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Adjoint recovery of superconvergentfunctionals from approximate solutionsof partial di�erential equationsNiles A. Pierce Michael B. GilesMotivated by applications in computational uid dynamics, we present amethod for obtaining estimates of integral functionals, such as lift or drag,that have twice the order of accuracy of the computed ow solution on whichthey are based. This is achieved through error analysis which uses an ad-joint p.d.e. to relate the local errors in approximating the ow solution tothe corresponding global errors in the functional of interest. Numerical eval-uation of the local residual error together with an approximation solution tothe adjoint equations may thus be combined to produce a correction for thecomputed functional value that yields twice the order of accuracy.Numerical results are presented for the Poisson equation in one and twodimensions, and the nonlinear quasi-one-dimensional Euler equations. Thesuperconvergence in these cases is as predicted by the a priori error analysispresented in the appendix. The theory is equally applicable to nonlinearequations in complex domains in multiple dimensions, and the technique hasgreat potential for application in a range of engineering disciplines in whicha few integral quantities are a key output of numerical approximations.Subject classi�cations: AMS(MOS): 65G99,76N15Key words and phrases: partial di�erential equations, adjoint equations, error analysisThis research was supported by EPSRC under grant GR/K91149.Oxford University Computing LaboratoryNumerical Analysis GroupWolfson BuildingParks RoadOxford, England OX1 3QD December, 1998
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31 IntroductionIn aeronautical applications of computational uid dynamics (CFD), engineers desirevery accurate predictions of the lift and drag, which are de�ned by integrals over theentire surface of the wing or aircraft being considered [24]. They are also interestedin the details of the ow �eld in general, but to a lesser degree of accuracy since themain purpose is to understand the qualitative nature of the ow (e.g. is there a strongshock which is producing an extensive ow separation?) in order to make design changeswhich will improve the lift or drag. Other areas of CFD analysis also have a particularinterest in a few key integral quantities, such as total production of nitrous oxides incombustion modeling, or the net seepage of a pollutant into an aquifer when modelingsoil contamination.Integral quantities are important in other disciplines as well. In electrochemical sim-ulations of the behavior of sensors, the quantity of interest is the total current owinginto an electrode [1]. In electromagnetics, radar cross-section calculations are concernedwith the scattered �eld emanating from an aircraft. The amplitude of the wave propa-gating in a particular direction can be evaluated by a convolution integral over a closedsurface surrounding the aircraft [7, 23]. Similar convolution integrals are used in theanalysis of multi-port electromagnetic devices such as microwave ovens and EMR bodyscanners to evaluate radiation, transmission and reection coe�cients which characterizethe behavior of the device.In structural mechanics, one is sometimes concerned with the total force or momentexerted on a surface [26], but more often the quantities of most concern are point quan-tities such as the maximum stress or temperature. Because integral quantities can beapproximated with much greater accuracy, Babu�ska and Miller developed a techniqueusing an auxiliary function to represent a point quantity by an equivalent integral [3].The same technique could be used in other applications in which it is point quantities,rather than integral quantities, which are of most importance.Regardless of the area of application, when integral functionals based on approximatep.d.e. solutions are of signi�cant interest, it is worth considering approaches for enhanc-ing the accuracy of these functional approximations. The question to be addressed in thepresent work is the following: given an approximate solution to a p.d.e. with boundaryconditions, how do errors in the solution a�ect the accuracy of an integral functional,and how can these functional errors be estimated and used to obtain a more accuratefunctional approximation?The key is the solution of the adjoint p.d.e. with inhomogeneous terms appropriateto the functional of interest. We show that it is the adjoint solution which relates theresidual error in the primal p.d.e. solution (as measured by the extent to which thenumerical solution fails to satisfy the p.d.e.) to the consequent error in the computedvalue of the functional. Numerical approximations of the adjoint solution and primalresidual errors can then be used to correct the error in the functional and obtain anew estimate which is superconvergent in that the remaining error is proportional to theproduct of the errors in the primal and adjoint solutions.



