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Adjoint recovery of superconvergent
functionals from approximate solutions
of partial differential equations

Niles A. Pierce Michael B. Giles

Motivated by applications in computational fluid dynamics, we present a
method for obtaining estimates of integral functionals, such as lift or drag,
that have twice the order of accuracy of the computed flow solution on which
they are based. This is achieved through error analysis which uses an ad-
joint p.d.e. to relate the local errors in approximating the flow solution to
the corresponding global errors in the functional of interest. Numerical eval-
uation of the local residual error together with an approximation solution to
the adjoint equations may thus be combined to produce a correction for the
computed functional value that yields twice the order of accuracy.

Numerical results are presented for the Poisson equation in one and two
dimensions, and the nonlinear quasi-one-dimensional Euler equations. The
superconvergence in these cases is as predicted by the a priori error analysis
presented in the appendix. The theory is equally applicable to nonlinear
equations in complex domains in multiple dimensions, and the technique has
great potential for application in a range of engineering disciplines in which
a few integral quantities are a key output of numerical approximations.
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1 Introduction

In aeronautical applications of computational fluid dynamics (CFD), engineers desire
very accurate predictions of the lift and drag, which are defined by integrals over the
entire surface of the wing or aircraft being considered [24]. They are also interested
in the details of the flow field in general, but to a lesser degree of accuracy since the
main purpose is to understand the qualitative nature of the flow (e.g. is there a strong
shock which is producing an extensive flow separation?) in order to make design changes
which will improve the lift or drag. Other areas of CFD analysis also have a particular
interest in a few key integral quantities, such as total production of nitrous oxides in
combustion modeling, or the net seepage of a pollutant into an aquifer when modeling
soil contamination.

Integral quantities are important in other disciplines as well. In electrochemical sim-
ulations of the behavior of sensors, the quantity of interest is the total current flowing
into an electrode [1]. In electromagnetics, radar cross-section calculations are concerned
with the scattered field emanating from an aircraft. The amplitude of the wave propa-
gating in a particular direction can be evaluated by a convolution integral over a closed
surface surrounding the aircraft [7,23]. Similar convolution integrals are used in the
analysis of multi-port electromagnetic devices such as microwave ovens and EMR body
scanners to evaluate radiation, transmission and reflection coefficients which characterize
the behavior of the device.

In structural mechanics, one is sometimes concerned with the total force or moment,
exerted on a surface [26], but more often the quantities of most concern are point quan-
tities such as the maximum stress or temperature. Because integral quantities can be
approximated with much greater accuracy, Babuska and Miller developed a technique
using an auxiliary function to represent a point quantity by an equivalent integral [3].
The same technique could be used in other applications in which it is point quantities,
rather than integral quantities, which are of most importance.

Regardless of the area of application, when integral functionals based on approximate
p.d.e. solutions are of significant interest, it is worth considering approaches for enhanc-
ing the accuracy of these functional approximations. The question to be addressed in the
present, work is the following: given an approximate solution to a p.d.e. with boundary
conditions, how do errors in the solution affect the accuracy of an integral functional,
and how can these functional errors be estimated and used to obtain a more accurate
functional approximation?

The key is the solution of the adjoint p.d.e. with inhomogeneous terms appropriate
to the functional of interest. We show that it is the adjoint solution which relates the
residual error in the primal p.d.e. solution (as measured by the extent to which the
numerical solution fails to satisfy the p.d.e.) to the consequent error in the computed
value of the functional. Numerical approximations of the adjoint solution and primal
residual errors can then be used to correct the error in the functional and obtain a
new estimate which is superconvergent in that the remaining error is proportional to the
product of the errors in the primal and adjoint solutions.



The analysis is closely related to superconvergence results in the finite element liter-
ature [3,4,5,6,12,23,25,26,29]. The key distinction is that the adjoint error correction
term that is evaluated to obtain superconvergence is zero in a large class of finite ele-
ment methods. Thus, these methods automatically produce superconvergent results for
any integral functional without requiring the computation of an approximate adjoint
solution. From a finite element perspective, this paper can therefore be viewed as ex-
tending superconvergence theory to cover numerical results obtained by any numerical
method: finite difference, finite volume or finite element without natural superconver-
gence. Moreover, we show that the adjoint recovery technique in this paper can also be
used to improve the order of accuracy of the superconvergent functionals obtained from
finite element methods.

We begin by describing the approach for linear problems including simple examples
of its application to the Poisson equation in one and two dimensions. To illustrate the
applicability of the theory to numerical results obtained by any discretization method,
the one-dimensional solutions are obtained using a finite difference method, whereas
the two-dimensional results are based on a finite element discretization. These two-
dimensional results demonstrate both the natural superconvergence of the finite element
method and the additional orders of accuracy resulting from adjoint error analysis.

