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Acceleration of a Full-scale Industrial CFD
Application with OP2

I.Z. Reguly, G.R. Mudalige, C. Bertolli, M.B. Giles, A. Betts, P.H.J. Kelly and D. Radford

Abstract—Hydra is a full-scale industrial CFD application used for the design of turbomachinery at Rolls Royce plc., capable of
performing complex simulations over highly detailed unstructured mesh geometries. Hydra presents major challenges in data
organization and movement that need to be overcome for continued high performance on emerging platforms. We present research in
achieving this goal through the OP2 domain-specific high-level framework, demonstrating the viability of such a high-level programming
approach. OP2 targets the domain of unstructured mesh problems and enables execution on a range of back-end hardware platforms.
We chart the conversion of Hydra to OP2, and map out the key difficulties encountered in the process. Specifically we show how
different parallel implementations can be achieved with an active library framework, even for a highly complicated industrial application
and how different optimizations targeting contrasting parallel architectures can be applied to the whole application, seamlessly,
reducing developer effort and increasing code longevity. Performance results demonstrate that not only the same runtime performance
as that of the hand-tuned original code could be achieved, but it can be significantly improved on conventional processor systems, and
many-core systems. Our results provide evidence of how high-level frameworks such as OP2 enable portability across a wide range of
contrasting platforms and their significant utility in achieving high performance without the intervention of the application programmer.

Index Terms—Unstructured Mesh Applications, Domain Specific Language, Active Library, OP2, OpenMP, GPU, CUDA, CFD
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1 INTRODUCTION

H IGH Performance Computing (HPC) is currently ex-
periencing a period of enormous change. Within the

last decade, further increase of clock frequencies and in
turn higher performance was severely curtailed due to the
rapid increase in energy consumption. This phenomenon,
commonly referred to as the end of Dennard’s scaling,
has become significant as we reach the physical limits
of the current CMOS based microprocessor technologies.
The only clear direction in gaining further performance
improvements now appears to be through increased par-
allelism, where multiple processor units are utilized to
increase throughput. As a result, modern and emerging
microprocessors feature multiple homogeneous cores op-
tionally augmented with many simpler processing cores
on a single piece of silicon; ranging from a few cores
to thousands, depending on the complexity of individual
processing elements. Traditional CPUs now come with 4-18
cores and wide vector processing units (AVX), and there is
an emergence of co-processors, such as NVIDIA GPUs or
the Intel MIC with 16-64 functional units, each with long
vector processing capabilities.

In light of these developments, an application developer
faces a difficult problem. Optimizing an application for a
target platform requires more and more low-level hardware-
specific knowledge and the resulting code is increasingly
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difficult to maintain. Additionally, adapting to new hard-
ware may require a major re-write, since optimizations and
languages vary widely between different platforms. At the
same time, there is considerable uncertainty about which
platform to target: it is not clear which approach is likely to
“win” in the long term. Application developers would like
to benefit from the performance gains promised by these
new systems, but are concerned about the software devel-
opment costs involved. Furthermore, it can not be expected
of domain scientists to gain platform-specific expertise in
all the hardware they wish to use. This is especially the
case with industrial applications that were developed many
years ago, often incurring enormous costs not only for
development and maintenance but also for validating and
maintaining accurate scientific outputs from the application.
Since these codes usually consist of tens or hundreds of
thousands of lines of code, frequently porting them to new
hardware is infeasible.

Recently, Active libraries [1] and Domain Specific Languages
(DSLs) have emerged as a pathway pointing to a solution
to these problems. The key idea is to allow scientists and
engineers to develop applications by providing higher-level,
abstract constructs that make use of domain specific knowl-
edge to describe the problem to be solved. Active libraries
look like conventional software libraries that rely on an API,
but at the same time, appropriate code generation and com-
piler support is provided to generate platform specific code,
from the higher-level source, targeting different hardware
with tailored optimizations. Within such a setting a separate
lower implementation level is created to provide opportuni-
ties for the library developers to apply radically aggressive
and platform specific optimizations when implementing the
required solution on various hardware platforms. At the
same time, this strategy frees up the application developers
to focus on the problem to be solved. The correct abstraction
will pave the way for easy maintenance of a higher-level ap-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, X 201X 2

plication source with near optimal performance for various
platforms and make it possible to easily integrate support
for any future novel hardware. In contrast, a DSL either
defines its own language, or embeds into a host language,
extending it, therefore it requires advanced compilers and
development tools. Even though much research [2], [3],
[4], [5], [6] has been carried out on the subject, there has
been little conclusive evidence so far, demonstrating the
viability of such an approach in developing full scale in-
dustrial applications. Indeed, it has been the lack of such
an exemplar that has made these high level approaches
confined to university research labs and not a mainstream
HPC software development strategy.

In this paper we focus on the industrial application
Hydra, used at Rolls Royce plc. for the simulation of tur-
bomachinery components of aircraft engines. Hydra is a
highly complex and configurable CFD application, capable
of accommodating different simulations that can be applied
to any mesh. Its initial development was carried out over
15 years ago, but continues to be actively maintained and
optimized. Simulations implemented in Hydra are typically
applied to large meshes, up to tens of millions of edges,
with execution times ranging from a few minutes up to a
few weeks. Hydra uses a design based on a domain specific
abstraction for the solution of unstructured mesh problems;
through a classical software library called OPlus (Oxford
Parallel Library for Unstructured Solvers) [7] that targeted
execution on a cluster of single-threaded CPUs by providing
MPI halo exchange functionality.

OP2 ( [8], [9], [10], [11]) is the successor of OPlus, and
adopts an active-library approach; a single application code
written using the OP2 API can be transformed (through
source-to-source translation tools) into multiple parallel im-
plementations which can then be linked against the appro-
priate parallel library (e.g. OpenMP, CUDA, MPI, OpenCL
etc.) enabling execution on different back-end hardware
platforms. It is due to this automatic code generation layer
that we call OP2 (and similar frameworks) an active library
as oppose to a classical software library. The generated
code and the OP2 platform specific back-end libraries are
highly optimized utilizing the best low-level features of
a target architecture to make an OP2 application achieve
high performance including high computational efficiency
and minimized memory traffic. In previous works, we have
presented OP2’s design and development [8], [9] and its
performance on heterogeneous systems [10], [12] on simpler
benchmarks, and demonstrated considerable performance
gains on a diverse set of hardware.

In this paper we chart the conversion of Hydra from its
original version, based on OPlus, to one that utilizes OP2,
and present key development and optimization strategies
that allowed us to gain high performance on modern par-
allel systems. Specifically, we make the following contribu-
tions:
• Deployment: We present the conversion of Hydra to utilize

OP2, mapping out the key difficulties encountered in the
conversion of the application which, was designed and
developed over 15 years ago, to OP2. Our work demon-
strates the clear advantages in developing maintainable,
future-proof and performant applications through a high-
level abstraction approach.

• Optimizations: We present key optimizations to OP2, both
existing and new ones, that incrementally allowed Hydra
to gain near optimal performance on modern parallel
systems, including conventional multi-core processors,
many-core accelerators such as GPUs as well their hetero-
geneous combinations. The optimizations, while radically
different across different platforms under study, were
easily applied through OP2, demonstrating portability
and increased developer productivity.

• Performance: The performance of Hydra is analyzed on a
range of different hardware platforms, by studying met-
rics such as runtime, scalability and achieved bandwidth.
The performance is compared to that of the original ver-
sion of Hydra, contrasting the key optimizations that lead
to performance differences. Hardware systems studied in-
clude a large-scale distributed memory Cray XE6 system,
and a distributed memory Tesla K20 GPU cluster inter-
connected by QDR InfiniBand. The OP2 design choices
and optimizations are explored with quantitative insights
into their contributions to performance on these systems.
Additionally, performance bottlenecks of the application
are isolated by breaking down the runtime and analyzing
the factors constraining overall performance.
Our work demonstrates how OP2 can be used to develop

large-scale industrial applications, and that in the same
environment the performance is on par with the original.
Furthermore, the new code is capable of outperforming it
with platform specific optimizations for modern multi-core
and accelerator systems. Re-enforcing our previous findings,
this research demonstrates that an application written once
at a high-level using the OP2 framework is easily portable
across a wide range of contrasting platforms, and is capable
of achieving high performance without the intervention of
the application programmer.

