
Predictive Modeling and Analysis of OP2 on Distributed
Memory GPU Clusters∗

G.R. Mudalige, M.B. Giles
Oxford e-Research Centre, University of Oxford

mike.giles@maths.ox.ac.uk,
gihan.mudalige@oerc.ox.ac.uk

C. Bertolli, P.H.J Kelly
Dept. of Computing, Imperial College London

{c.bertolli, p.kelly}@imperial.ac.uk

ABSTRACT
OP2 is an “active” library framework for the development
and solution of unstructured mesh based applications. It
aims to decouple the scientific specification of an application
from its parallel implementation to achieve code longevity
and near-optimal performance through re-targeting the back-
end to different multi-core/many-core hardware. This paper
presents a predictive performance analysis and benchmark-
ing study of OP2 on heterogeneous cluster systems. We first
present the design of a new OP2 back-end that enables the
execution of applications on distributed memory clusters, and
benchmark its performance during the solution of a 1.5M and
26M edge-based CFD application written using OP2. Bench-
mark systems include a large-scale CrayXE6 system and an
Intel Westmere/InfiniBand cluster. We then apply perfor-
mance modeling to predict the application’s performance on
an NVIDIA Tesla C2070 based GPU cluster, enabling us
to compare OP2’s performance capabilities on emerging dis-
tributed memory heterogeneous systems. Results illustrate
the performance benefits that can be gained through many-
core solutions both on single-node and heterogeneous con-
figurations in comparison to traditional homogeneous cluster
systems for this class of applications

Categories and Subject Descriptors
C.4 [Performance of Systems]; C.1.2 [Multiple Data
Stream Architectures]

Keywords
OP2, Unstructured mesh, GPU, Performance modeling

1. INTRODUCTION
With heterogeneous HPC systems such as Tianhe-1A, Tsub-
ame 2.0 and Nebulae gaining recognition as leading multi
Peta-FLOP systems [6], there appears to be an increasing
trend in using many-core processor architectures, in a hy-
brid combination with traditional CPUs. On the other hand,
homogeneous systems such as the K-Computer and the IBM
BlueGene range of systems, appear to be defending their dom-
inant positions as the top performing systems in the world.
As the many-core vs multi-core debate rages on, technologies
that enable users to efficiently exploit these systems appear to
be in an ever increasing state of flux, with a range of compet-
ing programming languages and architectural optimizations/-
configurations. Application developers will need to constantly
keep up an expert level of knowledge in the intricate details
of these new technologies and architectures in order to obtain
the best performance from their codes.

The demand of maintaining such a programming skills-set
is distracting domain application developers from investing

∗This research is funded by the UK TSB and Rolls-Royce
plc. through the Siloet project, and the UK Engineering and
Physical Sciences Research Council projects EP/I006079/1,
EP/I00677X/1 on Multi-layered Abstractions for PDEs.

their full intellectual efforts in the scientific/engineering prob-
lems they are solving. It is clear that a level of abstraction
is very much desirable such that computational scientists can
increase their productivity by focusing on solving problems
at a higher level, write code that remains unchanged for dif-
ferent underlying hardware and not worry about architecture
specific optimizations. At the same time, a lower implementa-
tion level, maintained by HPC technology professionals and
optimization experts, can focus on how a computation can
be executed most efficiently on a given platform by carefully
analyzing the computation and data access patterns. This
paves the way for easily integrating support for any future
novel hardware architecture and maintain near optimal per-
formance.

OP2 aims to provide such an abstraction layer, by develop-
ing an “active” library framework for the solution of unstruc-
tured mesh applications. The “active” library approach uses
program transformation tools, so that a single application
code written using the OP2 API is transformed into the ap-
propriate form that can be linked against a given parallel im-
plementation enabling execution on different back-end hard-
ware platforms. At the same time, OP2 attempts to maintain
near-optimal performance by exploiting low-level optimiza-
tions and/or configurations on a target platform without the
intervention of the domain application programmer.

OP2 currently enables application developers to write a
single program (using the OP2 API, in either C/C++ or
Fortran) which then can be transformed (using OP2 code
transformation tools) into executables for three different plat-
forms: (1) single-threaded on a CPU, (2) multi-threaded using
OpenMP for execution on an SMP with multi-core CPUs, and
(3) parallelized using CUDA for execution on a single NVIDIA
GPU. Additionally, back-ends targeting OpenCL and AVX
multi-cores are currently nearing completion. In our previous
work [13, 10] we presented the design and implementation of
OP2 for single node systems. As part of this work we analyzed
and optimized the performance of an industry-representative
unstructured mesh application (Airfoil [12]) from the CFD
domain, written using the OP2 API. Performance was bench-
marked on a range of flagship single node systems, consisting
of NVIDIA GPUs and x86 based multi-core CPUs.