Next, we present the approach for nonlinear problems with examples of its use for
the quasi-1D FEuler equations, a coupled system of three nonlinear o.d.e.’s describing
inviscid compressible flow in a variable area duct. The examples include cases with a
sonic point at which there is a change in direction of one of the hyperbolic characteristics,
and a shock at which there is a discontinuity in the flow field. For these cases, numerical
results are obtained using a finite volume method typical of those used in aeronautical
CFD calculations.

We conclude by discussing the difficulties and prospects for extending the theory and
its implementation to nonlinear p.d.e.’s in multiple dimensions on domains of arbitrary
shape.

2 Linear analysis
Let u be the solution of the linear differential equation

Lu=f,
on the domain €2, subject to homogeneous boundary conditions for which the problem
is well-posed when f € Ly(Q2). The adjoint differential operator L* and associated
homogeneous boundary conditions are defined by the identity

(v, Lu) = (L*v, u),

for all u, v satisfying the respective boundary conditions. Here the notation (.,.) denotes
an integral inner product over the domain 2.



Suppose now that we are concerned with the value of the functional J= (g, u), for a
given function g € Ly(2). An equivalent dual formulation of the problem is to evaluate
the functional J= (v, f), where v satisfies the adjoint equation

L'v =g,

subject to the homogeneous adjoint boundary conditions. The equivalence of the two
forms of the problem follows immediately from the definition of the adjoint operator.

(v, f) = (v, Lu) = (L*v,u) = (g, u).

Digressing slightly, we note that the dual formulation of the problem is exploited
in optimal design [17,18], in which there is only one function g, corresponding to the
objective function in the design optimization, but there are multiple functions f, each
corresponding to a different geometric design parameter. Therefore, the dual approach
is computationally much more efficient since since each design cycle requires just one
adjoint calculation whereas the direct approach would require one calculation for each
design variable. The existence of adjoint solution methods for design purposes [2,9,
19,27] means that in many cases, the building blocks are already in place for rapid
exploitation of the error correction ideas in this paper.

Returning to the subject at hand, suppose that u; and v, are approximations to u
and v, respectively, and satisfy the homogeneous boundary conditions. The subscript h
denotes that the approximate solutions are derived from numerical computations using
a grid with average spacing h. When using finite difference or finite volume methods,
up, and v, might be created by interpolation through computed values at grid nodes.
With finite element solutions, one might more naturally use the finite element solutions
themselves, or one could again use an interpolation through nodal values. A last com-
ment is that u; and v, do not have to come from a numerical computation; they could,
for example, come from an asymptotic analysis yielding a uniformly valid asymptotic
approximation to the solution.

Let the functions f; and g, be defined by

Lup = fn, L*v, = gp.

It is assumed that u, and vy, are sufficiently smooth that f, and g, lie in Ly(€2). If uy
and v, were equal to u and v, then f, and g, would be equal to f and g. Thus, the
residual errors f,—f and g, —g are a computable indication of the extent to which wuy,
and v;, are not the true solutions.

Now, using the definitions and identities given above, we obtain the following ex-
pression for the functional:

(9,u) (9, un) — (gn, un—2) + (gn—g, un—1)

= (g,un) — (L*vp,up—u) + (gh—g, up—u)

(9, un) — (vn, L(up—u)) + (gn— g, un—u)

(9,un) — (vn, fo— 1) + (gh—g, un—u).



The first term in the final expression is the value of the functional obtained from
the approximate solution u;,. The second term is an inner product of the residual error
frn—f and the approximate adjoint solution v,. The adjoint solution gives the weight-
ing of the contribution of the local residual error to the overall error in the computed
functional. Therefore, by evaluating and subtracting this adjoint error term we obtain
a more accurate value for the functional.

The third term is the remaining error after making the adjoint correction. If g,—g is
of the same order of magnitude as v, —v then the remaining error has a bound which is
proportional to the product ||uj—u|| ||vp—v|| (using Ly norms), and thus the corrected
functional value is superconvergent. If the solution errors u,—u and v,—v are both O(h?),
so that halving the grid spacing leads to a 2P reduction in the errors, then the error in
the functional is O(h*). Furthermore, the remaining error term can be expressed as
(9—gn, L™ (f— fr)) and so has the computable a posteriori error bound,

|[Error| < |7 [ fa— | lgn—gll,

with ||L7!]| being assumed to be finite due to wellposedness.

If u, and vy, are taken to be the finite element solutions obtained from a Galerkin
finite element method (or more generally any finite element method for which the test
and trial spaces for the primal problem are interchanged to become the trial and test
spaces for the adjoint problem) the adjoint correction term is always zero because of
the orthogonality arising from the weak formulation of the finite element discretization.
Thus, the values of all integral functionals are automatically superconvergent. However,
if the operator L involves derivatives of up to degree m, then usually f,—f = O(h?™™)
and hence the error in any functional is O(h**~™). This loss of accuracy is due to a lack
of smoothness in the finite element solution. If a smoother interpolated solution can be
recovered from the finite element solution, then there is a possibility of using the adjoint
error correction to recover an improved functional estimate whose error is O(h?). This
will be demonstrated in the second of the two examples to follow.