The rest of this paper is organized as follows: Section 2
introduces the Hydra CFD application; Section 3 discusses
the OP2 abstraction, API and code generation process; Sec-
tion 4 presents the transformations made to Hydra enabling
it to utilize OP2. Section 5 details the iterative process
that we went through to make sure that the OP2 version
matches the performance of the original under identical
circumstances. Section 6 presents a number of optimizations
applied by the OP2 library that improve upon the perfor-
mance, still using the same MPI parallelization approach.
Section 7 shows how OP2 enables execution on multi-
core and many-core platforms and presents a number of
optimizations that help achieve high performance. Section
8 discusses OP2’s strategy to scaling to large-scale systems
and studies strong and weak scaling performance. Section 9
presents preliminary results from a hybrid CPU-GPU execu-
tion scheme. Section 10 briefly compares related work and
Section 11 concludes the paper.

2 HYDRA

The aerodynamic performance of turbomachinery is a crit-
ical factor in engine efficiency of an aircraft, and hence is
an important target of computer simulations. Historically,
CFD simulations for turbomachinery design were based on
structured meshes, often resulting in a difference between
simulation results and actual experiments performed on
engine prototypes. While the initial hypothesis for the cause
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do while(op_par_loop(ncells, istart, iend))
call op_access_r8(’r’,areac,1,ncells,null,0,0,1,1)
call op_access_r8(’u’,arean,1,nnodes,ncell,1,1,1,3)
do ic = istart, iend

i1 = ncell(1,ic)
i2 = ncell(2,ic)
i3 = ncell(3,ic)
arean(i1) = arean(i1) + areac(ic)/3.0
arean(i2) = arean(i2) + areac(ic)/3.0
arean(i3) = arean(i3) + areac(ic)/3.0

end do
end while

Fig. 1: A Hydra loop written using the OPlus API

was the poor quality of the turbulence model, the use of un-
structured meshes showed that the ability to model complex
physical geometries with highly detailed mesh topologies is
essential in achieving correct results. As a result, unstruc-
tured mesh based solutions are now used heavily to achieve
accurate predictions from such simulations.

Significant computational resources are required for
the simulation of these highly detailed (usually three-
dimensional) meshes. The solution involves iterating over
millions of elements (such as mesh edges and/or nodes)
to reach the desired accuracy or resolution. Furthermore,
unlike structured meshes, which utilize a regular stencil,
unstructured mesh based solutions use the explicit connec-
tivity between elements during computation. This leads to
very irregular patterns of data access over the mesh, usually
in the form of indirect array accesses. These data access
patterns are particularly difficult to parallelize due to data
dependencies resulting in race conditions.

Rolls Royce’s Hydra CFD application is such a full-scale
industrial application developed for the simulation of tur-
bomachinery. It consists of several components to simulate
various aspects of the design including steady and unsteady
flows that occur around adjacent rows of rotating and sta-
tionary blades in the engine, the operation of compressors,
turbines and exhausts as well as the simulation of behavior
such as the ingestion of ground vortexes. The guiding equa-
tions that are solved are the Reynolds-Averaged Navier-
Stokes (RANS) equations, which are second-order PDEs.
By default, Hydra uses a 5-step Runge-Kutta method for
time-marching, accelerated by multigrid and block-Jacobi
preconditioning [13], [14]. The usual production meshes are
in 3D and consist of tens of millions of edges, resulting in
long execution times on modern CPU clusters. Hydra was
originally designed and developed over 15 years ago at the
University of Oxford and has been in continuous develop-
ment since, it has become one of the main production codes
at Rolls Royce. Hydra’s design is based on a domain specific
abstraction for unstructured mesh based computations [7],
where the solution algorithm is separated into four distinct
parts: (1) sets, (2) data on sets, (3) connectivity (or mapping)
between the sets and (4) operations over sets. This leads to
an API through which mesh or graph problem solutions can
be completely and abstractly defined. Depending on the ap-
plication, a set can consist of nodes, edges, triangular faces,
quadrilateral faces, or other elements. Associated with these
sets are data (e.g. node coordinates, edge weights, velocities)
and mappings between sets defining how elements of one
set connect with the elements of another set. All the numeri-
cally intensive computations can be described as operations

subroutine distr(areac,arean1,arean2,arean3)
real(8), intent(in) :: areac
real(8), intent(inout) :: arean1, arean2, arean3
arean1 = arean1 + areac/3.0
arean2 = arean2 + areac/3.0
arean3 = arean3 + areac/3.0
end subroutine
op_par_loop(cells, distr,
& op_arg_dat(areac,-1,OP_ID,1,’r8’,OP_READ),
& op_arg_dat(arean,1,ncell,1,’r8’,OP_INC),
& op_arg_dat(arean,2,ncell,1,’r8’,OP_INC),
& op_arg_dat(arean,3,ncell,1,’r8’,OP_INC))

Fig. 2: A Hydra loop written using the OP2 API

over sets. Within an application code, this corresponds to
loops over a given set, accessing data through the mappings
(i.e. one level of indirection), performing some calculations,
then writing back (possibly through the mappings) to the
data arrays.

The above API was implemented with the creation of a
classical software library called OPlus [7], which provided
a concrete distributed memory parallel implementation tar-
geting clusters of single threaded CPUs. OPlus essentially
carried out the distribution of the execution set of the mesh
across MPI processes, and was responsible for all data
movement while also taking care of the parallel execution
without violating data dependencies. As an example, con-
sider the code in Figure 1 of a loop in Hydra over a set of
triangular cells.

The op_par_loop API call returns the loop bounds of
the execution set, in this case triangular cells, while the
calls to op_access_r8 update the halos at the partition
boundary by carrying out MPI communications. The actual
numerical computation consists of distributing the area of
each cell, areac, to the three nodes that make up the cell.
This is achieved by looping over each cell and accessing the
nodes making up each cell indirectly through the mapping
ncell which points from the cell to its three nodes. The dis-
tributed memory parallel implementation of the above loop
is carried out by partitioning and distributing the global
execution set on to each MPI process. A single threaded
CPU, assigned with one MPI process, will be sequentially
iterating over its execution set, from istart to iend to complete
the computation. However, data dependencies at the bound-
aries of the mesh partitions need to be handled to obtain
the correct results. OPlus handles this by creating suitable
halo elements such that contributions from neighboring MPI
processes are received to update the halo elements. The
implementation follows the standard MPI mesh partitioning
and halo creation approach commonly found in distributed
memory MPI parallelizations.

3 OP2 LIBRARY FOR UNSTRUCTURED GRIDS
The ability to adapt to the rapidly changing hardware

landscape motivated the development of OP2 [8], [9], a suc-
cessor to OPlus. While the initial motivation was to enable
Hydra to exploit multi-core and many-core parallelism, OP2
was designed from the outset to be a general high-level
active library framework to express and parallelize unstruc-
tured mesh based numerical computations. OP2 retains the
OPlus abstraction but provides a more complete high-level
API (embedded in C/C++ and Fortran) to the application
programmer, which for code development appears as an
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! in file flux.F90
module FLUX
subroutine flux_user_kernel(x, ...)
real(8) x(3)
...
end subroutine
end module FLUX

! in file flux_app.F90
program flux_app
use OP2_Fortran_Reference
use OP2_CONSTANTS
use FLUX
...
call op_decl_set (nodes, ..)
call op_decl_map (..)
call op_decl_dat (x, ..)
...
call op_par_loop(nodes, flux_user_kernel,
& op_arg_dat(x,-1,OP_ID,3,’r8’,OP_READ),
& ...)
...
end program flux_app

Fig. 3: Modules structure for a sequential build with OP2

API of a classical software library. However, OP2 uses a
source-to-source translation layer to transform the appli-
cation level source to different parallelizations targeting a
range of parallel hardware. This stage gives the oppor-
tunity to provide the necessary implementation specific
optimizations. The code generated for one of the platform-
specific parallelizations can be compiled using standard
C/C++/Fortran compilers to generate the platform specific
binary executable.