The next step of the OP2 development is to facilitate code
generation and execution on heterogeneous systems such as
clusters of single/multi-threaded CPUs or GPUs. In this pa-
per we present an early performance evaluation of OP2’s dis-
tributed memory capabilities for such systems. We present
the design and performance of a distributed memory back-
end based on MPI and utilize it together with performance
modeling to present an “ahead of implementation” predictive
performance analysis for a cluster of GPUs. Our objective is
to gain quantitative and qualitative insights into the achiev-
able performance on such systems and contrast it with per-
formance from traditional homogeneous cluster solutions for

unstructured mesh based applications. More specifically this
paper makes the following contributions:

1. We present the design of the OP2 distributed memory
layer which enables the execution of an OP2 application
on a single threaded CPU cluster using MPI. The Air-
foil application, previously explored on single multi-core
CPU and GPU nodes, is transformed to utilize OP2’s
new MPI layer. Its performance is then benchmarked
during the solution of an unstructured mesh consist-
ing of about 1.5 million edges on a large CrayXE6 sys-
tem. The performance of the application is presented
including application run-times at scale and the impact
of overlapping computations with communications.

2. The performance of Airfoil on the CPU cluster is com-
pared to equivalent single GPU (NVIDIA GTX560Ti,
Tesla C2070) and multi-threaded CPU (Intel Westmere,
AMD MagnyCours) node performance. Results illus-
trate the performance benefits that can be gained from
single node many-core systems in contrast to traditional
homogeneous clusters for this class of applications.

3. Finally, a predictive performance model for Airfoil is
developed and is used to explore the potential perfor-
mance of the application on current/future peta-scale
capable GPU clusters with projections for larger prob-
lem sizes (26 million edges). Our analysis gives insights
into the performance of industrial unstructured mesh
applications and the limiting factors of performance/s-
calability for such applications on GPU clusters.

2. OP2
Unstructured mesh based solutions have been and continue
to be used over a wide range of computational science and
engineering applications. They have been applied in the solu-
tion of partial differential equations (PDEs) in computational
fluid dynamics (CFD), structural mechanics, computational
electro-magnetics (CEM) and general finite element methods.
In three dimensions, millions of elements are often required for
the desired solution accuracy, leading to significant computa-
tional costs. Unstructured meshes, unlike structured meshes,
use connectivity information to specify the mesh topology.
The OP2 approach to the solution of unstructured mesh prob-
lems involves breaking down the algorithm into four distinct
parts: (1) sets, (2) data on sets, (3) connectivity (or map-
ping) between the sets and (4) mesh-wide computations on
the data. Depending on the application, a set can consist
of nodes, edges, triangular faces, quadrilateral faces, or other
elements. Associated with these sets are data (e.g. node co-
ordinates, edge weights) and mappings between sets which
define how elements of one set connect with the elements of
another set. All the numerically intensive computations in
the application are described as operations over sets. This
corresponds to loops over a given set, accessing data through
the mappings (i.e. one level of indirection), performing some
calculations, then writing back (possibly through the map-
pings) to the data arrays. This problem decomposition leads
to an API with which a mesh or graph can be completely and
abstractly defined. Figure 2 illustrates a simple quadrilateral
mesh that we will use as an example to describe the OP2
API1 in Figure 1.

This mesh can be defined by two sets (lines 1-3), nodes (ver-
tices) and cells (quadrilaterals). The connectivity is declared
through the mappings between the sets (lines 5-7). The in-
teger array cell map can be used to represent the four nodes
that is referenced (or connected to) by each cell. Once the sets

1We use the C/C++ API throughout this paper. A similar
Fortran API is also available.

1 int nnode = 16; int ncell = 9;
2 op_set nodes = op_decl_set(nnode, "set_nodes");
3 op_set cells = op_decl_set(ncell, "set_cells");
4
5 int cell_map[36] = { 0,1,5,4, 1,2,6,5, 2,3,7,6, ... };
6 op_map mcell = op_decl_map(cells, nodes, 4,
7 cell_map,"cell_to_node_map");
8
9 double cell_data[9] = {0.128, 0.345, 0.224, 0.118, ... };

10 double* cell_data_u = (double *)malloc(sizeof(double)*9);
11 double node_data[16] = {5.3, 6.8, 7.8, 5.4, ... };
12 op_dat dcells = op_decl_dat(cells, 1, "double",
13 cell_data, "data_on_cells");
14 op_dat dcells_u = op_decl_dat(cells, 1, "double",
15 cell_data_u, "updated_data_on_cells");
16 op_dat dnodes = op_decl_dat(nodes, 1, "double",
17 node_data, "data_on_nodes");
18
19 void add(double* cell_u, double* cell,
20 double* n0, double* n1, double* n2, double* n3){
21 *cell_u = *cell + n0[0] + n1[0] + n2[0] + n3[0];
22 }
23 op_par_loop(add,"addkernel", cells,
24 op_arg(dcells_u,-1,OP_ID, 1, "double", OP_WRITE),
25 op_arg(dcells, -1,OP_ID, 1, "double", OP_READ),
26 op_arg(dnodes, 0, mcell, 1, "double", OP_READ),
27 op_arg(dnodes, 1, mcell, 1, "double", OP_READ),
28 op_arg(dnodes, 2, mcell, 1, "double", OP_READ),
29 op_arg(dnodes, 3, mcell, 1, "double", OP_READ));