To conclude this section, we return to the topic of boundary conditions. For simplicity
in presenting the analysis, we have assumed that the primal problem has homogeneous
boundary conditions, and that the functional is simply an inner product of the whole
domain and does not have a boundary integral term. More generally, inhomogeneous
boundary conditions and boundary integrals in the functional are both permissible. In-
homogeneous boundary conditions for the primal problem lead to a boundary integral
term for the adjoint formulation, and similarly a boundary integral in the primal form of
the functional leads to inhomogeneous adjoint boundary conditions. Although the anal-
ysis is slightly more complicated, the final form of the adjoint error correction is exactly
the same as before, provided the approximate solutions u; and v, still exactly satisfy
the inhomogeneous boundary conditions. If they do not, then there is an additional
correction term to account for this error.



3 Two linear examples

3.1 1D finite difference calculation

The first example is the one-dimensional Poisson equation,

P
dx?

=1

on the unit interval [0, 1] subject to homogeneous boundary conditions u(0) =u(1)=0.
This is approximated numerically on a uniform grid, with spacing h, using a second
order finite difference discretization,

h=*dqu; = f(x;).

The approximate solution wu () is then defined by cubic spline interpolation through
the nodal values u,;.
The dual problem is the Poisson equation,

d*v

@:9,

subject to the same homogeneous boundary conditions, and the approximate adjoint
solution vy, is obtained in exactly the same manner.
Numerical results have been obtained for the case

f=a*1-2)% g = sin(7x).

Figure 1 shows the residual error f, —f when h = 3%, as well as the three Gaussian
quadrature points on each sub-interval which are used in the numerical integration of
the inner product (v, fn — f). Since uy, is a cubic spline, fj, = d;;; is continuous and
piecewise linear. The best piecewise linear approximation to f has an error whose
dominant term is quadratic on each sub-interval; this explains the scalloped shape of
the residual error. Figure 2 shows the approximate adjoint solution v, which reveals
that the residual error in the center of the domain contributes most to the overall error
in the functional.

Figure 3 depicts a log-log plot of three quantities versus the number of cells: the
error in the base value of the functional (g, u); the remaining error after subtracting
the adjoint correction term (v, f;—f); the a posteriori error bound |||/ || fui—f 1] llgn—9]|-
The superimposed lines have slopes of —2 and —4, confirming that the base solution is
second order accurate while the error in the corrected functional and the error bound
are both fourth order. It is also worth noting that on a grid with 16 cells, which might
be a reasonable choice for practical computations, the error in the corrected value of the
functional is over 200 times smaller than the uncorrected error.




- 16 Residual Error

* % (Gauss points ‘

) ) |

P
P

<D
<D

_

-2 I I I I
0 0.2 0.4 0.6 0.8 1

X

Figure 1: Residual error for 1D Poisson equation.
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Figure 2: Adjoint solution for 1D Poisson equation.
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Figure 3: Functional error convergence for 1D Poisson equation.
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Figure 4: Functional error convergence for 2D Poisson equation.
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3.2 2D finite element calculation

The second example is the two-dimensional Poisson equation,
Viu = f,

on the unit square [0, 1] x [0, 1] subject to homogeneous Dirichlet boundary conditions.
The dual problem is
Vv =g,

with the same boundary conditions.

For this example, the equations are approximated using a Galerkin finite element
method with piecewise bilinear elements on a uniform Cartesian grid. Recalling that in
the present case, p = m = 2, finite element error analysis reveals that the solution error
for the primal problem is O(h?) with a corresponding residual error that is O(1). The in-
herent superconvergence of the finite element method thus yields a computed functional
that is O(h?). However, by using bi-cubic spline interpolation through the computed
nodal values, one can reconstruct an improved approximate solution wuy(z,y) with an
error which is O(h?) in the H? Sobolev norm, and hence has a residual error which is
also O(h?). Using a similarly reconstructed approximate adjoint solution vy (z,y), the
adjoint error correction term then produces a corrected functional whose accuracy is
O(h"). All inner product integrals are approximated by 3 x 3 Gaussian quadrature on
each square cell to ensure that the numerical quadrature errors are of a higher order.

Figure 4 shows the numerical results obtained for the functions

flz,y) =z(1—2)y(l—y), g(x,y) = sin(mwz) sin(my).

The ordinate is the log of the number of cells in each dimension, and lines of slope —2
and —4 are again superimposed. As predicted by the analysis, the base error in the
functional is second order while the corrected functional error and the error bound are
again both fourth order.

