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This paper presents a benchmarking, performance analysis and optimization study of the OP2
‘active’ library, which provides an abstraction framework for the parallel execution of unstructured
mesh applications. OP2 aims to decouple the scientific specification of the application from its
parallel implementation, and thereby achieve code longevity and near-optimal performance through
re-targeting the application to execute on different multi-core/many-core hardware. Runtime
performance results are presented for a representative unstructured mesh application on a variety
of many-core processor systems, including traditional X86 architectures from Intel (Xeon based
on the older Penryn and current Nehalem micro-architectures) and GPU offerings from NVIDIA
(GTX260, Tesla C2050). Our analysis demonstrates the contrasting performance between the use of
CPU (OpenMP) and GPU (CUDA) parallel implementations for the solution of an industrial-sized
unstructured mesh consisting of about 1.5 million edges. Results show the significance of choosing
the correct partition and thread-block configuration, the factors limiting the GPU performance and

insights into optimizations for improved performance.
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1. INTRODUCTION

Most scientific parallel programs have been and continue to
be written by exclusively targeting a parallel programming
model or a parallel architecture using extensions to traditional
sequential languages such as Fortran, C or C++. This
approach increases the cognitive load on programmers and
has persisted primarily due to its good performance and
the existence of legacy application software that remains
critical to the production workloads of scientific organizations.
However, the future of such a programming model’s use in an
environment of increasingly complex hardware architecture is
unsustainable. This problem is becoming compounded as the
High Performance Computing (HPC) industry begins to focus
on delivering exascale systems in the next decade. Thus the
current situation is both distracting scientists from investing
their full intellectual capacity in understanding the physical
systems they model, while also hindering their exploitation of
the full capacity of available hardware. It is therefore clear that

a level of abstraction must be achieved so that computational
scientists can increase productivity without having to learn the
intricate details of new architectures.

Such an abstraction enables users to focus on solving
problems at a higher level and not worry about architecture-
specific optimizations. This splits the problem space into (i)
a higher application level, where scientists and engineers
concentrate on solving domain-specific problems and write
efficient code that remains unchanged for different underlying
hardware architectures and (ii) a lower implementation level,
which focuses on how a computation can effectively be made
faster on a given architecture by carefully analysing the data
access patterns. This paves the way for easily integrating support
for any future heterogeneous hardware.

OPlus (Oxford Parallel Library for Unstructured Solvers)
[1], a research project that had its origins in 1993 at the
University of Oxford, provided such an abstraction framework
for performing unstructured mesh-based computations across
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Performance Analysis and Optimization of the OP2 Framework 169

a distributed-memory cluster of processors [2]. OPlus is used
as the underlying parallelization library for Hydra [3–5]—
a production-grade CFD application used in turbomachinery
design at Rolls-Royce plc. OP2 is the second iteration of OPlus
and builds upon the features provided by its predecessor but
develops an ‘active’ library approach with code generation to
exploit parallelism on heterogeneous many-core architectures.

The ‘active’library approach uses programme transformation
tools, so that the user code is transformed into the appropriate
form to be linked against the required parallel implementation
(e.g. MPI, OpenMP, CUDA, OpenCL, AVX etc.) enabling
execution on different target back-end hardware platforms [6].
Currently OP2 includes support for developing unstructured
mesh applications for execution on multi-core and/or multi-
threaded (OpenMP) CPUs and CUDA capable GPUs.

This paper presents a performance evaluation of the cur-
rent OP2 library. Our objective is to provide a contrasting
benchmarking and performance analysis study of a represen-
tative unstructured mesh application (Airfoil [7]) written using
OP2 on a range of systems. These consist of representative
current many-core hardware technologies such as the tradi-
tional X86 architecture systems from Intel and GPU offerings
from NVIDIA. More specifically this paper make the following
contributions:

(i) We present a performance analysis of the Airfoil
unstructured mesh application written using OP2 on
a number of multi-core CPU systems. OP2’s code
transformation framework is used to generate back-
end code targeting multi-threaded executables based on
OpenMP for two current multi-core processor systems:
an Intel Xeon E5462 based on the older ‘Penryn’
micro-architecture and an Intel Xeon E5540 based on
the current Intel ‘Nehalem’ micro-architecture. The
end-to-end run times reported in this study are for
the execution on an industrial-size problem using
an unstructured mesh consisting of about 1.5 million
edges.

(ii) The same Airfoil user source code is used by
OP2’s code generation tools to generate back-end
code based on CUDA to be executed on NVIDIA
GPUs. The runtime performance of this GPU code
is compared against the multi-core, multi-threaded
CPU performance. Performance results are presented
for two GPUs, a GTX 260 consumer card and a
Tesla C2050 based on the new Fermi architecture—
NVIDIA’s current flagship GPU offering.

(iii) Our analysis demonstrates the performance issues that
distinguish the use of CPU and GPU architectures to
execute theAirfoil application. These include the signif-
icance of choosing the correct partition and thread-block
configuration, the factors limiting CPU and GPU per-
formance and insights into optimizations for improved
performance. We implement a number of hardware and

software configurations and optimizations as part of this
exercise for the GPU architecture.