3.1 The OP2 API

OP2 relies on the same abstraction as OPlus, describing the
mesh as (1) a collection of sets, such as vertices or edges, (2)
mappings between sets and (3) data on sets. Computations
are then described as operations over a given set, accessing
data either on the iteration set or through at most one level
of indirection. A more detailed illustration of the OP2 API
including the key API calls are given in Appendix A [15].

Any loop over a set in the mesh is expressed through the
op_par_loop, an API call similar in purpose to the OPlus
API call in Figure 1 for a loop over cells. However, OP2
enforces a separation of the per set element computation
aiming to de-couple the declaration of the problem from
the implementation, and introducing the restriction that the
order of execution can not affect the end result, within
machine precision. Thus, the same loop in Figure 1 can be
expressed as detailed in Figure 2 using the OP2 API.

The subroutine distr() is called a user kernel in the
OP2 vernacular. Simply put, the op_par_loop describes
the loop over the set cells, detailing the per set element
computation as an outlined “kernel” while making explicit
indication as to how each argument to that kernel is ac-
cessed (OP READ - read only, OP INC - increment) and the
mapping, ncell (cells to nodes) with the specific indices are
used to indirectly accessing the data (arean, areac) held
on each node. With this separation, the OP2 design, gives a
significantly larger degree of freedom in implementing the
loop with different parallelization strategies.

OP2 Source-to-Source translator (op2_fortran.py) 

Conventional Compiler + compiler flags 
 (e.g. icc, nvcc, pgcc) 

Hardware 

Link 
Single Node CUDA 

Cluster MPI 
 

Cluster MPI+OpenMP 

Cluster MPI+CUDA 
 

Unstructured Mesh Application 
 

OP2 Application ( C/C++ or FORTRAN API) 
(e.g. app.F90) 

Modified Platform Specific 
OP2 Application 

(e.g. app_op.F90) 

Platform Specific Files 
(e.g. flux_seqkernel.F90, 

flux_kernel.CUF) 

Mesh  
(hdf5, ASCI) 
 

Platform Specific Binary 
(e.g. app_mpi, app_mpi_cuda) 
 

Fig. 4: OP2 build hierarchy

3.2 Development and Code Generation with OP2

An application written with the OP2 API in the above man-
ner can be immediately debugged and tested for accuracy
by including OP2’s “sequential” header file (or its equiva-
lent Fortran module if the application is written in Fortran).
This, together with OP2’s sequential back-end library, im-
plements the API calls for a single threaded CPU and can be
compiled and linked using conventional (platform specific)
compilers (e.g. gcc, icc, ifort) and executed as a serial appli-
cation. OP2’s CPU back-end libraries are implemented in C.
To support applications developed with the Fortran API,
such as Hydra, the build process uses standard Fortran-
to-C bindings, available since Fortran 2003. The Fortran
application code passes a Fortran procedure pointer and
arguments to the op_par_loop. The module structure for
the sequential build is illustrated in Figure 3.

In this illustration, the application consists of an
op_par_loop that calls a subroutine in a Fortran 90 mod-
ule called FLUX. The module is in a separate file (flux.F90)
and consists of the user kernel as a subroutine called
flux_user_kernel. The Fortran application code passes
the flux_user_kernel procedure pointer and arguments
to the op_par_loop. The sequential implementation of
the op_par_loop is provided in the OP2 back-end li-
brary in the OP2_Fortran_Reference module. The calls
to op_decl_set, op_decl_map and op_decl_dat give
OP2 full ownership of mappings and the data. OP2 holds
them internally as C arrays and it is able to apply opti-
mizing transformations in how the data is held in memory.
Transformations include reordering mesh elements [16],
partitioning (under MPI) and conversion to an array-of-
structs data layout (for GPUs [9]). These transformations,
and OP2’s ability to seamlessly apply them internally is key
to achieving a number of performance optimizations.

Once the application developer is satisfied with the va-
lidity of the results produced by the sequential application,
parallel code can be automatically generated. The build
process to obtain a parallel executable is detailed in Figure
4. In this case the API calls in the application are parsed
by the OP2 source-to-source translator which will produce a
modified main program and back-end specific code. These
are then compiled using a conventional compiler (e.g. gcc,
icc, nvcc) and linked against platform specific OP2 back-
end libraries to generate the final executable. The mesh data
to be solved is input at runtime. The source-to-source code
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!in file flux_seqkernel.F90 or
!flux_kernel.F90 or flux_kernel.CUF
module FLUX_HOST
use FLUX
subroutine flux_host_kernel(arg1, ...)
real(8), dimension(:), pointer :: arg1Ptr
call c_f_pointer(arg1%CPtr, arg1Ptr, ...)
...
! platform specific parallelisation
do i = 0,nelems-1,1
call flux_user_kernel(arg1Ptr(i*3+1,i*3+3),
& ...)

...
end subroutine
end module FLUX_HOST

!in file flux_app_op.F90
program flux_app_op
use OP2_FORTRAN_DECLARATIONS
use OP2_Fortran_RT_Support
use OP2_CONSTANTS
use FLUX_HOST
...
call flux_host_kernel(nodes,
& op_arg_dat(x,-1,OP_ID,3,’r8’,OP_READ),
& ...)

...
end program flux_app_op

Fig. 5: Modules structure for a parallel build with OP2

translator is written in Python and only needs to recognize
OP2 API calls; it does not need to parse the rest of the code.

For each parallelization, the generated modified
main program and back-end specific code follow the
general module and procedure structure given in Figure
5. A modified application program is automatically
generated in a new file called flux_app_op.F90
which now uses the OP2 back-end specific libraries
implemented in OP2_FORTRAN_DECLARATIONS and
OP2_Fortran_RT_Support modules. In this case the
op_par_loop API call is converted to a subroutine named
flux_host_kernel, which is implemented in a module
called FLUX_HOST. The parallel implementation of the
op_par_loop in the flux_host_kernel subroutine
differs for each parallelization (e.g MPI, OpenMP, CUDA
etc.). As such the subroutine flux_host_kernel
is placed in a separate file flux_seqkernel.F90,
flux_kernel.F90 or flux_kernel.CUF depending
on whether we are generating a single threaded CPU
cluster parallelization (with MPI), multi-threaded CPU
cluster parallelization (with OpenMP and MPI) or cluster
of GPUs parallelization (with CUDA and MPI). The
flux_host_kernel subroutine in turn calls the user
kernel flux_user_kernel. In the code illustration in
Figure 5 we have shown the MPI only parallelization.
The calls to c_f_pointer are necessary to bind the C
pointers, which point to the C data and mapping arrays
held internally by OP2, to Fortran pointers in order to pass
them to the user kernel. This allows OP2 to use the user
kernels without modification by the code generator. The
combination of code generation and back-end functionality
enables the users to maintain only a single high-level
source code and rely on the OP2 library to automatically
generate code for execution on different platforms. As
future architectures and parallel programming abstractions

appear, only the library developers will have to work on
implementing support for them, the users will only have to
re-generate code and re-compile.

OP2 currently supports automatic parallel code gener-
ation to be executed on (1) multi-threaded CPUs/SMPs
using OpenMP, (2) single NVIDIA GPUs, (3) distributed
memory clusters of single threaded CPUs using MPI, (4)
cluster of multi-threaded CPUs using MPI and OpenMP and
(5) cluster of GPUs using MPI and CUDA. Race conditions
that occur during shared-memory execution on both CPUs
(OpenMP) and GPUs (CUDA) are handled through multiple
levels of coloring while for the distributed memory (MPI)
parallelization, an owner-compute model [12] similar to that
used in OPlus is implemented. More details on the various
parallelization strategies and their performance implications
can be found in previous papers [8], [9], [10], [12], and will
be discussed in more detail in the subsequent sections, as
we describe optimizations applied to them.