4 Nonlinear analysis

For nonlinear problems, the conceptual approach is very similar, but the mathematical
presentation becomes somewhat more involved. Let u be the solution of the nonlinear
differential equation

N(u) = f,

subject to appropriate boundary conditions, and let the functional of interest, .J(u), be
an integral of a nonlinear algebraic function of u over the domain €.
The linear differential operator L, is defined to be the Fréchet derivative of N,

Ly i = lim €)= N(w)
e—0 €




and, similarly, the function ¢g(u) is defined by the identity

(g(u),u) = lim J(u+et) - J(u)

e—0 €

The corresponding linear adjoint problem is then

Lv=g,

u

subject to the appropriate homogeneous adjoint boundary conditions.

We now consider approximate solutions uy, vy, and define f,, g, by

N(un) = fn, Ly, vh = gn.

11

Note the use of Ly, , the Fréchet derivative based on u; which is known, instead of Lj

based on u which is not known.

In addition, the analysis requires averaged Fréchet derivatives Z(u,uh) and g(u,up)

defined by
B 1
L(u,uh) = /0 L|’u,+0 'Ufh* ) d@,
1
Gl up) = / g+ B(uup —11))do,
0
so that
Lo
N(up)=N(u) = gV (u+ 0(un—u)) df
0

z(u,uh) (Uh - U),

and similarly
I (un) = J (u) = (9(u, un), un—u).
We then obtain the following result:

J(w) = J
J

(U Uh) Up— U)
L up—u) + (g —g(u, up), up—u)

(un) — (g
(un) = (gn
(un) — (L, vhs un—u) + (gn—g(u, up), up—u)
(un) = (
(un) = (

Up,

Up,

i
~ S

Vhy Luy, (up—u)) + (gn —g(u, up), up—u)

Up, L
Uh,f (uyun) (Un =) + (gh—G(u, up), up—u)

|
<

Up

- (Uha (Luh _z(u,uh)) (uh _U))

= J(up) — (v, N(up)—N(w)) + (gn—9(u, up), up—u)

%

- ((L'Zh_z(u uh))vh’uh_u)
= J(un) = (on, fo=F) + (g0 =, un), un—1) = (L, =Ly )00y tin— 1)
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The first term in the final line is again the functional evaluated using the approximate
solution uy. The second term is again a computable adjoint error correction term which
is an inner product of the residual error and the approximate adjoint solution. The last
two terms form the remaining error in the corrected functional.

The third term is similar to the remaining error term in the linear case, while the
fourth term is associated with the nonlinearity in the operator N(u). If the solution
errors for the nonlinear primal problem and the linear adjoint problem are of the same
order, and they are both sufficiently smooth that the corresponding residual errors are
also of the same order, then the order of accuracy of the functional approximation after
making the adjoint correction is twice the order of the primal and adjoint solutions.

An a posteriori error bound is harder to construct than in the linear case. Splitting
the remaining error into three pieces,

Error = (gn—g(un), un—u) + (g(un) =g (t, un), un—u) = (L, = L)) Ons tn—1),

we can obtain asymptotic error bounds by converting each inner product into an alter-
native representation which is asymptotically equivalent and has a computable bound.
With the first inner product we have

(9n—g(un), upn—u) = (gn—g(un), Ly (fn—1))-
For the second, we define G, to be the Fréchet derivative of g(u),

G 1 200 0) — g(0)

e—0 €

and then obtain

(Gy(up—u), up—u)
(L 'GuL, ' (fa— 1), fa— 1)

For the third inner product, we define the operator H, , as

(9(un) =g(u, up), up—u) =~

~
~

1
2
1
2

LY v—L*
H, i = lim M,
’ e—0 €
so that
LWLy HuoLy, (f=fu)s f— )

Together, these give the approximate asymptotic bound

| Error | < | fa—f1l llgn—g(un) || + cal fa—f11%,

where

€1 = ||L;1||a C2 = %HLZ 71(Hu,v_GU)L;1H-
The problem in evaluating this a posteriori error bound is that ¢; and ¢, will not be
known in general, and may be hard to bound analytically. A more practical option may

be to estimate them computationally based on the corresponding discrete operators.
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5 Nonlinear finite volume examples

The steady quasi-1D Euler equations describe the flow of an inviscid, compressible ideal
gas in a variable area duct. The functional of interest is the integral of the pressure
along the duct, which serves as a model for the computation of lift and drag on airfoils
in two dimensions, and wings and aircraft in three dimensions.

The unsteady quasi-1D Euler equations in conservative form are

oU 0 dA
A% L L - p o
ot + 8:1:( ) dz 0,

where A(z) is the cross-sectional area of the duct and U, F and P are defined as

P pq 0
U=\ p¢ |, F=|p’+p )|, P=|p
pE pqH 0

Here, p is the density, ¢ is the velocity, p is the pressure, E' is the total energy and H is
the stagnation enthalpy. The system is closed by the equation of state for an ideal gas
H=p+2=_"2_ 412

p (y=1p 7
where 7y is the ratio of specific heats.