The rest of this paper is organized as follows: Section 2 details
related work in developing abstraction frameworks for multi-
architecture platforms; Section 3 provides a description of the
class of applications supported by OP2 and its API; Section 4
details the OP2 framework and key issues related to parallelizing
unstructured mesh applications; Section 5 and Section 6
present performance figures for the execution of Airfoil on
CPU and GPU systems, respectively, including comparisons
between the two architectures; Section 7 investigates the factors
limiting CPU and GPU performance including comparative
performance on the GPUs for a number of hardware/software
configurations and optimizations. Finally Section 8 concludes
the paper.

2. RELATED WORK

Although OPlus pre-dates it, OPlus and OP2 can be viewed as
an instantiation of the AEcute (access-execute descriptor) [8]
programming model that separates the specification of a
computational kernel with its parallel iteration space, from a
declarative specification of how each iteration accesses its data.
The decoupled Access/Execute specification in turn creates
the opportunity to apply powerful optimizations targeting the
underlying hardware. A number of related research projects
have implemented similar programming frameworks, including
LISZT [9], and the Hybrid Multi-core Parallel Programming
(HMPP) [10] workbench.

The HMPP workbench allows the user to annotate codelets
with HMPP directives that characterize data access in
an aggregate (rather than iteration-specific) manner. The
programme is then processed through the tool-chain, which uses
the hardware vendor specific SDKs to translate it into platform-
specific code. The resulting executable is run under the ‘HMPP
Runtime’, which manages the resources and makes it possible
to run a single binary on various heterogeneous hardware
platforms. HMPP has no specific support for computation on
graphs or unstructured meshes.

LISZT is a domain-specific language (embedded in
Scala [11]) specifically targeting unstructured mesh codes, and
is thus more directly comparable. The aim, as with OP2, is to
exploit information about the structure of data and the nature
of the algorithms in the code, to apply aggressive and platform-
specific optimizations.

To our knowledge, performance figures for the execution
of full scale applications, particularly industrial strength
codes developed using the HMPP workbench, have not been
published. Preliminary performance figures from the LISZT
framework have been presented in DeVito et al. [12]. The
authors report the performance of Joe, a fluid flow unstructured
mesh application using a mesh of 750 K cells. Joe is first ported
to the LISZT framework and the resulting code compared
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170 M.B. Giles et al.

with the original code running on a cluster of 4-socket 6-
core 2.66 GHz Xeon CPUs each with 36 GB RAM per node
using MPI. Both codes demonstrate equivalent performance
illustrating that no performance loss has resulted due to the use
of the LISZT framework. Speed-up figures for the above code
running on a Tesla C2050 (implemented using CUDA) against
an Intel Core 2 Quad, 2.66 GHz processor are also provided,
with results showing a speed-up of about 30× in single precision
arithmetic and 28× in double precision relative to a single CPU
thread.

Related work in the solution of unstructured mesh
applications on GPUs, particularly in the CFD domain have
also appeared elsewhere. In Corrigan et al. [13], techniques
to implement an unstructured mesh solver on GPUs are
described. Implementing three-dimensional Euler equations for
inviscid, compressible flow are considered. Average speed-ups
of about 9.5× are observed during the execution of the GPU
implementation on an NVIDIA Tesla 10 series card against an
equivalent optimized 4-thread OpenMP implementation on a
quad-core Intel Core 2 Q9450.

Similarly [14] reports the GPU performance of a Navier–
Stokes solver for steady and unsteady turbulent flows on
unstructured/hybrid grids. The computations were carried out
on NVIDIA’s GeForce GTX 285 graphics cards (in double
precision arithmetic) and speed-ups up to 46× (vs. a single core
of two Quad Core Intel Xeon CPUs at 2.00 GHz) are reported.

Research in GPU acceleration often cites speed-ups,
relative to a hand-coded CPU implementation—sometimes
even comparing to a single-core. In this paper, we compare
performance on contemporary flagship platforms (NVIDIA
C2050, Intel 8-core Penryn and Nehalem). Our goal with OP2 is
to generate highly-optimized code for X86 multi-core platforms
(via OpenMP and the Intel compiler), as well as for GPUs, from
the same code.

3. BACKGROUND

3.1. Unstructured mesh applications

The geometric flexibility of unstructured grids has proved
invaluable over a wide area of computational science for
solving PDE’s (partial differential equations) including:
CFD (computational fluid dynamics); CEM (computational
electromagnetics); structural mechanics; and general finite
element methods. In three dimensions millions of elements are
often needed for the required solution accuracy, leading to a
large computational cost.

The OPlus approach to the solution of such unstructured
mesh problems involves breaking down the unstructured grid
algorithms into four distinct parts: (i) sets, (ii) data on sets,
(iii) mappings between sets and (iv) operations over sets. These
lead to an API through which one can completely and abstractly
define any mesh or graph.

FIGURE 1. An example mesh with node and edge indices, and
associated data values in parenthesis.

Unstructured meshes, unlike structured meshes, use connec-
tivity information to specify the mesh topology. Depending on
the application, a set can consist of nodes, edges, triangular
faces or other elements. Associated with these sets are data
(e.g. node coordinates, edge weights) and mappings between
sets that define how elements of one set connect with the ele-
ments of another set. Figure 1 illustrates a simple triangular
mesh that we will use as an example to describe the OP2 API.