4 DEPLOYING HYDRA TO OP2
The original Hydra, based on OPlus, is tailored for execu-
tion on distributed memory single threaded CPU clusters.
However, as CPUs are increasingly designed with multiple
processor cores and each with increasingly large vector
units, simply assigning an MPI process per core may not
be a good long-term strategy if the full capabilities of the
processors are to be used. Moreover, based on experiences
in attempting to exploit the parallelism in emerging SIMD-
type architectures such the Xeon Phi or GPUs, relying only
on coarse-grained message-passing may not be a viable or
scalable strategy. Thus at least a thread-level, shared mem-
ory based parallelism is essential if Hydra is to continue to
perform well on future systems. On the other hand further
performance improvements appear to be obtainable with
the use of accelerator based systems such as clusters of
GPUs.

Directly porting the Hydra code to a multi-threaded
implementation (e.g. with OpenMP or pthreads) is not
straightforward. Consider parallelizing an OPlus loop, such
as the one given in Figure 1, with OpenMP. Simply adding
a !omp pragma parallel for the loop from istart to
iend will not give correct results, due to the data races
introduced by the indirect data accesses through the ncell
mapping. If higher performance is required more opti-
mizations tailored to OpenMP are needed. Thus, further
substantial implementation-specific modifications would be
required to achieve good thread-level parallelism. A much
more significant re-write would be required if we were to
get this loop running on a GPU, say using CUDA. Again the
application code base would be changed with significant im-
plementation specific code making it very hard to maintain.
Porting to any future parallel architectures in this manner
would yet again involve significant software development
costs. Considering that the full Hydra source consists of over
300 loops written in Fortran 77, “hand-porting” in the above
manner is not a viable strategy for each new type of parallel
system. The design of the OP2 framework was motivated to
address this issue.

The one-off conversion of all the Hydra parallel loops
to OP2’s API involved extracting “user-kernels” from each
loop and then putting them in separate Fortran 90 modules.
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TABLE 1: Benchmark systems specifications
System Ruby (Development machine) HECToR (Cray XE6) Jade (NVIDIA GPU Cluster)
Node 2×Tesla K20c GPUs+ 2×16-core AMD Opteron 2×Tesla K20m GPUs+

Architecture 2×6-core Intel Xeon E5-2640 2.50GHz 6276 (Interlagos)2.3GHz Intel Xeon E5-1650 3.2GHz
Memory/Node 5GB/GPU + 64GB 32GB 5GB/GPU
Num of Nodes 1 128 8

Interconnect shared memory Cray Gemini FDR InfiniBand
O/S Red Hat Linux 6.3 CLE 3.1.29 Red Hat Linux 6.3

Compilers PGI 13.3, ICC 13.0.1, Cray MPI 8.1.4 PGI 13.3, ICC 13.0.1,
OpenMPI 1.6.4, CUDA 5.0 OpenMPI 1.6.4, CUDA 5.0

Compiler -O2 -xAVX -Mcuda=5.0,cc35 -O3 -h fp3 -h ipa5 -O2 -xAVX -Mcuda=5.0,cc35

In this manner, the whole of Hydra was converted con-
sistently to use only the OP2 API. The conversion process
was relatively straightforward due to the similarities of the
OPlus and OP2 APIs. Such a straightforward conversion
may not have been possible if we were to convert a different
unstructured mesh application to use OP2. However, we
believe that such a development cost is imperative for most
applications attempting to utilize the benefits of DSLs or
Active Library frameworks, and it is not more costly than
the one-off conversion of the code to an advanced parallel
programming environment, such as CUDA. As we will
show in this paper, the advantages of such frameworks far
outweigh the costs, by significantly improving the maintain-
ability of the application source, while making it possible
to also gain near optimal performance and performance
portability across a wide range of hardware.

A final step that was required to get the Fortran API
working with OP2 was the handling of global constants.
The original Hydra code with OPlus used common blocks
to declare and hold global constants where their value is set
during an initialization phase and then used throughout the
code. With the move to use F90 in OP2, all constants were
declared in a separate module OP2_CONSTANTS. For the
GPU implementation, in order to separate constants held in
the device (i.e. GPU) and the host CPU the constant key-
word in the variable type qualifiers (alternatively device
if the array is too large) and the _OP2CONSTANT suffix was
added to the names of constant variable. In Hydra, all global
variables that use common blocks are defined in a number
of header files, thus we were able to implement a simple
parser that extracts variable names and types, and generates
the required constants module.

At this stage, the conversion of Hydra to utilize the OP2
framework was complete. The application was validated to
check that the correct scientific results were obtained. The
open question now was whether the time and effort spent
in the conversion of Hydra to utilize an active library such
as OP2 is justified. Specifically the key questions were: (1)
whether the conversion to OP2 affected the performance of
Hydra, compared to the original OPlus version, (2) what
new capabilities can be enabled through OP2 that improve
performance, (3) whether further performance gains are
achievable with modern multi-core/many-core hardware,
and what optimizations can be applied on different parallel
platforms and (4) whether OP2’s multi-level parallelization
approach is scalable to thousands of cores and large problem
sizes. The following sections are organized to answer each
of these points, and at the same time show how the OP2
framework facilitates the deployment of such optimizations.

5 HYDRA: OPLUS VS. OP2

We begin by determining whether using a high-level ap-
proach such as OP2 is in any way detrimental to per-
formance when compared to the hand-coded original; it
is obviously critical to be able to perform a like-for-like
comparison and demonstrate that the OP2 version can in-
deed match the performance of the original under identical
circumstances. Therefore, we explore the single-thread and
single node performance, and present the iterative design
process that enabled us to match the performance of the
original.

Our initial experimental system is a two socket Intel
Xeon server named Ruby(see Table 1 column 1 for brief
specifications). The configuration and input meshes of Hy-
dra in these experiments model a standard application in
CFD, called NASA Rotor37 [17]. It is a transonic axial
compressor rotor widely used for validation in CFD. It
is used for Rolls-Royce’s HPC system procurements and
validations, and as such is representative of other use cases
of Hydra.

The mesh used for the single node performance bench-
marking consists of 2.5 million edges. We use the non-linear
solver configured to compute in double precision floating
point arithmetic. Hydra can also be used with multi-grid
simulations, but for simplicity of the performance analysis
and reporting we utilize experiments with a single grid
(mesh) level.

Figure 6a presents the performance of Hydra with both
OPlus and OP2 on up to 12 cores (and 24 SMT threads)
on the Ruby single node system using the message pass-
ing (MPI) parallelization. The partitioning routine used in
both cases is a recursive coordinate bisection (RCB) mesh
partitioning [18] where the 3D coordinates of the mesh are
repeatedly split in the x, y and z directions respectively
until the required number of partitions (where one partition
is assigned to one MPI process) is achieved. The timings
presented are for the end-to-end runtime of the main time-
marching loop for 20 iterations. Usual production runs solv-
ing this mesh would take hundreds of iterations to converge.

We see that at first the OP2 version (noted as OP2 initial)
was about 50% slower than the hand coded OPlus version.
The generated code from OP2 appeared to be either missing
a performance optimization inherent in the original code
and/or the OP2 generated code and build structure intro-
duced new bottlenecks. By simply considering the runtime
on a single thread we see that even without MPI commu-
nications the OP2 (initial) version performed with the same
slowdown. It was clear that some issue was affecting single
threaded CPU performance. One plausible explanation was
that the generated files and the separation of the user kernel
is inhibiting function in-lining optimizations. By placing
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(a) OPlus vs OP2 (MPI only) (b) OPlus vs OP2 (with PTSotch and renumbering)
Fig. 6: Single node performance on Ruby (2.5M edges, 20 iterations)

the user kernel and the code generated by OP2 setting
up the pointers and looping over the execution set in the
same compilation unit, performance improved over the OP2
(initial) version on average by about 25%.

To analyze the performance further, we ran Hydra
through the Intel VTune profiler. The aim was to investigate
any discrepancies in the performance of each subroutine
that is called when executing an op_par_loop. As Hydra
consists of more than 300 parallel loops, we focused on
one of the most time consuming op_par_loops called
edgecon. The profiling revealed that a significant overhead
(up to 40% of the total instruction count for the loop) occurs
at the call to the user kernel; for example, the call to the
flux_user_kernel subroutine provided by the user.