Figure 1: OP2 API example

and connectivity are defined, data can be associated with the
sets; Lines 9-17 declare some data arrays that contain double
precision data associated with the cells and the nodes respec-
tively. Here a single double precision value per set element
is declared. A vector of a number of values per set element
could also be declared (e.g. a vector with three doubles per
node to store the X,Y,Z coordinates).

Computations over elements of the mesh are defined as
special OP2 loops (lines 19-29), called op par loops. The
op par loop expresses a set-wide parallel computation, which
in the proposed example visits all the cells of the mesh, and
updates its data value by adding the data values held by the
four nodes connected to it. The function given in add is the
“elemental” operation to be performed per iteration. This el-
emental kernel function takes six arguments in this case. In
this example, it is important to notice that OP2 requires the
programmer to explicitly state as part of the op par loop call
the access method for each argument (OP WRITE, OP READ,
etc). To access the data of the four nodes connected to a given
cell, indirection via the mcell mapping is used (e.g. data of
the ith cell’s 1st node is given by node data [cell map[4∗i+1]])
with the given index (0, 1, 2, and 3). However OP ID indi-
cates that the data in dcells and dcells u is to be accessed
without any indirection. If the loop involves at least one ar-
gument accessed through a mapping, then we refer to it as
an indirect loop; if not, it is called a direct loop. Complete
details of the API can be found in [11].

Given a loop declaration of the above form, the architecture
specific code generation and parallelization is handled by the
OP2 framework. The OP2 strategy for building executables
for different back-end hardware consists of firstly generating
the architecture specific code by pre-processing the user code,
which is written using the OP2 API, and then secondly linking
the generated code with the appropriate parallel implemen-
tation back-end (e.g. OpenMP, CUDA, MPI, etc.).

2.1 Distributed Memory Parallelization
A key design issue in parallelizing unstructured mesh com-
putations is managing data dependencies encountered when
incrementing indirectly referenced arrays. For example, in a
mesh with cells and nodes, with a loop over cells updating
nodes, a potential problem arises when multiple cells update

1

(6.8)

8

(1.8)

9

(3.9)

10

(2.5)

11

(6.6)

12

(1.3)

13

(2.8)

14

(3.9)

15

(8.8)

3

(0.118)

2

(7.8)

3

(5.4)

4

(2.6)

5

(3.6)

6

(7.5)

7

(6.2)

0

(0.128)

1

(0.345)

2

(0.224)

4

(0.246)

5

(0.324)

6

(0.112)

7

(0.928)

8

(0.237)

rank X
rank Y

0
(5.3)

Figure 2: An example mesh with node and quadrilat-
eral cell indices (data values in parenthesis)

the same node. A solution at a coarse grained level would be
to partition the nodes such that the owner of the nodal data
would carry out the computation. The drawback in this case
is redundant computation when the nodes for a particular cell
have different owners. At a finer-grained level, we could as-
sign a “color” for the cells so that no two cells of the same
color update the same node. This allows for parallel execution
for each color followed by a synchronization. In our previous
work [13, 10] we have presented the design and implementa-
tion of OP2 for single node systems which utilizes coloring to
resolve dependency conflicts. In this section we present the
design and implementation of the distributed memory back-
end layer based on MPI using an owner-compute model. The
design builds on ideas developed previously in [7].

With an owner-compute parallelization, OP2 partitions the
data so that the partition within each MPI process owns some
of the set elements e.g. some of the nodes and cells. These
partitions only perform the calculations required to update
their own elements. However, it is possible that one partition
may need to access data which belongs to another partition; in
that case a copy of the required data is provided by the other
partition. This follows the standard “halo” exchange mech-
anism used in distributed memory message passing parallel
implementations, where efficiency is based on the assumption
that as partition size becomes larger, the proportion of halo
data decreases in size.

For example consider the mesh illustrated in Figure 2. There
are 16 nodes and 9 cells partitioned across two MPI processes
(rank X and rank Y). Assume that the only mapping avail-
able is a cell to nodes mapping. Rank X holds nodes 0, 1, 2,
3, 4, 5, 6 and 7 and cells 0, 1, 2, 4, and 5. Rank Y holds nodes
8, 9, 10, 11, 12, 13, 14, and 15 and cells 3, 6, 7 and 8. A loop
over the cells will possibly need data on nodes 9, 10 and 11
to be imported into rank X from rank Y. Additionally data
on nodes 4 and 5 needs to be imported into rank Y from rank
X. On the other hand a loop over cells will possibly need cells
4, 5 to be imported in to rank Y in order to compute correct
nodal updates for nodes 9,10 and 11. Given the above sce-
nario, each MPI process needs to construct a list of elements
for each set that are to be imported from and exported to
other “neighboring” MPI processes.