4 The analysis is closely related to superconvergence results in the �nite element liter-ature [3, 4, 5, 6, 12, 23, 25, 26, 29]. The key distinction is that the adjoint error correctionterm that is evaluated to obtain superconvergence is zero in a large class of �nite ele-ment methods. Thus, these methods automatically produce superconvergent results forany integral functional without requiring the computation of an approximate adjointsolution. From a �nite element perspective, this paper can therefore be viewed as ex-tending superconvergence theory to cover numerical results obtained by any numericalmethod: �nite di�erence, �nite volume or �nite element without natural superconver-gence. Moreover, we show that the adjoint recovery technique in this paper can also beused to improve the order of accuracy of the superconvergent functionals obtained from�nite element methods.We begin by describing the approach for linear problems including simple examplesof its application to the Poisson equation in one and two dimensions. To illustrate theapplicability of the theory to numerical results obtained by any discretization method,the one-dimensional solutions are obtained using a �nite di�erence method, whereasthe two-dimensional results are based on a �nite element discretization. These two-dimensional results demonstrate both the natural superconvergence of the �nite elementmethod and the additional orders of accuracy resulting from adjoint error analysis.Next, we present the approach for nonlinear problems with examples of its use forthe quasi-1D Euler equations, a coupled system of three nonlinear o.d.e.'s describinginviscid compressible ow in a variable area duct. The examples include cases with asonic point at which there is a change in direction of one of the hyperbolic characteristics,and a shock at which there is a discontinuity in the ow �eld. For these cases, numericalresults are obtained using a �nite volume method typical of those used in aeronauticalCFD calculations.We conclude by discussing the di�culties and prospects for extending the theory andits implementation to nonlinear p.d.e.'s in multiple dimensions on domains of arbitraryshape.2 Linear analysisLet u be the solution of the linear di�erential equationLu = f;on the domain 
, subject to homogeneous boundary conditions for which the problemis well-posed when f 2 L2(
). The adjoint di�erential operator L� and associatedhomogeneous boundary conditions are de�ned by the identity(v; Lu) = (L�v; u);for all u, v satisfying the respective boundary conditions. Here the notation (:; :) denotesan integral inner product over the domain 
.



5Suppose now that we are concerned with the value of the functional J=(g; u), for agiven function g 2 L2(
). An equivalent dual formulation of the problem is to evaluatethe functional J=(v; f), where v satis�es the adjoint equationL�v = g;subject to the homogeneous adjoint boundary conditions. The equivalence of the twoforms of the problem follows immediately from the de�nition of the adjoint operator.(v; f) = (v; Lu) = (L�v; u) = (g; u):Digressing slightly, we note that the dual formulation of the problem is exploitedin optimal design [17, 18], in which there is only one function g, corresponding to theobjective function in the design optimization, but there are multiple functions f , eachcorresponding to a di�erent geometric design parameter. Therefore, the dual approachis computationally much more e�cient since since each design cycle requires just oneadjoint calculation whereas the direct approach would require one calculation for eachdesign variable. The existence of adjoint solution methods for design purposes [2, 9,19, 27] means that in many cases, the building blocks are already in place for rapidexploitation of the error correction ideas in this paper.Returning to the subject at hand, suppose that uh and vh are approximations to uand v, respectively, and satisfy the homogeneous boundary conditions. The subscript hdenotes that the approximate solutions are derived from numerical computations usinga grid with average spacing h. When using �nite di�erence or �nite volume methods,uh and vh might be created by interpolation through computed values at grid nodes.With �nite element solutions, one might more naturally use the �nite element solutionsthemselves, or one could again use an interpolation through nodal values. A last com-ment is that uh and vh do not have to come from a numerical computation; they could,for example, come from an asymptotic analysis yielding a uniformly valid asymptoticapproximation to the solution.Let the functions fh and gh be de�ned byLuh = fh; L�vh = gh:It is assumed that uh and vh are su�ciently smooth that fh and gh lie in L2(
). If uhand vh were equal to u and v, then fh and gh would be equal to f and g. Thus, theresidual errors fh�f and gh�g are a computable indication of the extent to which uhand vh are not the true solutions.Now, using the de�nitions and identities given above, we obtain the following ex-pression for the functional:(g; u) = (g; uh)� (gh; uh�u) + (gh�g; uh�u)= (g; uh)� (L�vh; uh�u) + (gh�g; uh�u)= (g; uh)� (vh; L(uh�u)) + (gh�g; uh�u)= (g; uh)� (vh; fh�f) + (gh�g; uh�u):