The mesh illustrated in Fig. 1 can be defined as two sets,
nodes (vertices) and edges, each with their sizes, using the API
as follows:

op_set nodes;

op_decl_set(6, nodes, "nodes");

op_set edges;

op_decl_set(10, edges, "edges");

The connectivity is declared through mappings between the sets.
The integer type array edge_map can be used to represent how
an edge is connected to two different vertices.

int edge_map[20] = {0, 1, 1, 2, 2, 3, 2, 5, 1,

3, 0, 3, 3, 4, 4, 5, 3, 5,

0, 4};

op_map pedge;

op_decl_map(edges,nodes,2,edge_map,pedge,

"pedge");

Each element of edges is mapped to two different elements in
nodes. In our example, an edge_map entry has a dimension
of 2 and thus for example its index 0 and 1 maps edge 0 to
the vertices 0 and 1, index 2 and 3 maps edge 1 to vertices
1 and 2 and so on. Thus the edge_map array define the
connectivity between the two sets. When declaring a mapping
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we first pass the source (e.g. edges) then the destination (e.g.
nodes). We then pass the dimension of each element (e.g. 2;
as edge_map maps each edge to 2 nodes). Once the sets are
defined, various data can be associated with them; the following
are some arrays that contain data associated with edges and
vertices, respectively.

float dEdge[10] = {1.2, 3.2, 2.6, 5.2, 5.7,

1.3, 1.3, 4.3, 4.7, 3.3};

float dNode[6] = {0.7, 0.5, 0.9, 2.5, 1.9,

6.7};

float*dNode_u=(float*)malloc(sizeof(float)*6);

op_dat data_edges;

op_decl_dat(edges, 1, "float", dEdge,

data_edges, "data_edges");

op_dat data_nodes;

op_decl_set(nodes, 1, "float", dNode,

data_nodes, "data_nodes");

op_dat data_nodes_u;

op_decl_dat(nodes,1,"float", dNode_u,

data_nodes_u, "data_nodes_u");

Note that here a single float per set element is declared in this
example. A vector of a number of values per set element could
also be declared (e.g. a vector with three floats per vertex to
store the vertex coordinates).

All the numerically intensive parts of an unstructured mesh
application can be described as operations over sets. Within
a code this corresponds to a loop over a given set, accessing
data through the mapping arrays (i.e. one level of indirection)
performing some arithmetic, then writing (possibly through the
mappings) back to data arrays. If the loop involves indirection
through a mapping, we refer to it as an indirect loop; if not,
it is called a direct loop. The OP2 library provides a parallel
loop declaration syntax that allows the user to declare the
computation over the sets in these loops [15]. For the mesh
illustrated in Fig. 1 a loop over all the edges (where number of
edges, nedge = 10) that updates the nodes can be written in
the following sequential execution loop:

void seq_loop(int nedge, int *edge_map,

float *dEdge, float *dNode,

float *dNode_u)

{

for (int e=0; e<nedge; e++)

dNode_u[edge_map[2*e]] +=

dEdge[e] * dNode

[edge_map[2*e+1]];

}

A user declares this loop using the API as follows together with
a one-edge kernel function. The library handles the architecture
specific parallelization.

FIGURE 2. Rendering of a simple 120 × 60 mesh used in Airfoil.

void kernel(float* e, float* n, float* n_u)

{

*n_u += e[0] * n[0];

}

op_par_loop_3(kernel,"kernel", edges,

dEdge, -1,OP_ID, 1,"float", P_READ,

dNode, 1,pedge, 1,"float", OP_READ,

dNode_u, 0,pedge, 1,"float", OP_INC);

This general decomposition of unstructured algorithms
imposes no restriction on the actual algorithms, it just separates
the components of a code. However, the type of calculations
that can be done using OP2 is restricted to ones where the
order in which elements are processed does not affect the final
result, to within the limits of finite precision floating point
arithmetic. This constraint allows the program to choose its
own order to obtain maximum parallelism. Moreover the sets
and mappings between sets must be static and the operands in
the set operations cannot be referenced through a double level
of mapping indirection (i.e. a mapping to another set, which in
turn uses another mapping to data associated with a third set).

Although it might appear that these restrictions are quite
severe, the straightforward programming interface and I/O
treatment combined with efficient parallel execution makes
it an attractive prospect, if the algorithm to be developed
falls within the scope of OP2. For example, the API could
be used for explicit relaxation methods such as Jacobi
iteration; pseudo-time-stepping methods; multi-grid methods
that use explicit smoothers; Krylov subspace methods with
explicit preconditioning; semi-implicit methods where the
implicit solve is performed within a set member—for example,
performing block Jacobi where the block is across a number
of PDE’s at each vertex of a mesh. However, algorithms based
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on order dependent relaxation methods such as Gauss–Seidel or
ILU (incomplete LU decomposition) lie beyond the capabilities
of the API. These are not fundamental restrictions, but we
believe they help limit the complexity of theAPI, and encourage
programmers to code in a way that can be made efficient.

The example application used in our analysis, Airfoil, is a
non-linear 2D inviscid airfoil code that uses an unstructured
grid [7]. It is a much simpler application than the Hydra [16]
production CFD application used at Rolls-Royce plc. for the
simulation of turbomachinery, but acts as a forerunner for testing
the OP2 library for many core architectures. A rendering of
a smaller (120 × 60) unstructured mesh similar to the one
used in Airfoil is illustrated in Fig. 2. The actual mesh used
in our experiments is of size 1200 × 600, which is too dense
to be reproduced here. This consists of over 720 K nodes,
720 K cells and about 1.5 million edges. The code consists
of five parallel loops: save_soln, adt_calc, res_calc,
bres_calc, update. The most compute intensive loop
res_calc has about 100 floating-point operations performed
per mesh edge and is called 2000 times during total execution
of the application.