The unsteady quasi-1D Euler equations are a hyperbolic system with three charac-
teristic wave speeds, ¢, g+c¢ and g—c, with c=+/vp/p being the local speed of sound.
Accordingly, the nature of the steady flow solution varies depending on whether the flow
is subsonic (M < 1) or supersonic (M >1), where M = ¢/c is the Mach number. In order
of increasing difficulty, we will consider the subsonic, isentropic transonic and shocked
transonic flows depicted in terms of Mach number in Fig. 5.

Steady flow solutions are obtained by marching the nonlinear unsteady system to
a steady state using a standard second order finite volume method with characteristic
smoothing on a uniform computational grid. The linear adjoint problem is approximated
by linearizing the nonlinear flow equations, constructing the analytic adjoint equations
and boundary conditions, and then forming a discrete approximation to these on the
same uniform grid as the flow solution [18, 2]. Previous research has confirmed that this
produces a consistent approximation to the analytic adjoint solution which has been
determined in closed form for the quasi-1D Euler equations [14].

The approximate solution u,(z) is constructed from the discrete flow solution by
cubic spline interpolation of the cell-centered values of the three components of the
state vector U (except in the shocked case to be described later). The flow residual fj, is
then formed using analytic derivatives of this reconstruction. The approximate adjoint
solution v, (x) is also obtained by cubic spline interpolation of the cell-centered values of
the three components of the discrete adjoint solution. The integrals which form the base
value for the functional and the adjoint correction are then approximated using 3-point
Gaussian quadrature.
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Figure 5: Mach number distributions for quasi-1D Euler equation test cases.
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Figure 7: Error convergence for quasi-1D shock-free transonic flow.

5.1 Subsonic flow

As a first case, consider smooth subsonic flow in a converging-diverging duct. The error
convergence of the computed functional is shown in Figure 6, where the superimposed
lines of slope —2 and —4 demonstrate that the base error is second order and the error
in the corrected functional is fourth order. This is in agreement with the a priori error
analysis in the Appendix, based on the nonlinear convergence theory of Keller [20] and
Sanz-Serna [22,28] and stability bounds of Kreiss [21], which proves that u;,—u, v, —v
and their first derivatives are all O(h?) for the present finite volume scheme, and hence
the error in the corrected functional is O(h?).

5.2 Isentropic transonic flow

The error convergence for a transonic flow in a converging-diverging duct is shown in
Figure 7. The flow is subsonic upstream of the throat and supersonic downstream of the
throat. Again the results show that the base error is second order while the remaining
error after the adjoint correction is fourth order.

The accuracy of the corrected functional in this case is a little puzzling because the
adjoint solution has a logarithmic singularity at the throat [14], as shown in Figure 8.
Therefore, v,—v is O(1) in a small region of size O(h) on either side of the throat. Based
on this, one might expect that the remaining error would be O(h?) since the numerical
results confirm that the solution error u; —w and the consequent residual error for the
nonlinear equations are both O(h?). The explanation for the fourth order convergence
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Figure 8: Adjoint solution for quasi-1D shock-free transonic flow.

must lie in a cancellation of the leading order terms within the remaining error, but the
reason for this is not yet understood.

5.3 Shocked transonic flow

The final case is a shocked flow in a diverging duct where the flow is wholly supersonic
upstream of the shock and subsonic downstream of it. At the shock, the analytic adjoint
solution is continuous and has zero gradient [14], and so the adjoint variables pose no
special difficulty in this case.

The challenge is the reconstruction of the approximate solution wuy(z) from the cell-
centered quantities produced by the finite volume calculation. The analytic solution
is discontinuous at the shock and satisfies the Rankine-Hugoniot shock jump relations
which require that there is no discontinuity in the nonlinear flux F'. To recover a discon-
tinuous approximate solution uy,(x), we first interpolate the computed values of F' which
is known to be continuous across a shock. From these one can deduce the conservation
variables U by solving a quadratic equation, one branch of which gives a subsonic flow
solution, the other being supersonic. Therefore, given a shock position, one can recon-
struct a supersonic solution on the upstream side, a subsonic solution on the downstream
side, and automatically satisfy the Rankine-Hugoniot shock jump conditions at the shock
itself.

To determine the shock position, we rely upon the fact that the integrated pressure
along the duct is correct to second order when using a finite volume method which



17

Error Convergence
_4 T T

IoglO(Error)
@

_lo,

-11-|O O Base Error 7
* % Remaining Error

-12 :
15 2

3 3.5 4

2'?oglo(Cells)

Figure 9: Error convergence for quasi-1D shocked flow.

is conservative and second order accurate in smooth flow regions [10]. Therefore, we
iteratively adjust the position of the shock until the reconstructed solution has the
same base functional value (i.e. without the adjoint correction) as the original numerical
approximation, thereby obtaining the correct shock position to second order.