Further investigation revealed that the cause is a low
level Fortran specific implementation issue [19] related to
how arrays are represented internally in Fortran: the pointer
results in an “assumed shape” array which is represented
by an internal struct called a “dope vector” in Fortran.
The dope vector contains the starting pointer of the array
but also bounds and stride information. The extra informa-
tion facilitates strided array sections and features such as
bounds checking. However computing the memory address
of an array element held in the struct causes a complex
indexing calculation. Thus, directly using this array pointer
and passing it as an argument to the flux_user_kernel
subroutine causes the indexing calculation to occur for each
and every iteration in the do i = 0,nelems-1,1 loop.

The resolution is to force the complex index calcula-
tion to occur only once. After some experimentation, a
modified module and subroutine structure was generated
(see Appendix B [15]). It introduces a wrapper subroutine
flux_wrap that is initially called by flux_kernel by
passing the Fortran pointer. At this point the complex index-
ing calculation is carried out, just once. Then flux_wrap
works with an “assumed shape array” and calls the user
kernel flux_user_kernel with a simple offset that is
cheap to calculate. To apply the modification to all parallel
loops we simply modified the code generator to generate
code with this new subroutine structure. None of the ap-
plication level code with the OP2 API was affected. The
performance of the resulting code is presented by the third
bar in Figure 6a. At this point, the OP2 based Hydra applica-
tion matches the performance of the original version, within
5% for each loop when executed by a single thread. These
results by themselves provide enormous evidence of the
utility of OP2, particularly (1) showing how an optimization
can be applied to the whole industrial application seam-

lessly through code generation, reducing developer effort
and (2) demonstrating that the same runtime performance
as that of a hand-tuned code could be achieved through the
high-level framework.

6 SYSTEMIC OPTIMIZATIONS
Having established that an implementation using a high-
level approach can indeed match the performance of the
original hand-coded version, we now focus on some of
the improvements provided by the OP2 library that can be
seamlessly integrated into execution. Firstly, the OP2 design
allows the underlying mesh partitioner for distributing the
mesh across MPI processes to be changed. During the initial
input, OP2 distributes the sets, maps and data assuming
trivial block partitioning, where consecutive blocks of set
elements are assigned to consecutive partitions. As this
trivial partitioning is not optimized for distributed mem-
ory performance, a further re-partitioning is carried out
(in parallel) with the use of state-of-the-art unstructured
mesh partitioners such as ParMetis [20] or PTScotch [21].
For the purposes of comparison with the original OPlus
code, as shown in Figure 6a, we have also implemented the
recursive coordinate bisection algorithm in OP2 allowing it
to generate the exact same partitioning as the original OPlus.

Secondly, OP2 allows the ordering or numbering of mesh
elements in an unstructured mesh to be optimized. The
renumbering of the execution set and related sets that are
accessed through indirections has an important effect on
performance [16]: cache locality can be improved by making
sure that data accessed by elements which are executed
consecutively are close, so that data and cache lines are
reused. OP2 implements a renumbering routine that can be
called to convert the input data meshes based on the Gibbs-
Poole-Stockmeyer algorithm in Scotch [21].

The results in Figure 6b show the effect of the above
two features. The use of PTScotch resulted in about 8%
improvement over the recursive coordinate bisection par-
titioning, on Ruby. However, renumbering resulted in about
17% gains for Hydra solving the NASA Rotor 37 mesh.
Overall, partitioning with PTScotch gave marginally better
performance than ParMetis (not shown here). In the results
presented in the rest of the paper we make use of OP2’s
mesh renumbering capability, unless stated otherwise.

Breakdowns for some of the most time-consuming loops
are shown in Table 2 when all the above optimizations are
applied; observe how only 6 loops make up 75% of the total
runtime. The table also shows the data requirements per
set element; the number of double precision numbers read
and written, either directly or indirectly, ignoring temporary
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TABLE 2: Hydra single node performance with 24 MPI
processes, showing data requirements per set element as

number of double precision values read and written either
directly or indirectly : 0.8M nodes, 2.5M edges, 20 iterations

Loop Time % Direct R/W Indirect R/W
accumedges 1.32 7.83 3/0 74/52
edgecon 1.08 6.56 3/0 68/48
ifluxedge 1.49 8.96 3/0 34/12
invjacs 0.17 1.03 27/27 0/0
srck 0.35 1.86 30/6 0/0
srcsa 1.32 7.60 34/6 0/0
updatek 0.98 5.83 53/6 0/0
vfluxedge 6.52 38.58 3/0 92/12
volap 0.43 2.58 29/24 0/0
wffluxedge 0.23 1.38 7/0 72/12
wvfluxwedge 0.21 1.24 4/0 45/6

memory requirements due to local variables. The results
suggest that the memory system is under considerable
pressure, especially when large amounts of data is accessed
indirectly, but also shows that performance depends on the
computations carried out within the user kernel. Since OP2
doesn’t have a fully-fledged compiler, it is currently unable
to generate SIMD vectorized code to further accelerate per-
formance, however loops that do not indirectly increment
data are candidates for compiler auto-vectorization, thus the
appropriate compilers pragmas are generated in the code
- currently without much effect on performance. A more
complete investigation into achieving vectorization in OP2
have been presented in [10].
7 MULTI-CORE AND MANY-CORE EXECUTION
So far, we have only considered the MPI parallelization,
which was already achieved with the original OPlus version
of Hydra. However, one of the most important features
of OP2 is that it enables execution on modern many-
core hardware using the latest parallel programming ap-
proaches by automatically generating code from the high-
level user application code. OP2 supports parallel code
generation for execution on multi-threaded CPUs or SMPs
using OpenMP and on NVIDIA GPUs using CUDA. The
generated OpenMP code uses the same subroutine, module
and file structure as the MPI-sequential code. At the time of
writing, CUDA and NVIDIA’s compiler, nvcc only supports
code development in C/C++, so OP2 utilizes PGI’s CUDA
FORTRAN compiler to support code generated for the GPU
via the Fortran API.

To exploit shared memory parallelization techniques,
OP2 segments the execution set on a partition into blocks
or mini-partitions and each mini-partition is assigned to an
OpenMP thread (or a CUDA thread block) for execution in
parallel [8], [12]. However, to avoid race conditions due to
indirectly accessed data, the blocks are colored such that ad-
jacent blocks are given different colors. When executing the
computations per block, only blocks of the same color are
executed in parallel; furthermore, on the GPU, a subsequent
coloring of set elements within each block is necessary to
avoid race conditions when one set element is assigned to
one GPU thread. All these form an execution plan that is
created for each loop when it is first encountered and then
reused during subsequent executions.
7.1 OpenMP Execution
The use of a hybrid MPI+OpenMP programming approach
on modern supercomputers is well established, and is often

TABLE 3: Hydra single node performance, 6 MPI x 4 OMP:
2.5M edges, 20 iterations

Loop Time (sec) GB/sec % runtime
accumedges 1.46 28.57 7.99
edgecon 2.00 58.40 10.95
ifluxedge 1.88 48.88 10.32
invjacs 0.16 67.37 0.90
srck 0.47 81.72 2.57
srcsanode 1.34 31.62 7.38
updatek 0.94 68.67 5.14
vfluxedge 7.05 16.11 38.70
volapf 0.47 72.19 2.57
wffluxedge 0.26 25.24 1.41
wvfluxedge 0.26 16.81 1.41

Fig. 7: OP2 Hydra Multi-/Many-core performance on Ruby
(2.5M edges, 20 iterations)

utilized to reduce the overhead of MPI communications.
Figure 7 presents the runtime performance of the OpenMP
parallel back-end. The experiments varied from running a
fully multi-threaded version of the application (OpenMP
only), to a heterogeneous version using both MPI and
OpenMP. We see that executing Hydra with 24 OpenMP
threads (i.e. OpenMP only) resulted in significantly poorer
performance than when using only the MPI parallelization,
on this two socket CPU node. We have observed similar
performance with the Airfoil CFD benchmark code [12]
and shown it to be caused by the non-uniform memory
access issues (NUMA [22], [23]). When executing in an
MPI+OpenMP hybrid setting, processes and threads are
pinned to specific sockets circumventing such problems.