4. OP2

The original OPlus library [1] was developed over 10 years
ago for MPI/PVM-based distributed memory execution of
unstructured mesh algorithms written in Fortran. Its second
iteration, OP2, is designed to leverage emerging many-core
hardware (GPUs, AVX etc.) on top of distributed memory
parallelism, allowing the user to execute on either a single multi-
core/many-core node (including large shared memory systems),
or a cluster of multi-core/many core nodes. Currently the OP2
library only supports code development in C/C++. A Fortran
API will be developed later with similar functionality.

Since the OP2 specification provides no description of the
low-level implementation, re-targeting to future architectures
only requires the development of a new code-generation back-
end. The current implementation focuses on CUDA (using the
NVIDIA CUDA programming model [17]) and OpenMP and
will later include code generation for OpenCL and Intel AVX,
thus supporting a wide range of CPU and GPU hardware.
OP2 will also include support for the above to be executed
on distributed memory CPU and GPU clusters in conjunction
with MPI.

FIGURE 3. Sequential build process.

FIGURE 4. CUDA build process.

The OP2 strategy for building executables for different back-
end hardware consists of firstly generating the architecture-
specific code by parsing the user code (which is written using
the OP2API) through a pre-processor and then secondly linking
the generated code with the appropriate parallel implementation
library. Figures 3 and 4 illustrate and contrast the build
process for generating a single-threaded CPU executable
and a CUDA-based executable, respectively. For the single
thread CPU executable, the user’s main program (in this case
jac.cpp) uses the OP header file op_seq.h and is linked
to the OP routines in op_seq.c using g++, controlled
by a Makefile. For the corresponding CUDA executable, the
preprocessor parses the user’s main program and produces a
modified main program and a CUDA file, which includes a
separate file for each of the kernel functions. These are then
compiled and linked to the OP routines in op_lib.cu using
g++ and the NVIDIA CUDA compiler nvcc, again controlled
by a Makefile. The results presented in this paper come
from code produced by a pre-processor written in MATLAB,
which only parses the individual OP2 routine calls. A new
pre-processor is being developed using the ROSE compiler
framework [18]; this will parse the entire user code, allowing
simplification of the API.

4.1. Data dependencies

A key technical difficulty in the parallel execution of
unstructured mesh applications is the data dependency issue
encountered when incrementing indirectly referenced arrays.
Thus, for example, a potential problem arises when two edges
update the same node.A solution at a coarse grained level would
be to partition the nodes such that the owner of the nodal data
would carry out the computation. The drawback in this case is
redundant computation when the two nodes for a particular edge
have different owners.At the finer grained level, we could assign
a ‘colour’ for the edges so that no two edges of the same colour
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update the same node. This allows for parallel execution for
each colour followed by a synchronization. The disadvantage
in this case is a possible loss of data reuse and loss of some
parallelism.A third method would be to use atomic instructions,
which combine read/add/write into a single operation. However,
atomic operations (especially on doubles) are not present on
all the hardware platforms we are interested in (atomics are
an optional extension in OpenCL), and performance varies
between platforms.

The OP2 design addresses the data dependency problems
using the already-mentioned three methods, at three levels of
parallelism. Method 1 will be used in the future at the MPI level.
Given a global mesh with sets and data, OP2 will partition the
data so that the partition within each MPI process owns some
of the set elements, i.e. some of the nodes and edges. These
partitions only perform the calculations required to update their
own elements. However, it is possible that one partition may
need to access data that belong to another partition; in that case,
a copy of the required data are provided by the other partition.
This follows the standard ‘halo’ exchange mechanism used in
distributed memory message passing parallel implementations.
As the partition size becomes larger, the proportion of ‘halo’
data becomes very small.

For distributed memory architectures, the partition size is
large. However, within a CPU or a GPU, operations are to be
performed on a finer granularity on each processing unit. For a
multi-core CPU, the processing units are processor cores (each
based on a traditional heavy-weight core architecture such as
X86 or IBM POWER). For NVIDIA GPUs the processing units
are a number of relatively lightweight stream multiprocessors
(SMs), each consisting of a number of stream processors (SPs)
that share control logic, an instruction cache and a block of
shared memory [17]. The new NVIDIA Fermi architecture also
provides an L1 cache per SM.

To solve the data dependency issue on GPUs, indirect data
from GPU global memory are loaded into each SM’s shared
memory space forming a local mini-partition. Each mini-
partition is assigned to an SM and are executed in parallel.
The SPs within an SM execute the mini-partition by utilizing
a number of threads (called a thread block). Within a thread
block, 32 threads at a time are executed in parallel (32 threads
is called a warp in CUDA).

During the execution of an indirect loop, the loop
receives data from shared memory instead of global memory,
maximizing data reuse and minimizing the traffic between
global memory and shared memory. Thus on the GPU, updating
the same node could occur either (i) by multiple threads within
a single processing unit (an SM) updating data held in its shared
memory (i.e. mini-partition) or (ii) when the result of the shared
memory are written back to the GPU global memory that is used
by other processing units. In OP2 thread, colouring is used for
the former and a block colouring is used for the latter.