The OP2 design separates the set elements held within each
MPI process according to the mappings that references other
elements. On an MPI process, if all the elements referenced
through all the mapping tables from a given set element is
located at the same MPI process, we categorize the element
to be a core element in this MPI process. If, however, at least
one element referenced through any of the mapping tables
from this set element is not in the core elements of the (local)
MPI process, the set element is separated into the “export

Table 1: Import/Export lists for the mesh in figure 2
X core ieh eeh inh enh

Nodes 0,1,2,3,4,5,6,7 - - 8,9,10,11 4,5,6,7
Cells 0,1,2 3 4,5 - -

Y core ieh eeh inh enh
Nodes 8,9,10,11,12,13,14,15 - - 4,5,6,7 8,9,10,11
Cells 6,7,8 4,5 3 - -

execute halo” (eeh). The eeh is a subset of the owned elements
in an MPI process. A copy of the eeh will be exported to the
relevant foreign MPI processes on which it will form part of
the “import execute halo” (ieh). The ieh elements will be
a redundant computation block which will need to be kept
up-to-date in order to compute the correct contributions to
any local element that it references. If an element located
at an MPI process or an element belonging to the ieh on
that process references (via some mapping) an element that
is located on a foreign MPI process, then the element on the
foreign MPI process needs to be imported. The imported
element will fall in to the “import non-execute halo” if it is
not already a part of the ieh. In turn this element will form
part of the “export non-execute halo” (enh) on the foreign
MPI process. The enh is a subset of core. For the mesh given
in Figure 2, the import/export elements can be separated
as given in Table 1. Developer documents further detailing
the distributed memory parallelization design can be found
in [11].

The above classification and ordering allows OP2 to clearly
determine which elements of a set can be computed over with-
out MPI communications, facilitating overlapping of compu-
tation with communications for higher performance. In an
OP2 application executed in a distributed memory environ-
ment, prior to executing any loops involving computation (i.e.
calls to op par loop), the above import/export halo elements
list for each set is created and reordered into a contiguous
array beginning with the core elements, followed by the eeh,
ieh and inh.

A call to op par loop in an OP2 application executed un-
der MPI will result in the loop being executed over the local
elements of the set on each MPI process (i.e. core and eeh).
Additionally, if the loop is an indirect loop then computation
will be done over the ieh as well. The MPI execution follows
the standard single program multiple data (SPMD) operation,
where computations are done in steps which are interleaved
with message passing steps. Computation over the core el-
ements of a set does not require accessing any data on for-
eign processes. These computations can be overlapped with
the communications required for exchanging the import/ex-
port halos between processes using non-blocking MPI com-
munication primitives. For a given op par loop, halos are ex-
changed only for data that is accessed with OP READ (read)
or OP RW (read/write). Additionally each iteration of the
loop needs only to exchange the import/export halos if a pre-
vious iteration has marked the halos for this data as modified
– by setting a “dirty” bit. The dirty bit is set at the end of
an iteration for all data that has been accessed as OP INC
(increment), OP WRITE or OP RW.

A key issue impacting performance with the above design
is the size of the halos which directly determines the size of
messages passed when a parallel loop is executed. In other
words, our assumption is that the proportion of halo data
becomes very small as the partition size becomes large. This
depends on the quality of partitions held by each MPI process.
OP2 utilizes two well established parallel mesh partitioning
libraries, ParMETISs [3] and PT-Scotch [5] to obtain high
quality partitions. In the current implementation, the user
gets the option to select a routine from the above partitioner
packages, indicating the “primary set” to be partitioned. OP2
creates the required adjacency lists and then calls the appro-

Table 2: Cluster systems specifications
System HECToR CX1

(Cray XE6) (Dell Cluster)
Node 2×12-core AMD 2×6-core Xeon

Architecture Opteron 2.1GHz X5650 2.67GHz
(Magny Cours) (Westmere)

Cores/Node 24 12 (24 SMT)
Memory/Node 32GB 24GB
Interconnect Gemini interconnect Dual QDR InfiniBand

O/S CLE 3.1.29 RHEL 5.6
Compilers PGI CC 11.3 ICC 11.1

Cray MPI Intel MPI 3.1
Compiler flags -Minline=levels:10 -O2 -xSSE4.2

-Mipa=fast

priate partitioner routine. Once a partitioning of this primary
set is achieved, OP2 infers the MPI process to which all other
secondary set elements should belong using the available map-
pings and migrates data and mappings of all set elements to
the new MPI processes. Finally it renumbers the mappings
with the new element indices. Halo creation occurs only after
these steps have been completed by all the MPI processes.