6 The �rst term in the �nal expression is the value of the functional obtained fromthe approximate solution uh. The second term is an inner product of the residual errorfh�f and the approximate adjoint solution vh. The adjoint solution gives the weight-ing of the contribution of the local residual error to the overall error in the computedfunctional. Therefore, by evaluating and subtracting this adjoint error term we obtaina more accurate value for the functional.The third term is the remaining error after making the adjoint correction. If gh�g isof the same order of magnitude as vh�v then the remaining error has a bound which isproportional to the product kuh�uk kvh�vk (using L2 norms), and thus the correctedfunctional value is superconvergent. If the solution errors uh�u and vh�v are both O(hp),so that halving the grid spacing leads to a 2p reduction in the errors, then the error inthe functional is O(h2p). Furthermore, the remaining error term can be expressed as(g�gh; L�1(f�fh)) and so has the computable a posteriori error bound,jErrorj � kL�1k kfh�fk kgh�gk;with kL�1k being assumed to be �nite due to wellposedness.If uh and vh are taken to be the �nite element solutions obtained from a Galerkin�nite element method (or more generally any �nite element method for which the testand trial spaces for the primal problem are interchanged to become the trial and testspaces for the adjoint problem) the adjoint correction term is always zero because ofthe orthogonality arising from the weak formulation of the �nite element discretization.Thus, the values of all integral functionals are automatically superconvergent. However,if the operator L involves derivatives of up to degree m, then usually fh�f = O(hp�m)and hence the error in any functional is O(h2p�m). This loss of accuracy is due to a lackof smoothness in the �nite element solution. If a smoother interpolated solution can berecovered from the �nite element solution, then there is a possibility of using the adjointerror correction to recover an improved functional estimate whose error is O(h2p). Thiswill be demonstrated in the second of the two examples to follow.To conclude this section, we return to the topic of boundary conditions. For simplicityin presenting the analysis, we have assumed that the primal problem has homogeneousboundary conditions, and that the functional is simply an inner product of the wholedomain and does not have a boundary integral term. More generally, inhomogeneousboundary conditions and boundary integrals in the functional are both permissible. In-homogeneous boundary conditions for the primal problem lead to a boundary integralterm for the adjoint formulation, and similarly a boundary integral in the primal form ofthe functional leads to inhomogeneous adjoint boundary conditions. Although the anal-ysis is slightly more complicated, the �nal form of the adjoint error correction is exactlythe same as before, provided the approximate solutions uh and vh still exactly satisfythe inhomogeneous boundary conditions. If they do not, then there is an additionalcorrection term to account for this error.



73 Two linear examples3.1 1D �nite di�erence calculationThe �rst example is the one-dimensional Poisson equation,d2udx2 = f;on the unit interval [0; 1] subject to homogeneous boundary conditions u(0)=u(1)=0.This is approximated numerically on a uniform grid, with spacing h, using a secondorder �nite di�erence discretization,h�2�2xuj = f(xj):The approximate solution uh(x) is then de�ned by cubic spline interpolation throughthe nodal values uj.The dual problem is the Poisson equation,d2vdx2 = g;subject to the same homogeneous boundary conditions, and the approximate adjointsolution vh is obtained in exactly the same manner.Numerical results have been obtained for the casef = x3(1�x)3; g = sin(�x):Figure 1 shows the residual error fh�f when h = 132 , as well as the three Gaussianquadrature points on each sub-interval which are used in the numerical integration ofthe inner product (vh; fh�f). Since uh is a cubic spline, fh � d2uhdx2 is continuous andpiecewise linear. The best piecewise linear approximation to f has an error whosedominant term is quadratic on each sub-interval; this explains the scalloped shape ofthe residual error. Figure 2 shows the approximate adjoint solution vh, which revealsthat the residual error in the center of the domain contributes most to the overall errorin the functional.Figure 3 depicts a log-log plot of three quantities versus the number of cells: theerror in the base value of the functional (g; uh); the remaining error after subtractingthe adjoint correction term (vh; ff�f); the a posteriori error bound kL�1k kfh�fk kgh�gk.The superimposed lines have slopes of �2 and �4, con�rming that the base solution issecond order accurate while the error in the corrected functional and the error boundare both fourth order. It is also worth noting that on a grid with 16 cells, which mightbe a reasonable choice for practical computations, the error in the corrected value of thefunctional is over 200 times smaller than the uncorrected error.
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103.2 2D �nite element calculationThe second example is the two-dimensional Poisson equation,r2u = f;on the unit square [0; 1]� [0; 1] subject to homogeneous Dirichlet boundary conditions.The dual problem is r2v = g;with the same boundary conditions.For this example, the equations are approximated using a Galerkin �nite elementmethod with piecewise bilinear elements on a uniform Cartesian grid. Recalling that inthe present case, p = m = 2, �nite element error analysis reveals that the solution errorfor the primal problem is O(h2) with a corresponding residual error that is O(1). The in-herent superconvergence of the �nite element method thus yields a computed functionalthat is O(h2). However, by using bi-cubic spline interpolation through the computednodal values, one can reconstruct an improved approximate solution uh(x; y) with anerror which is O(h2) in the H2 Sobolev norm, and hence has a residual error which isalso O(h2). Using a similarly reconstructed approximate adjoint solution vh(x; y), theadjoint error correction term then produces a corrected functional whose accuracy isO(h4). All inner product integrals are approximated by 3�3 Gaussian quadrature oneach square cell to ensure that the numerical quadrature errors are of a higher order.Figure 4 shows the numerical results obtained for the functionsf(x; y) = x(1�x) y(1�y); g(x; y) = sin(�x) sin(�y):The ordinate is the log of the number of cells in each dimension, and lines of slope �2and �4 are again superimposed. As predicted by the analysis, the base error in thefunctional is second order while the corrected functional error and the error bound areagain both fourth order.4 Nonlinear analysisFor nonlinear problems, the conceptual approach is very similar, but the mathematicalpresentation becomes somewhat more involved. Let u be the solution of the nonlineardi�erential equation N(u) = f;subject to appropriate boundary conditions, and let the functional of interest, J(u), bean integral of a nonlinear algebraic function of u over the domain 
.The linear di�erential operator Lu is de�ned to be the Fr�echet derivative of N ,Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;