Edges are coloured so that two edges with the same colour
never update the same node (see Fig. 5). As a result, the

FIGURE 5. An example colouring of edges.

edges with the same colour can be processed in parallel by
different threads. The colouring is performed very efficiently
in a runtime initialization using a bitwise operation on a 32 bit
integer for each of the edges [15]. Similarly, a block colouring
scheme is used so that results from shared memory, after
processing a mini-partition, are not used by any other mini-
partition being processed simultaneously. On a production grade
CFD application such as Hydra, a single run would consist of
over 100 K blocks, each needing to fit into the shared-memory
of a GPU. Ten colours might be needed to avoid data conflicts,
suggesting up to 10 K blocks per colour.

A similar technique is used for multi-core processors. The
difference is that now, each mini-partition is executed by a
single OpenMP thread. The mini-partitions are coloured to stop
multiple blocks trying to update the same data in the main
memory simultaneously. This technique is simpler than the GPU
version as there is no need for global-local renumbering (for
GPU global memory to shared memory transfer) and no need
for low-level thread colouring.

4.2. Data layout in memory

Another important implementation decision is the data layout
in memory when there are multiple components for each set
element. For example, in our airfoil test-case, each cell has
four flow variables; should these four components be stored
contiguously for each cell (a layout that is sometimes referred to
as an array-of-structs, AoS) or should all of the first components
be stored contiguously, then all of the second components, and
so on (a layout which is sometimes referred to as a struct-of-
arrays, SoA)?

The SoA layout was natural in the past for vector
supercomputers that streamed data to vector processors, but
the AoS layout is natural for conventional cache-based CPU
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architectures. This is because an entire cache line must be
transferred from the memory to the CPU even if only one word
is actually used. This is a particular problem for unstructured
grids with indirect addressing; even with renumbering of the
elements to try to ensure that neighbouring elements in the
grid have similar indices, it is often the case that only a small
fraction of the cache line is used. This problem is worse for
SoA compared with AoS, because each cache line in the SoA
layout contains many more elements than in the AoS layout.
In an extreme case, with the AoS layout each cache line may
contain all of the components for just one element, ensuring
perfect cache efficiency, assuming that all of the components
are required for the computation being performed.

Until recently, NVIDIA GPUs did not have caches and
most applications have used structured grids. Therefore, most
researchers have preferred the SoA data layout, which leads to
natural memory transfer ‘coalescence’giving high performance.
However, the latest NVIDIA GPUs based on the Fermi
architecture have L1/L2 caches with a cache line size of 128
bytes, twice as large as used by Intel in its latest CPUs. This leads
to significant problems with cache efficiency, especially since
there is only 48 kB of local shared memory and so not many
elements are worked on at the same time. Consequently, we
have chosen to use the AoS layout. Our measurements indicate
that this reduces the data transfer between global memory and
the GPU by over 50%. Ensuring good coalescence in the data
transfers requires some more complicated programming, but
that is again a benefit of a library; it takes care of the complexity
rather than burdening the application programmer with it.

5. MULTI-CORE CPU PERFORMANCE

Our first set of experiments is directed at comparing the
performance of Airfoil using OpenMP on a single node
comprising multi core, multi-threaded CPUs. This section
presents the results for single precision performance on the
CPUs. Double precision performance is reported in Section 6.
Table 1 details briefly the specifications of each CPU system
node. The Intel Xeon E5462 (based on the older Intel Penryn
micro-architecture) node consists of two Intel Xeon E5462
quad-core (total of 8 cores) processors operating at 2.8 GHz
clock rate per core and has access to 16 GB of main memory.
The Intel Xeon E5540 processor based node, consist of two
Intel Xeon E5540 quad-core (total of 8 cores) processors
consisting of 2.5 GHz per core clock rate and access to 24 GB
of main memory. These processors are based on Intel’s current
flagship Nehalem micro-architecture and have simultaneous
multi threading (SMT) enabled for the execution of 16 SMT
threads. For brevity and to avoid confusion for the rest of this
paper, the Xeon E5462 will be referred to as the Penryn and the
Xeon E5540 as the Nehalem. The Airfoil code and OP2 was
compiled on both systems using the Intel ICC 11.1 compiler.
The exact compiler flags used are detailed in Table 2. Both CPUs

TABLE 1. CPU node system specifications.

Processor Cores/node Clock rate Memory/node
(GHz) (GB)

Intel Xeon E5462
(Penryn)

8 2.8 16

Intel Xeon E5540
(Nehalem)

8 (16 SMT) 2.5 24

make use of the latest SSE instruction sets capable of execution
on each processor architecture.

As mentioned previously, OpenMP parallelism is achieved by
OP2 on multi-core processors by partitioning the unstructured
mesh assigned to the multi-core node and using one OpenMP
thread for each mini-partition. Colouring is used to stop multiple
mini-partitions interfering with the same data. Thus, a key
parameter in our study will be to investigate the mini-partition
size (from here on referred simply as partition size) that
provides the best runtime for the Airfoil application for a given
unstructured mesh.

Figure 6 presents the total runtime of Airfoil on the Penryn
and Nehalem based nodes, compiled using the ICC compiler, for
a range of partition sizes using up to 16 OpenMP threads. These
experiments were executed at least five times, and the observed
standard deviation in run times were significantly <10%. The
results reported here (and throughout the rest of the paper)
are observed minimum run times. There is only a marginal
difference between the performance of the two systems. Due
to the higher clock rate on the Penryn, it exhibits better single
core (single thread) performance. However, when using all 8
cores, we see about 30% better performance from the Nehalem
with a best runtime of about 42 s on a partition size of 512
(running on 16 OpenMP threads). Regardless of the partition
size, increasing the number of threads from 1 to 8 provides
diminishing returns. Sixteen threads provides an even smaller
performance benefit (if any) as two threads share a core using
SMT. It appears that other factors of multi-core chips may
be limiting their scalability. We have observed a bandwidth
utilization of over 20 GB/s on the Nehalem system during

TABLE 2. CPU Compiler specifications.