3. PERFORMANCE
Our first set of experiments are directed at benchmarking and
analyzing the performance of the new OP2 MPI layer. The
example application, Airfoil, used in our analysis is a non-
linear 2D inviscid airfoil code developed using the OP2 API.
The performance of Airfoil was previously explored on sin-
gle multi-core CPU and GPU nodes [13, 10]. In our current
analysis, we use the same mesh consisting of over 720K nodes,
720K cells and about 1.5 million edges to investigate the per-
formance on distributed memory cluster systems. In section 4
we analyze the performance of a larger mesh (26 million edges)
using performance modeling techniques. The code consists of
five parallel loops: save soln, adt calc, res calc, bres calc

and update. save soln and update are direct loops while
the other three are indirect loops. The application has four
sets declared (nodes, edges, bedges, and cells) and five
mapping tables that define the connectivity between these
sets. Additionally, there are four data arrays defined on cells

(p q, p qold, p adt and p res), a data array consisting of
the xy coordinates defined on the nodes (p x) and a data array
with the boundary data defined on the bedges (p bound).

Table 2 notes the key specification of the cluster systems
that were used for benchmarking. The first system, HEC-
ToR [2], is a large-scale proprietary Cray XE6 system which
we use to investigate the scalability of the MPI implementa-
tion. The second system, CX1, is a small commodity West-
mere/InfiniBand cluster that we use to compare performance
with in the next section. All the results presented are taken
during the execution of the application in double-precision
floating-point arithmetic.

We begin our analysis by investigating the performance of
Airfoil, at scale. Figure 3 presents the strong-scaled run-times
of the application on HECToR for up to 1920 cores. The run-
times given here are averaged from 5 runs for each processor
core count. The standard deviation in run times were signifi-
cantly less than 10% and thus we limited the number of times
that each test was repeated to save time on the system. Halo
creation and mesh partitioning in total takes less than 10 sec-
onds at 1920 cores and is not included in the runtime. In Air-
foil, the only loop that exchanges halos during an iteration is
res calc. The block partitioning method splits the sets, data
on sets and mappings equally on to P number of processor
cores. However, as expected the best run-times were given
by the kway partitioned executions with PTScotchKway giv-
ing marginally better performance. The best run-time over-
all is 1.12 seconds at 960 processor cores. The application
scales well on up to 960 cores and then becomes limited by

0

2

4

6

8

10

12

14

16

10 100 1000 10000

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Number of processor cores

Block Partitioning
ParMetisKway

PTScotchKway

Figure 3: Airfoil on HECToR (1000 iterations)

the amount of data per partition (i.e. per MPI process), the
amount of redundant computation (due to the ieh) and the
communication time spent during halo exchanges. A larger
mesh, as we will show in the next section, will continue to
scale up to more processors. We also observed up to 30% per-
formance gains (with k-way partitioning) due to the use of
non-blocking communications overlapped with computation
during halo exchanges.

Table 3: Airfoil run-times comparison
Node System Cores /node Mem Run-time

(Clk/core) /node (seconds)
2×Intel Xeon 12 (24 SMT) 24 GB 37.89

X5650 (Westmere) (2.67GHz) (24 OMP)
2×AMD Opteron 16 12 GB 46.30

6128 (Magny Cours) (2.0GHz) (16 OMP)
GeForce GTX560Ti 384 (1.6GHz) 1.0 GB 19.63

Tesla C2070 448 (1.15GHz) 6.0 GB 13.20
72 cores 13.22

HECToR 480 cores 2.09
960 cores 1.12
36 cores 20.66

CX1 60 cores 12.29
120 cores 6.07

Our final set of benchmark results in this section compares
the best MPI performance to that of the OP2 single node
performance. Table 3 presents best run-times from four sin-
gle node systems, HECToR and CX1. The GPUs execute
NVIDIA CUDA code generated by OP2, while the West-
mere and Opteron multi-core CPUs utilize OpenMP gener-
ated by OP2. Both GPUs were running the latest NVIDIA
driver (version 4.0) with a compute capability of 2.1 with ECC
switched off. The best run-times for the single node systems
were gained using parameter configurations (mini-partition
size and thread-block size [13, 10]) discovered through an
auto-tuning framework [11]. The best run-time with OpenMP
(37.89 seconds) on the Westmere processor node (compiled
with icc -O2 -xSSE4.2) was obtained by executing 24 OpenMP
threads on 12 symmetric multi-threading (SMT) enabled cores.