The form of the adjoint error correction term is exactly the same as before. This
conclusion follows from a slight extension of the nonlinear formulation to take the shock
into account as an internal boundary. The corresponding adjoint linearization includes
perturbations to the shock position which lead to an internal boundary condition for the
adjoint equations [14].

The baseline error is expected to remain second order for shocked flow, but in the
neighborhood of the shock, there is an O(h) error in wuy(z), so the corrected error is
expected to be third order rather than fourth. This behavior is confirmed by the error
convergence results shown in Figure 9, where the superimposed lines have slopes of -2
and -3.

6 Conclusions and future challenges

This paper presents a method for estimating the value of an integral functional with
twice the order of accuracy of the numerical p.d.e. solution on which the functional is
based. The additional cost is the computation of an approximate solution to the associ-
ated adjoint problem. The formulation of the method for linear and nonlinear problems
is relatively simple although some further complications arise when considering inhomo-
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geneous boundary conditions and boundary integral terms in the functional. Given that
many researchers are developing adjoint solvers because of their importance in optimal
design, there is the potential for rapid exploitation of this error correction technique in
a variety of engineering applications in which integral functionals are of interest.

In cases where the functional is a point quantity, the above theory could be applied
using a distribution function for g. However, the loss of smoothness in ¢ will often
result in a poorer order of accuracy for the approximate adjoint solution vy, leading to a
consequent reduction in the order of accuracy of the corrected functional. To circumvent
this difficulty, it may be possible to follow the approach of inner and outer matched
asymptotic expansions, to combine an approximate analytic near-field solution with a
computed far-field solution. Alternatively, one could use the technique of Babuska and
Miller [3] to convert the point quantity into an equivalent integral representation.

A number of challenges will arise in applying the theory to more complex nonlinear
problems in multiple dimensions. For curved boundaries, the computational domain
covered by a grid is only an approximation to the true domain and so there may be
complications in extending the numerical solution to cover the full domain. Likewise,
there is the problem of ensuring that the approximate solution u, exactly satisfies the
boundary conditions imposed on the analytic solution u. Otherwise, an additional ad-
joint correction term associated with the residual error in the boundary conditions must
be computed. In multiple dimensions, the functionals of interest are often boundary
integrals rather than integrals over the whole domain. The formulation must then be
modified by the introduction of inhomogeneous boundary conditions in the adjoint prob-
lem [13].

Possibly the biggest challenge in multiple dimensions will be the treatment of dis-
continuities and singularities. In one dimension, reconstructive shock-fitting is relatively
straightforward, but in multiple dimensions it will likely prove infeasible, especially when
there are shock junctions. A more practical approach may be to use local grid refine-
ment at the shock to reduce its width to O(h?) where h is the average cell width in the
rest of the grid. In this way, it may be possible to ensure that the error from the shock
region is of the same order as the error from the rest of the domain. Similarly, there are
singularities in the adjoint Euler equations in multiple dimensions [13] which will need
to be well resolved to achieve the desired superconvergence in the corrected functional.

This leads to the whole topic of optimal grid adaptation [6, 25,29, 11]. The magnitude
of the adjoint error correction term (vy, fr,—f) is minimized by adapting the grid in the
regions in which the product v} (f,—f) is largest. Alternatively, if grid adaptation is to
be used in conjunction with adjoint error correction then the remaining error is perhaps
best minimized by adapting the grid where the residual errors f,—f and g,—¢ are largest.

We conclude this paper with an open question. As discussed earlier in presenting
the linear approach, Galerkin finite element methods automatically provide superconver-
gent estimates of order h?*~™ for integral functionals with sufficiently smooth weighting
functions. From this result it can be deduced that the solution error is O(h?*~™) when
measured in an appropriate negative Sobolev norm. The question is under what condi-
tions it is possible to reconstruct from the finite element solution a smoother approximate
solution uy, for which the residual error is also O(h?*~™), leading to an adjoint error cor-
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rection that produces functionals with accuracy O(h*~?™)! The numerical results for
the 2D Poisson equation confirm that it is possible in the case when p=m=2, but it is
not clear to what extent this result can be generalized.

7
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Appendix A A priori error analysis

Before beginning the analysis, we begin with a few comments on notation. Bold type
(e.g. u) denotes a vector of discrete quantities at the nodes of a computational grid, and
discrete operators acting on such data. Regular type is used for continuous functions
and differential operators. u(x;) denotes the discrete data obtained by evaluating the
function u(x) at the grid nodes whose coordinates are xj,.

All norms, both discrete and continuous, are L, norms. In addition, the notation
O(h?) when used in a context such as

u, = u(xy) + O(hP),
means that there exists a constant ¢ such that
lwp—u(zs)|| < ch?,
or, equivalently, u, € B(u(z), ch?), where the ball B(u,€) is defined as

B(u,¢) = {w: [|lw—ul| <¢€}.