System Compiler Flags for ICC 11.1

Intel Xeon E5462 (Nehalem) -parallel -O3 -ipo -vec-report
-xSSE2,SSE3,SSE3,SSE4.1
-funroll-loops

Intel Xeon E5540 (Nehalem) -parallel -O3 -ipo -vec-report
-xSSE2,SSE3,SSE3,SSE4.1,SSE4.2
-funroll-loops
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FIGURE 6. Runtime of Airfoil on the Intel processors Compiled with Intel CC 11.1 with up to 16 OpenMP threads—Single Precision (1000
Iterations).

TABLE 3. GPU node system specifications.

GPU Cores Clk (GHz) Glob. Mem. (GB) Shared Mem./SM (kB) Driver version (Compute Cap.)

GeForce GTX260 216 1.4 0.8 16 3.2 (1.3)
Tesla C2050 448 1.15 3.0 48 3.2 (2.0)

TABLE 4. GPU Compiler specifications.

System Compiler Flags for nvcc (nvcc built using gcc 4.4.5)

GTX260 -O3 -arch=sm_13 -Xptxas -Xptxas=-v
-dlcm=ca -use_fast_math

Tesla C2050 -O3 -arch=sm_20 -Xptxas -Xptxas=-v
-dlcm=ca -use_fast_math

the execution of Airfoil. Given that the maximum available
bandwidth of these processors is about 25 GB/s [19], the code
appears to be saturating the processor’s bandwidth capacity.
We investigate memory bandwidth utilization in more detail
later in Section 7.

6. GPU PERFORMANCE

Next, we explore the performance of the Airfoil code on two
NVIDIA GPUs—the consumer grade GTX260 and the HPC-
capable Tesla C2050 based on NVIDIA’s current Fermi GPU
architecture. The OP2 code transformation framework in this
case generates CUDA code to be executed on the GPUs. Table 3
details the specifications of each system. The host CPU for the
GTX260 is an AMD Athlon X2 dual core processor at 2 GHz,
while for the Tesla the host is a quad-core Intel Xeon E5530
processor operating at 2.4 GHz. In both GPU systems NVIDIA’s
CUDA/C compiler nvcc was built using the GNU C compiler

4.4.5, which in turn is also used for compiling the host (non-
gpu) code. The final column of Table 3 details the NVIDIA
driver version used for each GPU and the compute capability.
The compiler flags used for nvcc are detailed in Table 4.

Figure 7 presents the total runtime of Airfoil (for single
precision arithmetic) on the two NVIDIA cards. For these
runs the number of CUDA threads allocated per mini-partition
provides an additional configuration parameter. The GTX260
could only execute (mini-) partition sizes up to 256 due to
its limited memory. The GTX260 performs only about two
times slower than the Tesla C2050 per core due to their
comparable single precision floating-point performance. The
best performance—about 12 s—on the C2050 is achieved at a
partition size of 256 running a thread-block size of 256. This is
a speed-up of just over 3.5× compared with the Intel Nehalem
processor system’s performance on 16 OpenMP threads.

Given the mesh size, we can approximately compute
the single precision floating point performance achieved on
both the Nehalem and the C2050 during the most compute
intensive loop, res_calc. The mesh consists of ∼1.5 million
edges each responsible for 100 floating-point operations in
res_calc. This routine is in turn called 2000 times giving
30 × 1010 floating-point operations in total. The best total
time spent in the res_calc loop on the CPU (8 cores with
SMT on) executing single-precision arithmetic is about 21 s.
This translates to about 14 GFlops per second on the Intel
Nehalem processor based system. The best total time spent in
the res_calc loop on the Tesla C2050 is about 7.5 s. This is
about 40 GFlops per second. Thus we see that only a fraction
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FIGURE 7. Runtime of Airfoil on NVIDIA GPUs on a range of partition sizes and thread-block size configurations—Single Precision (1000
Iterations).

FIGURE 8. Runtime of Airfoil on Intel Xeon E5540 (Nehalem) and NVIDIA Tesla C2050—Double Precision (1000 Iterations).

of the peak single-precision floating-point performance on the
GPU is achieved [20].

A key concern in determining whether GPUs are suitable
for main-stream HPC and production scientific work is how
their performance compares against the traditional processors
when executing double precision floating-point codes. As this
has been an increasing concern for the adoption of GPUs,
NVIDIA has invested heavily in improved double-precision
floating-point performance on their current Fermi based GPUs.
The key benchmarking study for us therefore is to investigate
the Airfoil execution in double-precision. Figure 8 details the
double precision performance of Airfoil on the Intel Nehalem
and Tesla C2050. The results demonstrate a speed-up of just over
2.5× on the Tesla C2050 (23 s) compared with the best runtime
on the Intel Nehalem system (60 s). The total best runtimes spent
in theres_calc loop executing double precision mathematics
is 28 and 13 s, respectively, for 8 Nehalem cores and the C2050,
respectively. This translates to a double precision floating-point
performance of about 11 GFlops/s on the Nehalem and about
23 GFlops/s on the C2050.