On the Opteron processor node, the best run-time (46.30
seconds) was gained with 16 OpenMP threads (compiled with
icc -O2 -ipo -xSSE2 -funroll-loops). The GPU results give
a best runtime of 19.63 seconds and 13.20 seconds on the
GTX560Ti and the Tesla C2070 respectively. These are speed-
ups of 1.93× and 2.8× respectively, compared to the Intel
Westmere processor node with 24 OpenMP threads on 12
cores. In contrast we see that the performance of Airfoil on
HECToR with 72 cores (3 nodes) and CX1 with 60 cores
(5 nodes) is approximately equivalent to the performance of
one C2070 GPU. It is surprising to see that some perfor-
mance gains can be achieved even on a single consumer-grade
GTX560Ti (equivalent to approximately 36 Westmere cores)
for this application.

4. PREDICTIVE ANALYSIS
The significant speedups gained from utilizing a single GPU,
led us to explore whether these are maintainable on a cluster
of GPUs across a distributed memory environment. During a
distributed memory execution, for message passing between
compute nodes via the network, halos need to be copied to

Titer = Tss + 2(Tac + Trc + Tbrc + Tu) (1)

Tss = wg,ss × ncells (2)

Tac = wg,ac × ncells (3)

Trc = max(wg,rc × ncore,edges, Tcomm,rc) +

wg,rc × (nieh,edges + neeh,edges) (4)

Tbrc = wg,brc × (nbedges + nieh,bedges) (5)

Tu = wg,u × ncells + Treduce (6)

Tcomm,rc = (nieh,cells + ninh,cells) × 8B ×
(esizep q + esizep adt) + 2LNavg,cells +

Lon chip × CNavg,cells (7)

Figure 4: Performance model for CPU cluster

the GPU global memory from the node’s main memory (and
vice versa) over the PCIe bus. A key concern for many hybrid
CPU-GPU application developers is to identify whether there
is any performance degradation due to the InfiniBand band-
width available per GPU and the need to frequently copy mes-
sages over the relatively slow PCIe bus. The transfer over the
PCIe will remain even with MPI implementations adopting
NVIDIA’s new GPUDirect [1] technology for communicating
directly between GPUs without the involvement of the host
CPU. As advanced support for extending OP2’s MPI back-
end layer implementation to GPU clusters and to understand
the performance implications of such a parallelization, in this
final section we utilize performance modeling to investigate
an “ahead of implementation” performance analysis of the
Airfoil code for executing on a cluster of GPUs.

We first develop an analytic performance model for the Air-
foil application running on both HECToR and CX1, using
techniques similar to those published in [15, 8]. The time
taken by an iteration of the Airfoil application can be mod-
eled as the critical path time taken by the five parallel loops.
Out of these loops, save soln is called once, while the others
are called twice per iteration. Thus the total time for an it-
eration can be given by (1), where T∗ are the time taken by
each of the parallel loops per call. As only res calc performs
any halo exchanges, all other loops only involves computation
over a given set (and possibly the ieh). In addition to this,
update includes a global operation which results in a single
MPI Reduce per loop call. Given the time to compute over a
single set element (wg,∗), we can express the times taken by
each loop, as (2),(3),(4),(5) and (6). The terms n∗ represents
the number of elements that computation will be performed
over. save soln, adt calc and update loops over cells while
res calc loops over edges and bres calc loops over bedges.
The max term in (4) accounts for the overlapping of compu-
tation and communications. If blocking communications are
used then the two terms should be summed. As per our halo
and set element classification in Section 2.1 any element that
belongs to the eeh on an MPI process cannot be computed
over until the halo exchanges are complete. The wg,∗ costs
were measured on a processor core and are assumed to remain
constant as the global mesh is solved at increasing machine
scale. Our experience so far has been that on both HECToR
and CX1 these computation per element times remain fairly
constant at increasing scale.

Given the average number of MPI neighbors (Navg,cells)
that a process will communicate with during the res calc

loop and the size of the halos, the communication time can
be modeled as (7). B is the time taken by the communica-
tion network to transfer a byte of data from one processor
to another. Thus 1/B gives the bandwidth of the network.
L is the latency associated with communicating a message
with a neighbor. To account for the critical path time during
message passing, we use the off-node message communication
times. We double the latency term as there are two data ar-
rays being exchanged. The esize∗ gives the size of an element

0

10

20

30

40

50

60

8 16 32 64 128 256 512

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Number of nodes

CX1 Pred.
HECToR Actu.
HECToR Pred.

C2070 cluster Pred.

Figure 5: Airfoil - 26M edge mesh

(i.e. number of double precision values per set element) for
each data array. The 8 multiplier accounts for the size of
a double precision floating-point value on the system. C is
the number of cores that share a NIC (12 cores share a NIC
in HECToR [2] and CX1). We assume that some serializa-
tion of MPI messages is caused at the NIC during message
passing [8, 15] and approximate it as the latency for commu-
nicating a message within a node (Lon chip) multiplied by the
average number of MPI messages sent simultaneously. The
values for B, L and Lon chip were found by benchmarking the
end-to-end message transfer time between two nodes (and two
cores) for a range of message sizes. The time for a reduce op-
eration Treduce was approximately modeled as a tree gather
operation [15].