11and, similarly, the function g(u) is de�ned by the identity(g(u); ~u) � lim�!0 J(u+ �~u)� J(u)� :The corresponding linear adjoint problem is thenL�uv = g;subject to the appropriate homogeneous adjoint boundary conditions.We now consider approximate solutions uh; vh and de�ne fh; gh byN(uh) = fh; L�uhvh = gh:Note the use of L�uh , the Fr�echet derivative based on uh which is known, instead of L�ubased on u which is not known.In addition, the analysis requires averaged Fr�echet derivatives L(u;uh) and g(u; uh)de�ned by L(u;uh) = Z 10 Lju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u))d�;so that N(uh)�N(u) = Z 10 @@�N(u+ �(uh�u)) d�= L(u;uh) (uh�u);and similarly J(uh)�J(u) = (g(u; uh); uh�u):We then obtain the following result:J(u) = J(uh)� (g(u; uh); uh�u)= J(uh)� (gh; uh�u) + (gh�g(u; uh); uh�u)= J(uh)� (L�uhvh; uh�u) + (gh�g(u; uh); uh�u)= J(uh)� (vh; Luh(uh�u)) + (gh�g(u; uh); uh�u)= J(uh)� (vh; L(u;uh)(uh�u)) + (gh�g(u; uh); uh�u)� (vh; (Luh�L(u;uh))(uh�u))= J(uh)� (vh; N(uh)�N(u)) + (gh�g(u; uh); uh�u)� ((L�uh�L�(u;uh))vh; uh�u)= J(uh)� (vh; fh�f) + (gh�g(u; uh); uh�u)� ((L�uh�L�(u;uh))vh; uh�u)



12The �rst term in the �nal line is again the functional evaluated using the approximatesolution uh. The second term is again a computable adjoint error correction term whichis an inner product of the residual error and the approximate adjoint solution. The lasttwo terms form the remaining error in the corrected functional.The third term is similar to the remaining error term in the linear case, while thefourth term is associated with the nonlinearity in the operator N(u). If the solutionerrors for the nonlinear primal problem and the linear adjoint problem are of the sameorder, and they are both su�ciently smooth that the corresponding residual errors arealso of the same order, then the order of accuracy of the functional approximation aftermaking the adjoint correction is twice the order of the primal and adjoint solutions.An a posteriori error bound is harder to construct than in the linear case. Splittingthe remaining error into three pieces,Error = (gh�g(uh); uh�u) + (g(uh)�g(u; uh); uh�u)� ((L�uh�L�(u;uh))vh; uh�u);we can obtain asymptotic error bounds by converting each inner product into an alter-native representation which is asymptotically equivalent and has a computable bound.With the �rst inner product we have(gh�g(uh); uh�u) � (gh�g(uh); L�1u (fh�f)):For the second, we de�ne Gu to be the Fr�echet derivative of g(u),Gu~u = lim�!0 g(u+ �~u)� g(u)� ;and then obtain(g(uh)�g(u; uh); uh�u) � 12(Gu(uh�u); uh�u)� 12(L� �1u GuL�1u (fh�f); fh�f):For the third inner product, we de�ne the operator Hu;v asHu;v~u = lim�!0 L�u+�~uv � L�uv� ;so that ((L�(u;uh)�L�uh)vh; u�uh) � 12(Hu;v(u�uh); u�uh)� 12(L� �1u Hu;vL�1u (f�fh); f�fh):Together, these give the approximate asymptotic boundj Error j � c1kfh�fk kgh�g(uh)k+ c2kfh�fk2;where c1 = kL�1u k; c2 = 12 L� �1u (Hu;v�Gu)L�1u  :The problem in evaluating this a posteriori error bound is that c1 and c2 will not beknown in general, and may be hard to bound analytically. A more practical option maybe to estimate them computationally based on the corresponding discrete operators.