Best overall runtimes according to Fig. 8 are achieved when
the problem is configured to be executed with a partition size of

512 on the Nehalem and a partition size of 256 using a thread
block size of 256 on the C2050. However, breaking down the
runtime into the time taken by the five parallel loops reveals
that the optimum partition size and the thread block size differs
for each loop. Thus for example, the res_calc routine runs
best when configured with a partition size of 256 and a thread
block of 256 on the C2050, while bres_calc is optimized
at a partition size of 64 and a thread block of 64. Recall that
mini-partitions are only used in indirect loops (to avoid conflicts
due to data dependencies); the partition size parameter has no
meaning in direct loops.

Similar behaviour can be observed for the Nehalem runs.
Thus it is apparent that further runtime improvements could
be gained by simply configuring each parallel loop to be
executed on its optimum partition size and thread block size
settings. The ability to infer the optimum configuration could
be gained through historical runtime observation, through a
performance model or utilizing an auto-tuning mechanism. We
are currently investigating the implementation of an auto-tuning
mechanism within OP2. At the moment, the overall partition
and block size parameters have a default value set during
compile time, but these can be overridden at runtime using
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TABLE 5. Best runtimes (double precision) for each parallel
loop in Airfoil.

Loop Part. Time (S) BW (GB/s)

Nehalem
save_soln 2.62 24.57
adt_calc 64 14.80 8.75
res_calc 512 28.11 14.52
bres_calc 64 0.17 4.35
update 10.70 21.07

Total 56.40

Loop Part. Block. Time (S) BW (GB/s)

C2050
save_soln 128 0.80 80.68
adt_calc 256 256 3.60 45.20
res_calc 256 256 13.14 19.20
bres_calc 64 64 0.12 6.18
update 128 4.41 50.10

Total 22.07

command-line arguments. For indirect loops both partition size
and thread block size can be overridden. For direct loops only
the thread block size is overridden, as partition size is not used.
However, our experiments with different thread block sizes have
demonstrated only a very weak effect on the run times of direct
loops in Airfoil.

7. PERFORMANCE ANALYSIS AND OPTIMIZATION

Considering the best execution time for each parallel loop the
total runtime for theAirfoil code on the Nehalem is about 56.4 s,
while for the C2050 this is about 22.07 s. Table 5 details the
time for each loop in conjunction with their observed memory
bandwidth utilization for this case. The bandwidth figures were
obtained by counting the total amount of data transferred with
global memory during the execution of a parallel loop and
dividing it by the runtime of the loop. Currently, only the total
amount of useful data transferred is counted. In the future, this
will be augmented to include bandwidth utilization due to cache
line loading for specific CPU/GPU architectures.

As mentioned before, from observing the memory bandwidth
figures on the Nehalem, it is apparent that during the most
time-consuming parallel loop (res_calc) over 50% of
the maximum available bandwidth (25.6 GB/s [19]) on the
processor is utilized. Other loops such as update get much
closer to saturating the available memory bandwidth on the
CPU. Thus we suspect that the memory bandwidth of the
single node system may become the bottleneck limiting future
thread scalability of multi-core CPUs. The memory bandwidth

utilization on the Tesla C2050 also comes close to the available
upper limit of 144 GB/s [20], on save_sol but remains
relatively low on res_calc suggesting that the higher
compute intensity of this loop eases bandwidth saturation.
Alternatively, there may be poor cache line efficiency; so the
amount of data actually transferred is higher than indicated.

Given that each element on the unstructured mesh could
be computed independently, it is not surprising that the GPU
architecture outperforms the traditional multi-core processors.
But it is interesting that only about 3.5× speed-up is achieved
in single precision and only about 2.5× speed-up gained in
double precision. One potential cause may be due to the cost
of integer pointer arithmetic in computing indirect references
in unstructured mesh computations. As there is no separate
integer pipeline on the simple GPU cores, an integer operation
costs as much as a floating-point operation (at least in single
precision).

The remainder of this paper investigates further the
performance of the Airfoil code in an attempt to uncover
insights into optimizing the OP2 framework. We target the GPU
architecture for our analysis/efforts in order to demonstrate
the expert techniques required to maintain performance
on this emerging architecture. Our goal is to demonstrate
that using a framework such as OP2 does not sacrifice
performance improvements that can be gained by low-level
optimizations/configurations available for a target back-end
architecture. At the same time, we demonstrate the significant
benefits of such a framework that generates these improvements
without the intervention of the application programmer.

7.1. Thread colouring

We first quantify the performance degradation due to the thread
colouring discussed in Section 4.1. Recall that colouring is
required to avoid data dependency conflicts while executing
indirect loops on both the CPU and GPU. However, the use
of thread colouring when updating data arrays in the GPU
implementation leads to a reduction in parallelism as there are
only a few active threads within each CUDA warp. To assess
the impact of this, we can turn off the colouring (which can
be done with negligible reimplementation effort); note that the
values that are then computed will be incorrect due to the data
dependencies.

Column 3 of Table 6 presents the percentage performance
difference when the Tesla C2050 executes the Airfoil code
without thread colouring. Note that thread colouring is
not applicable for direct loops. The maximum performance
difference is in the res_calc loop, which execute 23% faster
without thread colouring. The overall performance difference
is about 14%, which suggests that there may be further room
for improvement of the thread colouring implementation for the
GPU architecture.
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TABLE 6. C2050: Effect of thread colouring and L1 cache.