A.1 Linear Poisson equations

In this section we analyse the accuracy of the approximate primal and adjoint solutions

for the 1D and 2D Poisson equations, and derive an a priori error estimate proving that

the error in the functionals after applying the adjoint error correction is fourth order.
In both problems there is a linear p.d.e,

Lu=f,
which is approximated on a uniform grid with spacing h by a finite difference equation,
Lyup = .

The purpose of the first part of the analysis is to bound the discrete solution error,
||lwp—u(zy)||, where u(xy,) denotes the discrete data obtained by evaluating the analytic
solution u(z) at the coordinates of the computational grid.

The first two lemmas establish key properties of both the 1D finite difference ap-
proximation and the 2D finite element discretisation.

Lemma 1 For f € C*(Q), there exists a function 7 € C*(Q) and constant cy, both
independent of h, such that

Lyu(zy)—n = b2 (zy) + 7Y, [|7Y]] < e1h?,

and
Ly (u(@s) = h*w(@s)) = =7y, [Ir?]l < eih?,
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where we C*(Q) is the solution to the p.d.e.
Lw =,
subject to the given homogeneous boundary conditions.

Proof The function 7 is easily found through a Taylor series expansion of the solution u about
the central node in the discrete operator. The bounds on 7'511) and rg) are then found using
appropriate truncated Taylor series expansions.

In the 1D case, this results in

o 1df
C12da?
and
7 df
Ccl = ﬁomax w y
[

Lemma 2 There exists a constant co, independent of h, such that
1L, < e

Proof For uniform grids on a unit interval in 1D, or a unit square in 2D, the eigenfunctions
of Lj, are Fourier modes and so a precise bound is easily established.
In the 1D case, hg% and hence

My

(4)° L
sim? () = F

I =

From these two results we can prove the following lemma regarding the error in the
numerical solution.

Lemma 3 The discrete solution uy, can be written as

up = u(xy) — h2w(mh) + 7"513)’

where the function w(zx) is as defined in Lemma A.1 and the remainder term rf’) 5

bounded by
1| < creoh,

with the constants ¢y, co as defined in Lemmas A.1 and A.2.
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Proof Lemma A.1 gives
Lhrf) = —rg),

and the result then follows immediately from the definitions of ¢; and ¢3. m

The final step is to consider the errors introduced by the cubic spline interpolation of
the discrete solution u; and the corresponding discrete adjoint solution vy, and thereby
establish the order of accuracy of the corrected functional.

Lemma 4 For the approzimate solutions up(x) and vy(x) obtained by cubic spline in-
terpolation of uy, and vy, respectively, the solution errors up—u and vy—v and the residual
errors fr,—f and g,—g are all O(h?) and

(99— g, un—u) = O(h").
Proof Using standard results from the theory of cubic spline interpolation one can prove that
un(x) = u(z) — h*w(z) + O(hY),

and
V2uy, = VZu — B*V?w + O(h?),
and so the solution error uy—wu and the residual error f; —f are both second order. The same

argument applies to the adjoint problem and the final result then follows from the Cauchy-
Schwartz inequality. m

As well as proving the fourth order accuracy of the corrected functional in these two
particular cases, this proof serves as a template for proving superconvergence in other
applications with linear p.d.e.’s. Proving a property corresponding to Lemma A.1 with
the appropriate powers of h will usually be relatively easy; note that this will require f
(and ¢ in the adjoint problem) to satisfy certain smoothness constraints. Establishing
a uniform bound on the inverse operator, as in Lemma A.2, will usually be a much
harder task, similar to proving coercivity in finite element analyses. The final step of
interpolation error analysis may also be troublesome in some cases; in the error analysis
for the quasi-1D Euler equations using piecewise linear interpolation we will see the
difficulties that can arise.

A.2 Nonlinear quasi-1D Euler equations

In this section we consider the subsonic test case and establish the fourth order accuracy
of the corrected functional using both cubic spline and piecewise linear interpolation.

The analysis is split into three parts. In the first, the existence and uniqueness of
second order accurate solutions to the nonlinear equations is proved under specified
conditions, following the theoretical approach of Keller [20] and Sanz-Serna et al [22,
28]. The second part analyses the error in the adjoint solution, and then the final part
considers the errors introduced by the interpolation and proves that each of the terms
in the remaining error for the functional is fourth order in magnitude.
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A.2.1 Nonlinear a priori error analysis

The nonlinear quasi-1D Euler equations,

with appropriate boundary conditions, are approximated by the nonlinear finite differ-
ence equations
Nh(uh) = 0.

We define the differential operator L,, to be the Fréchet derivative of N evaluated at w,
and the discrete operator L,, to be the Fréchet derivative of N; evaluated at w. We
also, for convenience, use the shorthand L, to represent L, g, ).