135 Nonlinear �nite volume examplesThe steady quasi-1D Euler equations describe the ow of an inviscid, compressible idealgas in a variable area duct. The functional of interest is the integral of the pressurealong the duct, which serves as a model for the computation of lift and drag on airfoilsin two dimensions, and wings and aircraft in three dimensions.The unsteady quasi-1D Euler equations in conservative form areA@U@t + @@x(AF )� dAdx P = 0;where A(x) is the cross-sectional area of the duct and U , F and P are de�ned asU = 0@ ��q�E 1A ; F = 0@ �q�q2 + p�qH 1A ; P = 0@ 0p0 1A :Here, � is the density, q is the velocity, p is the pressure, E is the total energy and H isthe stagnation enthalpy. The system is closed by the equation of state for an ideal gasH = E + p� = p( � 1)� + 12q2;where  is the ratio of speci�c heats.The unsteady quasi-1D Euler equations are a hyperbolic system with three charac-teristic wave speeds, q, q+c and q�c, with c=pp=� being the local speed of sound.Accordingly, the nature of the steady ow solution varies depending on whether the owis subsonic (M<1) or supersonic (M>1), where M � q=c is the Mach number. In orderof increasing di�culty, we will consider the subsonic, isentropic transonic and shockedtransonic ows depicted in terms of Mach number in Fig. 5.Steady ow solutions are obtained by marching the nonlinear unsteady system toa steady state using a standard second order �nite volume method with characteristicsmoothing on a uniform computational grid. The linear adjoint problem is approximatedby linearizing the nonlinear ow equations, constructing the analytic adjoint equationsand boundary conditions, and then forming a discrete approximation to these on thesame uniform grid as the ow solution [18, 2]. Previous research has con�rmed that thisproduces a consistent approximation to the analytic adjoint solution which has beendetermined in closed form for the quasi-1D Euler equations [14].The approximate solution uh(x) is constructed from the discrete ow solution bycubic spline interpolation of the cell-centered values of the three components of thestate vector U (except in the shocked case to be described later). The ow residual fh isthen formed using analytic derivatives of this reconstruction. The approximate adjointsolution vh(x) is also obtained by cubic spline interpolation of the cell-centered values ofthe three components of the discrete adjoint solution. The integrals which form the basevalue for the functional and the adjoint correction are then approximated using 3-pointGaussian quadrature.
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18geneous boundary conditions and boundary integral terms in the functional. Given thatmany researchers are developing adjoint solvers because of their importance in optimaldesign, there is the potential for rapid exploitation of this error correction technique ina variety of engineering applications in which integral functionals are of interest.In cases where the functional is a point quantity, the above theory could be appliedusing a distribution function for g. However, the loss of smoothness in g will oftenresult in a poorer order of accuracy for the approximate adjoint solution vh, leading to aconsequent reduction in the order of accuracy of the corrected functional. To circumventthis di�culty, it may be possible to follow the approach of inner and outer matchedasymptotic expansions, to combine an approximate analytic near-�eld solution with acomputed far-�eld solution. Alternatively, one could use the technique of Babu�ska andMiller [3] to convert the point quantity into an equivalent integral representation.A number of challenges will arise in applying the theory to more complex nonlinearproblems in multiple dimensions. For curved boundaries, the computational domaincovered by a grid is only an approximation to the true domain and so there may becomplications in extending the numerical solution to cover the full domain. Likewise,there is the problem of ensuring that the approximate solution uh exactly satis�es theboundary conditions imposed on the analytic solution u. Otherwise, an additional ad-joint correction term associated with the residual error in the boundary conditions mustbe computed. In multiple dimensions, the functionals of interest are often boundaryintegrals rather than integrals over the whole domain. The formulation must then bemodi�ed by the introduction of inhomogeneous boundary conditions in the adjoint prob-lem [13].Possibly the biggest challenge in multiple dimensions will be the treatment of dis-continuities and singularities. In one dimension, reconstructive shock-�tting is relativelystraightforward, but in multiple dimensions it will likely prove infeasible, especially whenthere are shock junctions. A more practical approach may be to use local grid re�ne-ment at the shock to reduce its width to O(h2) where h is the average cell width in therest of the grid. In this way, it may be possible to ensure that the error from the shockregion is of the same order as the error from the rest of the domain. Similarly, there aresingularities in the adjoint Euler equations in multiple dimensions [13] which will needto be well resolved to achieve the desired superconvergence in the corrected functional.This leads to the whole topic of optimal grid adaptation [6, 25, 29, 11]. The magnitudeof the adjoint error correction term (vh; fh�f) is minimized by adapting the grid in theregions in which the product vTh (fh�f) is largest. Alternatively, if grid adaptation is tobe used in conjunction with adjoint error correction then the remaining error is perhapsbest minimized by adapting the grid where the residual errors fh�f and gh�g are largest.We conclude this paper with an open question. As discussed earlier in presentingthe linear approach, Galerkin �nite element methods automatically provide superconver-gent estimates of order h2p�m for integral functionals with su�ciently smooth weightingfunctions. From this result it can be deduced that the solution error is O(h2p�m) whenmeasured in an appropriate negative Sobolev norm. The question is under what condi-tions it is possible to reconstruct from the �nite element solution a smoother approximatesolution uh for which the residual error is also O(h2p�m), leading to an adjoint error cor-
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22Appendix A A priori error analysisBefore beginning the analysis, we begin with a few comments on notation. Bold type(e.g. u) denotes a vector of discrete quantities at the nodes of a computational grid, anddiscrete operators acting on such data. Regular type is used for continuous functionsand di�erential operators. u(xh) denotes the discrete data obtained by evaluating thefunction u(x) at the grid nodes whose coordinates are xh.All norms, both discrete and continuous, are L2 norms. In addition, the notationO(hp) when used in a context such asuh = u(xh) +O(hp);means that there exists a constant c such thatkuh�u(xh)k � c hp;or, equivalently, uh 2 B(u(xh); chp), where the ball B(u; �) is de�ned asB(u; �) = fw : kw�uk � �g :A.1 Linear Poisson equationsIn this section we analyse the accuracy of the approximate primal and adjoint solutionsfor the 1D and 2D Poisson equations, and derive an a priori error estimate proving thatthe error in the functionals after applying the adjoint error correction is fourth order.In both problems there is a linear p.d.e,Lu = f;which is approximated on a uniform grid with spacing h by a �nite di�erence equation,Lhuh = h:The purpose of the �rst part of the analysis is to bound the discrete solution error,kuh�u(xh)k, where u(xh) denotes the discrete data obtained by evaluating the analyticsolution u(x) at the coordinates of the computational grid.The �rst two lemmas establish key properties of both the 1D �nite di�erence ap-proximation and the 2D �nite element discretisation.Lemma 1 For f 2 C4(
), there exists a function � 2 C2(
) and constant c1, bothindependent of h, such thatLhu(xh)�h = h2�(xh) + r(1)h ; kr(1)h k � c1h4;and Lh �u(xh)� h2w(xh)��h = r(2)h ; kr(2)h k � c1h4;