Loop Original time (S) Colouring OFF L1 OFF
(% diff) (% diff)

save_soln 0.80 n/a −6.47
adt_calc 3.60 1.37 −4.87
res_calc 13.14 23.52 −1.91
bres_calc 0.12 2.41 −3.16
update 4.41 n/a −2.97

Total 22.07 14.43 −2.78

7.2. The L1 cache on the C2050

The inclusion of an L1 cache per SM is an important addition
to the NVIDIA GPU architecture. Column 4 of Table 6
presents the performance difference of the runtime when L1
is switched off (negative values represents worse performance).
The performance effects appear to be minor, due to the fact that
the current OP2 library utilize the shared memory block per SM
during the execution of indirect loops such as res_calc. For
the solution of production grade codes such as Hydra on GPUs
the number of registers per thread required will significantly
increase causing register spillage into global memory. Thus we
believe that in the long term the L1 cache is probably best left
unused so that the memory can instead be used for register
spillage in place of the slower global memory. This is a particular
feature of the Fermi GPU and the above results reveal that the
current OP2 implementation is already well optimized to handle
such a scenario.

7.3. Improving indirect and direct loop execution

In this final section, we implement two optimizations to improve
the performance of the execution of direct and indirect loops
and explore their performance. For direct loops, OP2 does not
need to handle dependency issues and set data used in them are
currently fetched directly from global memory of the GPU. Thus
utilizing shared memory for direct loops could provide some
performance gains, particularly when the L1 cache is switched
off. This forms our first optimization.

On the other hand, recall that the execution of indirect
loops on the GPU is done by firstly loading indirect data
from GPU global memory into an SM’s shared memory. The
second optimization looks into the benefits of using a different
thread numbering scheme to achieve improved coalescence for
fetching data from GPU global memory in to shared memory.

Figure 9 illustrates the current and optimized thread
numbering schemes in relation to the execution of res_calc.
The global data array consists of the indirectly accessed data
that is used in the computation within res_calc where—
as mentioned in Section 4.2—each element consists of four

TABLE 7. C2050: Optimized direct and indirect loops.

Loop Original time (S) L1 ON L1 OFF
(% diff) (% diff)

save_soln 0.80 26.29 26.22
adt_calc 3.60 3.28 −1.15
res_calc 13.14 12.10 11.71
bres_calc 0.12 13.98 15.14
update 4.41 15.44 15.55

Total 22.07 11.85 10.92

floating-point values representing the pressure (P), velocities in
the two dimensions (u, v) and density (d). The data used within
a particular mini-partition of the unstructured mesh are scattered
across the GPU global memory as illustrated in the figure. The
current implementation utilizes one thread per element to access
the data. Thus thread 0 will access all four values, P, u, v, d of
the first element, thread 1 will access all four values, P, u, v, d

of the next element and so on. Such an access pattern causes
a performance loss due to strided memory fetches by each
thread. The optimized version will use a different thread (up
to the maximum number of threads in the thread block with
wrap around) per floating-point value to fetch data. Now, each
element is copied as a single coalesced memory access in to the
shared memory, followed by a call to __synchthreads for
synchronizing the threads.

Table 7 details the combined performance gains of both the
earlier-mentioned optimizations. The percentage improvement
over the original implementation is reported both with and
without the L1 cache. We see over 25 and 15% performance gain
for the direct loops save_soln and update, respectively,
while the indirect loops res_calc and bres_calc shows
about 11 and 15% gains, respectively. The effect of the L1 cache
remains negligible.

We believe that further improvements could be made to
indirect and direct loops. Future work will look into the use
of the float4 data type to load four floating-point values
directly to registers within an SM bypassing the shared memory
and removing the __synchthreads statement to eliminate
thread synchronization overheads. Padding the shared memory
to avoid memory bank conflicts when a CUDA warp accesses
shared memory will also be investigated.

8. CONCLUSIONS

We have presented an early performance analysis of the OP2
‘active’ library, which provides an abstraction framework for
the solution of unstructured mesh applications. OP2 aims to
decouple the scientific specification of the application from
its parallel implementation to achieve code longevity and
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FIGURE 9. Indirect loop optimization.

near-optimal performance through re-targeting the back-end
to different hardware. OP2’s code transformation framework
was used to generate back-end code for a significant CFD
application, targeting multi-threaded executables based on
OpenMP and NVIDIA CUDA. The performance of this code
was benchmarked during its solution of a mesh consisting of 1.5
million edges on Intel multi-core/multi-threaded CPUs (Penryn
and Nehalem) and NVIDIA GPUs (GTX260 and Tesla C2050).

Performance results show that for this application the Tesla
C2050 performs about 3.5× and 2.5× better in single precision
and double precision arithmetic, respectively, compared with
two high-end Intel quad-core processors executing 16 OpenMP
threads. These results suggest competitive performance by the
GPUs for this class of applications at a production level, but we
have also highlighted key concerns, such as memory bandwidth
limitations on multi-core/many core architectures at increasing
scale, which can limit the achievable performance.

Finally, we presented performance comparisons for a number
of low-level hardware and software re-configurations and
optimizations on the GPU architecture. Our efforts demonstrate
the skilled techniques needed to maintain performance on an
emerging architecture such as GPUs and point to the significant
benefits of utilizing the OP2 expert framework which does
this for novice programmers developing unstructured mesh
applications.

The full OP2 source and theAirfoil test case code are available
as open source software [6] and the developers would welcome
new participants in the OP2 project.
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