hand-coded and tuned original.

While our approach does require a large-scale refactor-
ization of existing codes, we believe that some form of
restructuring is ultimately going to be necessary for future-
proofing scientific codes anyway, and that doing this for OPS
this is no more difficult than a one-off implementation for a
particular parallel programming environment.

V. PERFORMANCE RESULTS
Here we briefly present performance results from one of the

applications that we ported to use OPS; CloverLeaf, a single
block 2D hydrodynamics code, which is part of the Mantevo
suite [32] and is an unclassified code. Several publications
discussed the performance of Cloverleaf and presented hand-
coded implementations that use MPI, OpenMP, OpenMP v4,
OpenACC, CUDA and OpenCL [33]; these serve as a perfor-
mance baseline to compare our implementations against. One
of the advantages of using OPS is immediately obvious, just
by looking at the code; the original code’s online repository
[34] has 11 different versions of Cloverleaf, whereas OPS only
has one [23] - code maintenance is therefore much easier.

We present the total runtime of the hydro loop of Clover-
Leaf for the 3840 ⇥ 3840 (clover_bm16_short.in)
mesh input deck, to be consistent with the compiler flags
recommended for gaining accurate results from the original
CloverLeaf application, we enforce IEEE floating-point math-
ematics compliance on each compiler and benchmarks. Figure
10 shows performance on an CPU server, with a pair of
high-end Intel Xeon E5-2680 processors (Intel Compiler 14.0
targeting AVX) as well as performance on an NVIDIA K20
GPU (CUDA 6.0); clearly, the use of a high-level approach
such as OPS is not detrimental to performance - in itself result

of great importance. Furthermore, in some cases it can even
outperform the original hand-coded implementation, due to the
better handling of factors such as NUMA [35] effects. There
exists now a 3D version of CloverLeaf; its porting to OPS
took three man-days with validation, followed by two man-
days of extending the code generators and some back-end
functionality to handle 3D cases. We speculate that it would
take much longer to produce the various hand-coded parallel
implementations, each of which would have to be then de-
bugged and validated, but by using OPS, the different parallel
implementations are now a single click away.

VI. CONCLUSIONS
We have presented an embedded Domain Specific Ac-

tive Library and abstraction for computations on multi-block
structured grids, named OPS. We have shown that given
the right abstraction, an Application Programming Interface
can be designed that looks like a regular software library
and conforms to C/C++ standards, but at the same time
it enables execution on a wide range of diverse hardware
architectures, and the application of various low-level and
high-level optimizations through code generation and back-end
logic. We have shown that code generation for shared-memory
parallelization techniques, such as OpenMP or CUDA, in com-
bination with completely opaque distributed memory execution
is capable of matching or outperforming hand-coded and tuned
implementations, which gives us considerable confidence in
our approach being capable of delivering high performance,
code maintainability and future proofing to structured grid
applications. Furthermore, by introducing a number of high-
level optimizations that improve communications, locality and
resilience, we have shown that these techniques, which given
current hardware trends are likely to become increasingly
important, can be easily applied through the use of DSLs.
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