23where w2C4(
) is the solution to the p.d.e.Lw = �;subject to the given homogeneous boundary conditions.Proof The function � is easily found through a Taylor series expansion of the solution u aboutthe central node in the discrete operator. The bounds on r(1)h and r(2)h are then found usingappropriate truncated Taylor series expansions.In the 1D case, this results in � = � 112 d2fdx2 ;and c1 = 7720 max ����d4fdx4 ���� ;�Lemma 2 There exists a constant c2, independent of h, such thatkL�1h k � c2Proof For uniform grids on a unit interval in 1D, or a unit square in 2D, the eigenfunctionsof Lh are Fourier modes and so a precise bound is easily established.In the 1D case, h� 12 and hencekL�1h k = �h2�2sin2 ��h2 � � 18 :� From these two results we can prove the following lemma regarding the error in thenumerical solution.Lemma 3 The discrete solution uh can be written asuh = u(xh)� h2w(xh) + r(3)h ;where the function w(x) is as de�ned in Lemma A.1 and the remainder term r(3)h isbounded by kr(3)h k � c1c2h4;with the constants c1; c2 as de�ned in Lemmas A.1 and A.2.



24Proof Lemma A.1 gives Lhr(3)h = �r(2)h ;and the result then follows immediately from the de�nitions of c1 and c2. �The �nal step is to consider the errors introduced by the cubic spline interpolation ofthe discrete solution uh and the corresponding discrete adjoint solution vh, and therebyestablish the order of accuracy of the corrected functional.Lemma 4 For the approximate solutions uh(x) and vh(x) obtained by cubic spline in-terpolation of uh and vh, respectively, the solution errors uh�u and vh�v and the residualerrors fh�f and gh�g are all O(h2) and(gg�g; uh�u) = O(h4):Proof Using standard results from the theory of cubic spline interpolation one can prove thatuh(x) = u(x)� h2w(x) +O(h4);and r2uh = r2u� h2r2w +O(h2);and so the solution error uh�u and the residual error fh�f are both second order. The sameargument applies to the adjoint problem and the �nal result then follows from the Cauchy-Schwartz inequality. �As well as proving the fourth order accuracy of the corrected functional in these twoparticular cases, this proof serves as a template for proving superconvergence in otherapplications with linear p.d.e.'s. Proving a property corresponding to Lemma A.1 withthe appropriate powers of h will usually be relatively easy; note that this will require f(and g in the adjoint problem) to satisfy certain smoothness constraints. Establishinga uniform bound on the inverse operator, as in Lemma A.2, will usually be a muchharder task, similar to proving coercivity in �nite element analyses. The �nal step ofinterpolation error analysis may also be troublesome in some cases; in the error analysisfor the quasi-1D Euler equations using piecewise linear interpolation we will see thedi�culties that can arise.A.2 Nonlinear quasi-1D Euler equationsIn this section we consider the subsonic test case and establish the fourth order accuracyof the corrected functional using both cubic spline and piecewise linear interpolation.The analysis is split into three parts. In the �rst, the existence and uniqueness ofsecond order accurate solutions to the nonlinear equations is proved under speci�edconditions, following the theoretical approach of Keller [20] and Sanz-Serna et al [22,28]. The second part analyses the error in the adjoint solution, and then the �nal partconsiders the errors introduced by the interpolation and proves that each of the termsin the remaining error for the functional is fourth order in magnitude.