To extend the above homogeneous multi-core CPU cluster
model to that of a GPU cluster model requires us to con-
sider the additional costs involved during MPI operation over
GPUs. Such techniques have been previously used for pre-
dicting GPU cluster performance with high accuracy [16]. For
this paper we develop the GPU cluster model for Airfoil as-
suming a cluster of NVIDIA C2070 GPUs that is intercon-
nected by an InfiniBand network with similar performance to
that of CX1. Computation times for each loop were bench-
marked on a single C2070 GPU for various mesh sizes. This
gives us approximate times for the GPU to execute a given
number of set elements belonging to its local partition. The
communication time for res calc in (7) was augmented with
PCIe bandwidths and latencies (measured using the NVIDIA
CUDA SDK’s bandwidthTest benchmark, and a custom la-
tency benchmark) to copy halo data to and from the GPU.
Our measurements indicated a host to device PCIe bandwidth
and latency of approximately 3700 MB/sec and 9µS respec-
tively. The device to host bandwidth and latency was 3130
MB/sec and 11µS. Assuming that each C2070 has exclusive
access to a NIC we remove the serialization costs terms from
(7). The current model does not taken into consideration
the possible performance gains with NVIDIA’s new GPUDi-
rect [1] technology. However, the model could be easily mod-
ified to account for this case by updating the times for the
halo copies between GPUs.

To investigate the the application’s scalability on the GPU
cluster, we benchmark and project performance for solving
a larger 26 million edge mesh. Figure 5 projects the per-
formance (run-time vs. nodes) of Airfoil solving this mesh
on both CX1 and the hypothetical C2070 GPU cluster. Note
that HECToR has 24 cores/node, CX1 has 12 cores/node and
C2070 cluster - 1 GPU/node. Actual run times from HEC-
ToR are also provided to demonstrate the model accuracy.
For most runs model accuracy exceeds 90% but is more sensi-
tive to the system communication performance at large scale.
However the model accurately predicts the number of cores
that gives the optimum runtime and the qualitative trend
in scaling on HECToR, allowing us to establish the limits of
scalability. The model predicts, for example, a cluster with 36
C2070 GPUs to give equivalent performance to that of over
1920 HECToR cores (80 nodes) or a Westmere/InfiniBand
cluster with 1440 cores (120 nodes). Thus, we see a C2070
cluster to give the same performance that is equivalent to

performance given by traditional homogeneous clusters that
are more than three times its size. However this should be
considered in the context of the amount of available memory
on a GPU to hold and execute the required partition size.

On HECToR and CX1 we see that the increase in redun-
dant computations due to ieh at large scales degrades per-
formance. The runtime at 160 HECToR nodes and 320 CX1
nodes was particularly affected by a large ieh. However, due to
one C2070 GPU handling one MPI process on the GPU clus-
ter the model predicts a much smoother performance curve.
The C2070 cluster scales up to approximately 128 nodes after
which the performance plateaus. The model indicates that the
PCIe overheads and MPI/InfiniBand overheads that are not
hidden due to using non-blocking communications account for
less than 10% of the total run-time up to about 480 GPUs.
We expect that the communication overheads to further de-
crease with the use of the faster PCIe3 bus and the upcom-
ing GPUDirect implementation over InfiniBand fabrics. Thus
we predict that effects on performance and scalability due to
such overheads will be further diminished for these applica-
tions. The limitations to scalability will be more prominent
due to the amount of parallelism available to be exploited at a
finer-grained thread level within a GPU node in a large-scale
execution.

5. RELATED WORK
There are many established conventional libraries (e.g. PETSc
[4], Sierra [17]) supporting unstructured mesh based applica-
tion development on traditional clusters. In contrast, OP2’s
objective is to support multiple back-ends, particularly based
on emerging multi-core/many-core technologies, without the
intervention of the application programmer. OP2 can be
viewed as an instantiation of the AEcute (access-execute de-
scriptor) [14] programming model that separates the speci-
fication of a computational kernel with its parallel iteration
space, from a declarative specification of how each iteration
accesses its data. A number of research projects have im-
plemented similar or related programming frameworks. The
most comparable of these projects is LISZT [9] from Stanford
University. While OP2 uses an “active” library approach uti-
lizing code transformation, LISZT implements a domain spe-
cific language (embedded in the Scala language) for the solu-
tion of unstructured mesh based partial differential equations
(PDEs). A LISZT application is translated to an interme-
diate representation which is then compiled by the LISZT
compiler to generate native code for multiple platforms. The
aim, as with OP2, is to exploit information about the struc-
ture of data and the nature of the algorithms in the code and
to apply aggressive and platform specific optimizations. Per-
formance results from a range of systems (GPU, multi-core
CPU, and MPI based cluster) executing a number of appli-
cations written using LISZT have been presented in [9]. The
Navier-Stokes application in [9] is most comparable to the
Airfoil application and show similar speedups to those gained
with OP2 in our work. Application performance on heteroge-
neous clusters such as on clusters of GPUs is not considered
in [9] and is noted as future work.