With the shared memory parallelism execution scheme
employed by OP2, we reason that the size of the block de-
termines the amount of work that a given thread carries out
uninterrupted. The bigger it is, the higher data reuse within
the block with better cache and prefetch engine utilization.
At the same time, some parallelism is lost due to the colored
execution; only those blocks that have the same color can
be executed at the same time by different threads, with an
implicit synchronization step between colors. This makes
the execution scheme prone to load imbalances, especially
when the number of blocks with a given color is comparable
to the number of threads that are available to execute
them. The above two causes have given rise to the runtime
behavior we see from each MPI and OpenMP combination
in Figure 8. Evidence supporting these conclusions can be
found by inspecting the number of blocks and number of
colors used in each configuration (see Appendix C [15]) .

Finally we conclude that the above effects, particularly
the lost parallelism with colored execution, combined with
threading overheads [24], [25] may account for the slightly
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Fig. 8: Hydra OpenMP and MPI+OpenMP performance for
different block sizes on Ruby (2.5M edges, 20 iterations)

worse performance of the hybrid MPI+OpenMP approach
on a single node compared to the MPI only runtime. Indeed,
many PDE codes written by threading experts [26] are found
to run faster with flat MPI. This is partly to do with the
overhead of software synchronization and parallel vs serial
packing as compared to parallel access to NIC hardware
contexts.

Table 3 details the achieved bandwidth for the most time
consuming loops of Hydra with OpenMP (6 MPI × 4 OMP).
These loops together take up about 90% of the total runtime.
The achieved bandwidths are reported through code gen-
erated by OP2 for performance reporting. The bandwidth
figure was computed by counting the useful amount of
data bytes transferred from/to global memory during the
execution of a parallel loop, accounting for data re-use
within blocks, and dividing it by the runtime of the loop.
The achieved bandwidth by a majority of the key loops on
Ruby is over or close to 60% of the practical peak bandwidth
of the Sandy Bridge processors (66.8 GB/s STREAM Triad,
85.2 GB/s theoretical peak). The best performing loops, such
as srck, updatek and volapf, are direct loops that only
access datasets defined on the set being iterated over, hence
they achieve a very high fraction of the peak bandwidth,
due to trivial access patterns to memory. Indirect loops use
mapping tables to access memory, and they often require
colored execution in order to avoid data races; both of these
factors contribute to lower bandwidth achieved by loops
such as accumedges, ifluxedge and edgecon. Addi-
tionally some loops are also compute and control-intensive,
such as vfluxedge. Finally, loops over boundary sets, such
as wvfluxedge, have highly irregular access patterns to
datasets and generally much smaller execution sizes, lead-
ing to a lower utilization of resources. Our experiments also
showed that the trends on achieved bandwidth utilization
remain very similar to the observed results from previous
work [8], [12] for the Airfoil benchmark application.

7.2 GPU Execution
The Ruby development machine contains two Tesla K20
GPUs, using which we investigate Hydra’s performance
on GPUs. Many aspects of the generated CUDA code had
been optimized from our previous work [8], [9] targeting
the older generation of NVIDIA GPUs based on their Fermi
architecture. Thus, we re-evaluated the generated CUDA
code targeting the Tesla K20 which are based on NVIDIA’s
latest Kepler architecture.

In a way similar to the code generation for the CPUs, we
use Fortran to C bindings to call functions in the OP2 back-

end and to connect C pointers to Fortran pointers. The same
plan construction that was described in previous papers [9]
is retained. Previously, indirect data from GPU global mem-
ory were loaded into each thread block’s shared memory
space forming a local mini-partition. However, we observed
that this staging of indirectly accessed data is not beneficial
for Hydra contrary to the results we observed with the
Airfoil benchmark [9] on previous-generation hardware.
This is due to the fact that the large amounts of data moved
by parallel loops in Hydra would require excessive amounts
of shared memory, which in turn would severely degrade
multiprocessor occupancy (the number of threads resident
in a multiprocessor at the same time) and performance.
Therefore, we eliminated the staging in shared memory by
directly loading the data from global memory into SMs, and
rely on the increased L2 and texture cache size to speed
up memory accesses that have spatial and temporal local-
ity. The performance achieved by the CUDA application
generated by OP2 with such a parallel implementation is
presented in Figure 7. However, this initial code on a single
GPU ran about 45% slower than the best CPU performance
on Ruby (2 CPUs, 24 MPI processes).

Running the generated CUDA code through the NVIDIA
Visual Profiler revealed more opportunities for optimiza-
tions. It appeared that the switch to directly loading data
from global memory (without staging in shared memory)
has made most parallel loops in Hydra limited by poor
memory access patterns. Further investigation showed that
a high amount of cache contention is caused by the default
data layout of op_dats. This layout, called Array-of-Structs
(AoS), was found to be the best layout for indirectly accessed
data in our previous work [9] on Fermi GPUs. However
without staging in shared memory it was damaging per-
formance in Hydra as many of Hydra’s op_dats have
a large number of components (dimensions) for each set
element (typically related to the number of PDEs ≥ 6).
Thus, adjacent threads are accessing memory that are far
apart, resulting in high numbers of cache line loads (and
evictions, since the cache size is limited). OP2 has the ability
to effectively transpose these datasets and use a Struct-of-
Arrays (SoA) layout, so when adjacent threads are accessing
the same data components, they have a high probability of
being accessed from the same cache line. This is facilitated
by either the user annotating the code or by telling the OP2
framework to automatically use the SoA layout for datasets
above a given dimension. The above optimization resulted
in an increase of about 40% to the single GPU performance
as shown in Figure 7.

To improve performance further, two other aspects of
GPU performance were investigated. The goal was to allow
as many threads to be active simultaneously so as to hide the
latency of memory operations. The first option is to limit the
number of registers used per thread. A GPU’s SM can hold
at most 2048 threads at the same time, but it has only a fixed
number of registers available (65k 32-bit registers on Kepler
K20 GPUs). Therefore kernels using excessive amounts of
registers per thread decrease the number of threads resident
on an SM, thereby reducing parallelism and performance.
Limiting register count (through compiler flags) can be ben-
eficial to occupancy and performance if the spilled registers
can be contained in the L1 cache. Thus for the most time-
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TABLE 4: Hydra GPU performance: 2.5M edges, 20 iterations
Loop Time (sec) GB/sec % runtime
accumedges 2.07 13.87 19.30
edgecon 2.46 33.55 22.87
ifluxedge 1.03 71.90 9.59
invjacs 0.41 25.94 3.85
srck 0.34 108.09 3.20
srcsa 0.34 121.72 3.15
updatek 0.54 115.91 5.01
vfluxedge 2.32 53.82 21.62
volap 0.23 142.85 2.14
wffluxedge 0.11 31.55 1.00
wvfluxwedge 0.08 25.69 0.77

consuming loops in Hydra, we have manually adjusted
register count limitations so as to improve occupancy.

The second consideration is to adjust the number of
threads per block. Thread block size not only affects occu-
pancy, but also has non-trivial effects on performance due
to synchronization overheads, cache locality, etc. that are
difficult to predict. The best thread block size for different
parallel loops are stored them in a look-up table. This opti-
mization can be carried out once for different hardware, but
performance is unlikely to vary significantly when solving
different problems. Together with the SoA optimization,
the use of tuned block sizes and limited register counts
provided a further 10% performance improvement.

The final best runtime on a single K20 GPU and on both
the K20 GPUs on Ruby is presented in the final two bars
of Figure 7. A single K20 GPU achieves about 1.8× speedup
over the original OPlus version of Hydra on Ruby and about
1.5× over the MPI version of Hydra with OP2. However,
considering the full capabilities of a node, the best perfor-
mance on Ruby with GPUs (2 GPUs with MPI) is about
2.34× speedup over the best OP2 runtime with CPUs (2
CPUs, 24 MPI processes) and about 2.89× speedup over the
best OPlus runtime with CPUs (2 CPUs, 24 MPI processes).
Table 4 notes the achieved memory bandwidth utilization on
a K20 GPU. A majority of the most time consuming loops
achieve 20 - 50 % of the the practical peak performance (163
GB/s copy, out of 208 GB/s theoretical peak). Bandwidth
utilization is particularly significant during the direct loops
srck, updatek and volapf.