25A.2.1 Nonlinear a priori error analysisThe nonlinear quasi-1D Euler equations,N(u) = 0;with appropriate boundary conditions, are approximated by the nonlinear �nite di�er-ence equations Nh(uh) = 0:We de�ne the di�erential operator Lw to be the Fr�echet derivative of N evaluated at w,and the discrete operator Lw to be the Fr�echet derivative of Nh evaluated at w. Wealso, for convenience, use the shorthand Lu to represent Lu(xh).We will assume that the nonlinear discretisation has the following properties:Property 1: there exists a constant c1, independent of h, such thatkNh(u(xh))k � c1h2Property 2: There exists a constant c2, independent of h, such thatL�1u  � c2:Property 3: There exists a constant c3, independent of h, such thatkLw � Luk � 12c2 ;for any w 2 B(u(xh); c3h).If the duct area A(x) is su�ciently smooth (A 2 C2(
)), Properties 1 and 2 are easilyproved for the �nite volume scheme which was used to obtain the numerical results inthis paper. Property 2 is much more di�cult to establish, but it is thought it could beproved by following the approach of Kreiss [21]. The key steps in the proof would be toshow that the p.d.e. is wellposed, the discretisation of the p.d.e. is consistent and strictlydissipative on the interior, and the discretisation of the boundary conditions is stable inthe sense of Godunov and Ryabenkii [15, 16].Given these three properties, the objective is to use the Fixed Point Theorem to provethat the nonlinear �nite di�erence equations have a unique solution uh which is secondorder accurate. A preliminary lemma is required to prepare for the main theorem.Lemma 5 If w(1)h ;w(2)h 2 B(u(xh); c3h), thenL�1u �Nh(w(2)h )�Nh(w(1)h )�Lu(w(2)h �w(1)h )� � 12 w(2)h �w(1)h  :



26Proof dd� nNh �w(1)h + �(w(2)h �w(1)h )�o = Lw(1)h +�(w(2)h �w(1)h )(w(2)h �w(1)h );and so,Nh(w(2)h )�Nh(w(1)h )�Lu(w(2)h �w(1)h ) =�Z 10 �Lw(1)h +�(w(2)h �w(1)h ) �Lu� d�� (w(2)h �w(1)h ):The desired result then follows from Properties 2 and 3 and the convexity of the ballB(u(xh); c3h).�Theorem 6 There exist constants c4; h0 > 0, such that if h < h0 then the nonlinearequations Nh(uh) = 0;have a unique solution uh 2 B(u(xh); c4h2).Proof Let c4=2c1c2; h0=c3=c4, and consider the mappingT : T (u) = u�L�1u Nh(u):If h<h0 then c4h2 � c3h and so, from Lemma 5T (w(2))�T (w(1)) � 12kw(2)�w(2)k;for any w(1);w(2) 2 B(u(xh); c4h2). Also, for any w 2 B(u(xh); c4h2),kT (w)�u(xh)k � kT (w)�T (u(xh))k + kT (u(xh))�u(xh)k� 12kw�u(xh)k+ kL�1u Nh(u(xh))k� c4h2;using Properties 1 and 2.Thus, T is a contraction mapping of B(u(xh); c4h2) into itself, and so by the Fixed PointTheorem [8] there exists a unique �xed point uh 2 B(u(xh); c4h2) for which T (uh)=uh andhence Nh(uh)=0. �A.2.2 Error analysis for adjoint solutionIn this section we will assume throughout that h�h0 so that the nonlinear solution uhis known to exist and satisfy the error bounds given in the last section.Given an approximate solution uh of the nonlinear p.d.e. through an interpolationof the discrete solution uh, our objective in this section is to analyse the di�erencevh�v(xh). Here v is the solution of the di�erential equationL�uv = g(u);



27subject to homogeneous boundary conditions, where Lu and g(u) are the Fr�echet deriva-tives based on u, as de�ned in the main text. vh is the solution of the correspondinglinear �nite di�erence equations L�uhvh = gh;with L�uh and gh both based on the discrete solution uh. The analysis will also involvethe discrete operator L�u, which again is a shorthand for L�u(xh)We will assume that the adjoint discretisation has the following three properties.Property 1: There exists a function � 2C0(
) such thatL�uhv(xh)� gh = h2�(xh) +O(h3);and L�uh �v(xh)� h2w(xh)�� gh = O(h3);where w2C1(
) is the solution to the linear p.d.e.L�uw = �;subject to homogeneous boundary conditions.Property 2: There exists a uniform bound c5, independent of h, such thatkL� �1u k � c5:Property 3: There exists a constant c6, independent of h, such thatL�uh � L�u � 12c5 ;when uh 2 B(u(xh); c6h).For the �nite volume method which was used to obtain the numerical results, it isfairly easy to derive the function � in Property 1 if A2C2(
). Establishing the boundson r(1)h and r(2)h is straightforward but tedious. Property 2 is again be the hardest toprove. Property 3 is easily established; its signi�cance is that it is required for thefollowing preparatory lemma.Lemma 7 There exists a constant h1>0 such that, for h<h1,kL� �1uh k � 2c5:



28Proof De�ne D = L�uh � L�u and let h1 = minfh0; c6=c4g so that if h < h1, then uh 2B(u(xh); c4h2) � B(u(xh); c6h). Hence, using Properties 2 and 3,kDk � 12c5 ; kL� �1u Dk � 12 :I+L� �1u D is therefore non-singular, and k(I+L� �1u D)�1k � 2. It follows that L�uh = L�u+D =L�u(I+L� �1u D) is non-singular, andkL� �1uh k � k(I+L� �1u D)�1k kL� �1u k � 2c5:� Having �nished these preliminaries, we come to the main result of this section.Lemma 8 Under the conditions of Lemma 7, and for h<h1,vh = v(xh)� h2w(xh) +O(h3):Proof Follows immediately from Property 1 and Lemma 7. �A.2.3 Interpolation and functional errorsIf one uses cubic spline interpolation to construct the approximate solutions uh and vh,then the analysis from the previous sections together with standard interpolation erroranalysis for cubic spline interpolation lead to error bounds of the following form.kuh�uk � d1h2;kvh�vk � d2h2;dvhdx � dvdx � d3h2:The error in the functional after the adjoint error correction can be split into three in-ner products: (g(u)�g(u; uh); uh�u), (gh�g(u); uh�u), �(L�uh�L�(u;uh))vh; uh�u�. TheFr�echet derivative of g(u) is continuous and �nite at all values of the analytic solutionu(x), and so there exists a constant d4 such thatkg(u)�g(u; uh)k � d4kuh�uk;and hence j(g(u; uh)�g(u); u�uh)j � d4d21h4:Considering the second of the inner products,gh�g(u) = L�uhvh � L�uv= (L�uh�L�u)vh + L�u(vh�v);



29by bounding the di�erences in the coe�cient matrices in L�uh and L�(u;uh), which dependon uh and u, and using the second order bounds on uh�u, vh�v and dvhdx�dvdx , one obtainsa bound of the form kgh�g(u)k � d5h2;and hence j(gh�g(u); uh�u)j � d5d1h4:Turning to the �nal inner product, by again bounding the di�erences in the coe�cientmatrices in L�uh and L�(u;uh), one obtains a bound of the form(L�uh�L�(u;uh))vh � d6kuh�uk;and hence ����(L�uh�L�(u;uh))vh; uh�u���� � d6d21h4:This completes the a priori analysis proving the fourth order accuracy of the correctedfunctionals in the subsonic ow case when using cubic spline interpolation. When usingpiecewise linear interpolation, some of the above analysis has to be modi�ed becausethere is now a �rst order error in dvhdx . Consequently, at �rst sight it appears that thebound on the second inner product will become third order rather than fourth. However,numerical results show that the second inner product term remains fourth order. Toexplain this behaviour requires careful attention to the nature of the error introducedby piecewise linear interpolation.The starting point is the earlier result thatvh = v(xh)� h2w(xh) +O(h3):De�ning Ih to be the operator performing piecewise linear interpolation through thenodal values of a continuous function, and de�ning I to be the identity operator, thenvh = v � h2w + (Ih�I)v +O(h3):Next, we use standard results to express the interpolation error (Ih�I)v as(Ih�I)v = q(x) +O(h3);where q(x) is a function which on the interval [xj; xj+1] isq(x) = 12aj(x� xj)(x� xj+1);with aj de�ned as aj = �1h  dvdx ����xj+1 � dvdx ����xj! :Hence, dvhdx = dvdx + l(x) +O(h2);



30where l(x) on the open interval (xj; xj+1) isl(x) = aj(x�xj+1=2);so l(x) is antisymmetric about xj+1=2, the midpoint of the interval.When this error representation is substituted into the second inner product errorterm, the component involving l(x) is of the form(Cl; uh�u);where C(x) is a matrix function which has a bounded derivative. Therefore, C(x) canbe decomposed into a dominant part C0 which is constant on each subinterval, plus aremainder which is O(h).Also, the interpolation error uh�u can be decomposed into a dominant part r(x)which, like q(x), is zero at nodes, piecewise quadratic and O(h2), plus a remainder whichis O(h3).The key observation is that the inner product involving all of the leading orderterms, (C0l; r), is zero because on each subinterval the product (C0l)T r is anti-symmetricabout the midpoint of the interval. All of the other inner product contributions involveintegrals of products which are O(h4). Therefore, by bounding all of these one arrivesat the result that j(gh�g(u); uh�u)j is still O(h4). This concludes the proof that thecorrected functional value is fourth order accurate even when using linear interpolation.