6. CONCLUSION
The Airfoil application benchmarked in this paper show roughly
up to 3× speedup on current flagship GPUs compared to two
equivalent multi-core x86 CPUs. Our experiments show that
such speedups can be achieved on both single node CPUs uti-
lizing thread-level parallelism (OpenMP) as well as traditional
homogeneous distributed memory clusters.

On a heterogeneous cluster system, we expect such appli-
cations to exhibit similar performance gains given that the
individual GPU nodes do not exhaust their resources solv-
ing a given workload. On the other hand, our performance

modeling predicts that the limiting factor in scalability is not
primarily the PCIe or MPI/InfiniBand overheads, particu-
larly when non-blocking operations are used to hide commu-
nication costs. Scalability is affected more by the amount
of parallelism available per partition to be exploited by each
GPU.

The results from the predictive modeling study in this pa-
per provide us with important quantitative and qualitative
insights into the achievable performance on heterogeneous
cluster systems. The model itself is a representative build-
ing block for future performance projections for applications
developed using OP2. The full OP2 source and the Airfoil
test case code are available as open source software [11] and
the developers welcome new participants in the OP2 project.

7. REFERENCES
[1] GPUDirect. http://developer.nvidia.com/gpudirect.

[2] HECToR. http://www.hector.ac.uk/service/hardware/.

[3] ParMETIS. http://www.cs.umn.edu/~metis.
[4] PETSc. http://www.mcs.anl.gov/petsc/petsc-as/.

[5] Scotch and PT-Scotch.
http://www.labri.fr/perso/pelegrin/scotch/.

[6] Top500 Systems, June 2011. http://www.top500.org/list/.

[7] Burgess, D. A., Crumpton, P. I., and Giles, M. B. A
Parallel Framework for Unstructured Grid Solvers. In
Proceedings of the Second European Computational Fluid
Dynamics Conference (1994), S. Wagner, E. Hirschel,
J. Periaux, and R. Piva, Eds., John Wiley and Sons,
pp. 391–396.

[8] Davis, J., Mudalige, G., Hammond, S., Herdman, J.,
Miller, I., and Jarvis, S. Predictive analysis of a
hydrodynamics application on large-scale cmp clusters. In
International Supercomputing Conference (ISC11), vol. 26 of
Lecture Notes in Computer Science (R&D). Springer,
Hamburg, Germany, June 2011, pp. 175–185.

[9] DeVito, Z., Joubert, N., Palacios, F., Oakley, S.,
Medina, M., Barrientos, M., Elsen, E., Ham, F., Aiken,
A., Duraisamy, K., Darve, E., Alonso, J., and
Hanrahan., P. Liszt: A domain specific language for
building portable mesh-based PDE solvers. In Proceedings of
Supercomputing (2011).

[10] Giles, M., Mudalige, G., Sharif, Z., Markall, G., and
Kelly, P. Performance analysis and optimization of the OP2
framework on many-core architectures. The Computer
Journal (2011).

[11] Giles, M. B. OP2 for Many-Core Platforms, May 2011.
http://people.maths.ox.ac.uk/gilesm/op2/.

[12] Giles, M. B., Ghate, D., and Duta, M. C. Using
automatic differentiation for adjoint CFD code development.
Computational Fluid Dynamics Journal 16, 4 (2008),
434–443.

[13] Giles, M. B., Mudalige, G. R., Sharif, Z., Markall, G.,
and Kelly, P. H. Performance analysis of the OP2
framework on many-core architectures. SIGMETRICS
Perform. Eval. Rev. 38, 4 (March 2011), 9–15.

[14] Howes, L. W., Lokhmotov, A., Donaldson, A. F., and
Kelly, P. H. J. Deriving efficient data movement from
decoupled access/execute specifications. In High
Performance Embedded Architectures and Compilers,
A. Seznec, J. Emer, M. O’Boyle, M. Martonosi, and
T. Ungerer, Eds., vol. 5409 of Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 2009, pp. 168–182.

[15] Mudalige, G., Vernon, M., and Jarvis, S. A
Plug-and-Play Model for Evaluating Wavefront
Computations on Parallel Architectures. In IEEE
International Parallel and Distributed Processing Symposium
(IPDPS) (April, 2008), IEEE Computer Society.

[16] Pennycook, S. J., Hammond, S. D., Jarvis, S. A., and
Mudalige, G. R. Performance analysis of a hybrid
MPI/CUDA implementation of the NAS-LU benchmark.
SIGMETRICS Performance Evaluation Review 38, 4 (2011),
23–29.

[17] Stewart, J. R., and Edwards, H. C. A framework
approach for developing parallel adaptive multiphysics
applications. Finite Elem. Anal. Des. 40 (July 2004),
1599–1617.