As it can be seen from the above effort, a range of low-
level features had to be taken into account and a significant
re-evaluation of the GPU optimizations had to be done
to gain optimal performance even when going from one
generation of GPUs by the same vendor/designer to the
next. In our case the previous optimizations implemented
for the Fermi GPUs had to be considerably modified to
achieve good performance on the next generation Kepler
GPUs. However, as the code was developed under the
OP2 framework, radical changes to the parallel code could
be easily implemented. In contrast, a directly hand-ported
application would cause the application programmer sig-
nificant difficulties to maintain performance for each new
generation of GPUs, not to mention new processor architec-
tures. This shows that the use of OP2 has indeed led to a
near optimal GPU back-end that is significantly faster than
the CPU back-end, with very little change to the original
source code.
7.3 Fine-tuning execution parameters
In the previous discussion of OpenMP and CUDA execu-
tion, a number of parameters came up that needed to be

tuned to achieve the best performance. In case of OpenMP,
the size of mini-partitions assigned to threads as well as the
specific MPI-OpenMP process-thread combination affected
performance. For GPU execution, there is an even wider
range of parameters; mini-partition size, thread block size,
and limitation of register usage for individual loops. In
OP2, most of these parameters can be defined or over-
ridden either at compilation time (register limitations) or
at execution time (mini-partition size, block size, etc.). We
use an auto-tuning tool called Flamingo [9] to explore the
parameter space on a representative test case restricted in
runtime in combination with OP2’s built-in performance-
reporting mechanisms, that give a timing breakdown for
each computational loop, to select the best combination of
parameters, some of the results are then fed back to an
auxiliary program module that can be queried for the best
combination of parameters for a loop with a given name.

8 DISTRIBUTED MEMORY SCALING
The industrial problems simulated by Hydra require signifi-
cantly larger computational resources than what is available
today on single node systems. An example design simula-
tion such as a multi-blade-row unsteady RANS (Reynolds
Averaged Navier Stokes) computation where the unsteadi-
ness originates from the rotor blades moving relative to the
stators, would need to operate over a mesh with about 100
million nodes. Currently with OPlus, Hydra can take more
than a week on a small CPU cluster to reach convergence for
such a large-scale problem. Future turbomachinery design
projects aim to carry out such simulations more frequently,
such as on a weekly or on a daily basis, and as such the
OP2 based Hydra code needs to scale well on clusters with
thousands to tens of thousands of processor cores. Previous
papers have explored OP2’s strong and weak scaling on
a benchmark problem [12], here we restrict our study and
focus on the overall scaling performance we experience for
Hydra. Table 1 lists the key specifications of the two cluster
systems we use in our benchmarking. The first system,
HECToR [27], is a large-scale proprietary Cray XE6 system
which we use to investigate the scalability of the MPI and
MPI+OpenMP parallelizations. The second system, JADE is
a small local NVIDIA GPU (Tesla K20) cluster that we use
to benchmark the MPI+CUDA execution. While during this
study we could not attempt experiments at an even larger
scale, other studies have demonstrated extreme scalability
of similar unstructured mesh codes [28].

8.1 Strong Scaling
Figure 9(a) reports the run-times of Hydra at scale, solving
the NASA Rotor 37 mesh with 2.5M edges in a strong-
scaling setting. The x-axis represents the number of nodes
on each system tested, where a HECToR node consists of
two Interlagos processors, a JADE node consists of two
Tesla K20 GPUs. The run-times (on the y-axis) are averaged
from 5 runs for each node count. The standard deviation in
run times was always less than 10%. MPI+OpenMP results
were obtained by assigning four MPI processes per HECToR
node, each MPI process consisting of eight OpenMP threads,
in accordance with the NUMA architecture of the Interlagos
processors [29]. On HECToR, we see that the overall scaling
of Hydra with OP2 is significantly better than that with
OPlus. OP2’s MPI-only parallelization scales well up to 128
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(b) Weak Scaling (0.5M edges per node)
Fig. 9: Scaling on HECToR (MPI, MPI+OpenMP) and Jade (MPI+CUDA) : 20 iterations

nodes (4096 cores). At 32 nodes (1024 cores) the MPI-only
parallelization partitioned with PTScotch gives about 2x
speedup over the runtime achieved with OPlus.

As with all message passing based parallelizations, one
of the main problems that limits the scalability is the over-
partitioning of the mesh at higher machine scale. This leads
to an increase in redundant computation at the halo regions
(compared to the non-halo elements per partition) and an
increase in time spent during halo exchanges; the ratio of
halo elements to interior elements on each partition reaches
27-40% (depending on the partitioner) at 4096 processes. It is
important to note that at the largest scale, almost half of the
total runtime was spent in global reductions. We expected
MPI+OpenMP to perform better at larger machine scales as
observed in previous performance studies using the Airfoil
CFD benchmark [12], due to the smaller number of parti-
tions and thus smaller ratio of halo elements; unfortunately
the performance bottlenecks discussed in Section 7.1 for
the single node system are worse at higher machine scales,
on the HECToR system, as Figure 9(a) shows, pure MPI
execution gives better scaling performance.

Comparing the performance on HECToR to that on the
GPU cluster JADE, reveals that for the 2.5M edge mesh
problem the CPU system gives better scalability than the
GPU cluster. We believe that similar to the Airfoil code’s
GPU cluster performance [12], this comes down to GPU
utilization issues: the level of parallelism during execution.
Since the GPU is more sensitive to these effects than the
CPU, where the former relies on increased throughput for
speedups and the latter depends on reduced latency, the
impact on performance is more significant due to reduced
utilization at increasing scale. Along with the reduction in
problem size per partition, the same fragmentation as we
observed with the MPI+OpenMP implementation due to
coloring is present. Colors with only a few blocks have
very low GPU utilization, leading to a disproportionately
large execution time. This is further complemented by the
different number of colors on different partitions for the
same loop, leading to faster execution on some partitions
and then the idling at implicit or explicit synchronization
points waiting for the slower ones to catch up.
8.2 Weak Scaling
Weak scaling of a problem investigates the performance of
the application at both increasing problem and machine
size. For Hydra, we generated a series of NASA rotor
37 meshes such that a near-constant mesh size per node
(0.5M vertices) is maintained at increasing machine scale.

The results are detailed in Figure 9(b). The largest mesh
size benchmarked across 16 nodes (512 cores) on HECToR
consists of about 8 million vertices and 25 million edges
in total. Further scaling could not be attempted due to the
unavailability of larger meshes at the time of writing.

With OPlus, there is about 8-13% increase in the runtime
of Hydra each time the problem size is doubled. With OP2,
the pure MPI version with PTScotch partitioning shows
virtually no increase in runtime. Similar to strong scaling,
the MPI-only parallelization performs about 10-15% better
than the MPI+OpenMP version. The GPU cluster, JADE,
gives the best runtimes for weak scaling, with a 4-8% loss of
performance when doubling problem size and processes. It
roughly maintains a 2× speedup over the CPU implemen-
tations at increasing scale.

The above scaling results give us considerable confi-
dence in OP2’s ability to give good performance at large
machine sizes even for a complex industrial application
such as Hydra. We see that the primary factor affecting
performance is the quality of the partitions: minimizing halo
sizes and MPI communication neighbors. For completeness
Appendix D [15] provides further evidence and analysis of
the distributed memory scaling performance of OP2 Hydra.
These results illustrate that, in conjunction with utilizing
state-of-the-art partitioners such as PTScotch, the halo sizes
resulting from OP2’s owner-compute design for distributed
memory parallelization provide excellent scalability. We also
see that GPU clusters are much less scalable for small prob-
lem sizes and are best utilized in weak-scaling executions.

9 FULL HYBRID GPU-CPU EXECUTION
Most related work published on many-core acceleration,
and GPU acceleration in particular, focuses on migrating
the entire code base to the GPU and then comparing per-
formance with the CPU. However, modern GPU supercom-
puters, such as Titan at Oak Ridge NL, consist of roughly
the same number of GPUs and CPU sockets, and often
pricing is only calculated on a per-node basis. Thus, if an
application only exploits the computational resources of the
GPUs, then the CPUs are idling, even though they might
have considerable computational power themselves; this is
a waste of energy and resources. Several papers address this
issue by employing different techniques, where the CPU
and the GPU either have the same “rank”, such as in the
case of shared task-queues [30], or where the GPU computes
on the bulk of the workload and the CPU handles the
parts where the GPU would be underutilized, such as the
boundary in domain decomposition systems [31], [32]. In
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Fig. 10: Hybrid CPU-GPU performance at different load
balancing values, marking perfect balance for different loops

on Ruby (2.5M edges, 20 iterations) with ParMetis partitioning

this section we present preliminary results on OP2’s support
for what we call full-hybrid execution where both the CPUs
and the GPUs on a node is used for mesh computations.
Again, the possibility of seamlessly integrating such a fully-
hybrid parallelization to Hydra is only possible due to the
high-level abstraction approach implemented through OP2.

The natural approach to enable hybrid CPU-GPU exe-
cution in OP2 is to assign some processes to execute on
the GPU and others to execute on the CPU. This hardware
selection happens at runtime: on a node with N GPUs, the
first N processes assigned to it pick up a GPU and the
rest become CPU processes. To enable hybrid execution,
the generated kernel files include code for execution with
both MPI+CUDA and MPI+OpenMP, thus at runtime the
different MPI processes assigned to different hardware can
call the appropriate one.

The most important challenge with hybrid execution in
general, not just for Hydra, is to appropriately load balance
between different hardware so that both are utilized as
much as possible. From our results in the previous sec-
tions, the importance of load balancing, even for executing
computations the CPU only, was evident. Finding such a
balance for simple applications where one computational
phase (such as a single loop) dominates the runtime may not
be difficult. One only needs to compare execution times on
the CPU and the GPU separately and assign proportionally
sized partitions to the two.

However, for an application such as Hydra consisting
of several phases of computations, such a load balancing
is not trivial: the performance difference between the CPU
and the GPU varies widely for different loops, as shown in
Table 3 and Table 4. For example the loop vflux is about
3 times faster on the GPU, but the loop edgecon is 25%
faster on the CPU. Load balancing for each computational
loop is infeasible as it would require repartitioning the mesh
and transferring large amounts of data between different
processes from one loop to another, losing any performance
benefit it might offer. Thus in OP2 we have to come up with
a static load balance upfront, which implies that some loops
will be executed faster on the GPU than the CPU and vice
versa, leading to the faster one waiting for the slower one
to catch up whenever a halo exchange is necessary between
them. This can severely restrict the potential performance
gains expected from a fully hybrid execution.

We perform hybrid tests on the Ruby development
machine, using a single GPU and both CPU sockets, each
running OpenMP with 10 threads. Partitioning is carried out
using the heterogeneous load balancing feature of ParMetis.

Figure 10 shows performance while adjusting the static load
balance between the work assigned to the CPU and the
GPU. For example a partition size balance of 2.5 implies
that the GPU executes a partition that is 5 times larger than
a single CPU (i.e. 2.5 times larger than the combined size
of the partitions assigned to both of the CPUs on Ruby).
The first guess for the static load balance would be based
on single GPU execution time and MPI+OpenMP execution
time on Ruby, yielding a balance of about 1.5, giving a
9% performance improvement over single GPU runtime.
An auto-tuning run for the value of the static load balance
yields the data points in Figure 10, registering the execution
times of different loops on the CPU and the GPU.

The figure marks load balance values where different
loops are in perfect balance (i.e. the execution time on the
GPU and the two CPUs are approximately the same); it is
obvious that there is a big variation, but the trends show
that it is best to shift the balance towards loops where
the GPU has a significant speedup over the CPU, such
as ifluxedge, vfluxedge or srcsa. This increases the
performance gain from hybrid execution up to 15%.

10 RELATED WORK
There is a large body of research on classical software
libraries for unstructured mesh computations, such as
PETSc [33]. Recently domain specific languages and high-
level approaches have received a lot of attention; FEn-
iCS [34], [35] for the solution of PDEs, Liszt [3] for unstruc-
tured meshes, and a large number of DSLs for structured
meshes and stencil-based computations [4], [5], [36], which
all take varying approaches to defining a language and pro-
viding programming tools and compilers to exploit domain-
spcific knowledge and enable execution on different hard-
ware. Recently the COSMO weather code from Switzerland
was demonstrated to successfully use a similar domain-
specific approach [37]. In contrast to these approaches, OP2
can be viewed as an instantiation of the AEcute (access-
execute descriptor) [2] programming model that separates
the specification of a computational kernel with its parallel
iteration space, from a declarative specification of how each
iteration accesses its data.

In addition to Hydra, using OP2 we have so far de-
veloped a range of applications solving a wide variety of
numerical algorithms. These include two test applications
that implement a finite volume and a finite element al-
gorithm [38], an unstructured mesh Lagrangian Hydrody-
namics mini-app from the UK Mini-App Consortium called
BookLeaf [38], [39], an academic shallow-water simulation
code called VOLNA [40]. The OP2 API was sufficiently
general to be applicable to such a range of applications
without the need for any application specific modifications.
For example, BookLeaf originally written in Fortran 90,
once converted to use the OP2 API was code generated
immediately to gain OpenMP and CUDA parallel code that
included all of the optimizations that we have discussed in
this paper for Hydra.

11 CONCLUSIONS
Rolls Royce’s Hydra is a full-scale industrial CFD applica-
tion currently in regular production use. Porting it to ex-
ploit multi-core and many-core parallelism presents a major
challenge in data organization and movement requiring the
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utility of a range of low-level platform specific features.
The research presented in this paper illustrates how the
OP2 high-level domain specific abstraction framework can
be used to future-proof this key application for continued
high performance on such emerging processor systems. We
charted the conversion of Hydra from its original hand-
tuned production version to one that utilizes OP2, and
mapped out the key difficulties encountered in the process.
Over the course of this process, OP2 enabled the application
of increasingly complex optimizations to the whole code
to achieve near optimal performance. The paper provides
evidence of how OP2 significantly increases developer pro-
ductivity in this task.

Performance results for the code generated with OP2
demonstrate that not only could the same runtime perfor-
mance as that of the hand-tuned original production code
be achieved, but it can be significantly improved on conven-
tional processor systems as well as further accelerated by ex-
ploiting many-core parallelism. We see that OP2’s MPI and
MPI+OpenMP parallelizations achieve about 2 × speedup
when strong-scaled and maintain 15-30% speedup when
weak-scaled over the original implementation on a large
distributed memory cluster system. Running on NVIDIA
GPUs, OP2’s CUDA implementation achieves about 1.5 to 3
× speedups over the Intel Sandy Bridge x86-64 server pro-
cessors and maintains a similar performance advantage over
the CPU cluster implementations when weak-scaling over a
GPU cluster. We also demonstrate that executing Hydra on
both the CPUs and GPUs in a fully-hybrid setting provides
up to 15% speedup over the purely GPU execution and is
primarily bound by load-balancing issues. However the cost
and energy consumption of high-end GPUs is similar to that
of a high-end server CPU.

Some of the key optimizations that affect all back-end
implementations are the use of improved partitioning meth-
ods, mesh renumbering for improved cache locality and
partial halo exchanges. Furthermore, for shared memory
parallelism techniques, we have shown the importance of
optimizing the mini-partition size so as to have a balance
of parallelism and data locality, and we presented further
techniques involving data layout transformations and the
fine-tuning of resource usage to improve performance on
the GPU.

We believe that the future of numerical simulation soft-
ware development is in the specification of algorithms
translated to low-level code by a framework such as OP2.
Such an approach will, we believe, offer revolutionary po-
tential in delivering performance portability and increased
developer productivity. This, we predict, will be an essential
paradigm shift for addressing the ever-increasing complex-
ity of novel hardware/software technologies. The full OP2
source and example benchmark applications are available
as open source software [11] and the developers would
welcome new participants in the OP2 project.
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