We will assume that the nonlinear discretisation has the following properties:

Property 1: there exists a constant ¢y, independent of A, such that
[N (u(zn))]| < erh?
Property 2: There exists a constant co, independent of h, such that
) < e
Property 3: There exists a constant c3, independent of h, such that

1
L,—-L,|<—
1= L] < 5

for any w € B(u(zp), c3h).

If the duct area A(z) is sufficiently smooth (A € C?(QQ)), Properties 1 and 2 are easily
proved for the finite volume scheme which was used to obtain the numerical results in
this paper. Property 2 is much more difficult to establish, but it is thought it could be
proved by following the approach of Kreiss [21]. The key steps in the proof would be to
show that the p.d.e. is wellposed, the discretisation of the p.d.e. is consistent and strictly
dissipative on the interior, and the discretisation of the boundary conditions is stable in
the sense of Godunov and Ryabenkii [15, 16].

Given these three properties, the objective is to use the Fixed Point Theorem to prove
that the nonlinear finite difference equations have a unique solution w; which is second
order accurate. A preliminary lemma, is required to prepare for the main theorem.

Lemma 5 If 'wg),'wg) € B(u(xp), c3h), then

(2) (1)

|27 (Wawf?) = Nuwl?) - Lu(wf? —wi?))|| < 4 |wf? - w}




d 1 2 1 2 1
7 {Nh (wg) + O(wg)—wg )))} = ng)w(w;f)ﬂvg))(wg) - wgl ))7

1
(2) (1)
{/0 (ngll)-l-ﬂ(w;f)_wil)) - Lu> dO} (wh —w, ).

The desired result then follows from Properties 2 and 3 and the convexity of the ball B(u(x), csh).
[

Theorem 6 There exist constants cq,hg > 0, such that if h < hy then the nonlinear

equations
Nh(uh) =0,

have a unique solution w, € B(u(xy), c4h?).

Proof Let cy=2cico, hg=c3/ca, and consider the mapping
T:T(u)=u—L,"Npj(u).
If h < hg then c4h? < c3h and so, from Lemma 5
|T(®)-T@)| < Hlw® -w?|,
for any w, w® € B(u(xy), c4h?
1T (w) —w(ah) |

Also, for any w € B(u(zy,), c4h?),

1T (w) =T (w(zp)) | + | T (w(2h) —ul@ns)]]
sllw—u(z)ll + |1 Ly Ny (u(zn))|
C4h2,

~—

ININIA

using Properties 1 and 2.

Thus, T is a contraction mapping of B(u(zxy,), c1h?) into itself, and so by the Fixed Point
Theorem [8] there exists a unique fixed point uj, € B(u(xy), csh?) for which T'(up) = u;, and
hence Np,(up)=0. m

A.2.2 Error analysis for adjoint solution

In this section we will assume throughout that A <hg so that the nonlinear solution wuy,
is known to exist and satisfy the error bounds given in the last section.

Given an approximate solution u; of the nonlinear p.d.e. through an interpolation
of the discrete solution uj, our objective in this section is to analyse the difference
vy, —v(xp). Here v is the solution of the differential equation

Lyv = g(u),
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subject to homogeneous boundary conditions, where L, and g(u) are the Fréchet deriva-
tives based on u, as defined in the main text. v, is the solution of the corresponding
linear finite difference equations

*
Luh/vh = gh?

with L, and g, both based on the discrete solution u;. The analysis will also involve
the discrete operator L, which again is a shorthand for Ly,
We will assume that the adjoint discretisation has the following three properties.

Property 1: There exists a function 7€ C°(€2) such that
L;, v(mh) — g, = D7 (2s) + O(h%),

and
L, (v(a:h) — th(mh)) —g, = O(h?),

where w € C'(Q) is the solution to the linear p.d.e.

* —_—
Liw=rT,

subject to homogeneous boundary conditions.
Property 2: There exists a uniform bound c¢5, independent of h, such that

1zl < es.

Property 3: There exists a constant cg, independent of h, such that

* * 1
HLuh - LU‘ < 2—057

when w, € B(u(xy), csh).

For the finite volume method which was used to obtain the numerical results, it is
fairly easy to derive the function 7 in Property 1 if A€ C?(Q). Establishing the bounds
on TS) and ’rf) is straightforward but tedious. Property 2 is again be the hardest to
prove. Property 3 is easily established; its significance is that it is required for the

following preparatory lemma.

Lemma 7 There exists a constant hy >0 such that, for h<hq,

1L, Il < 2cs.
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Proof Define D = L,, — L and let h; = min{hg,cg/cs} so that if h < hy, then u; €
B(u(zp,), csh?®) C B(u(zp), cgh). Hence, using Properties 2 and 3,

1 * —1 1

I+L;, ~' D is therefore non-singular, and || (I+L;, ~'D)~'|| < 2. It follows that L}, = L}+D =
L:(I+L: ~'D) is non-singular, and

1L, M < (T +Ly, = D) Y| IZy, ] < 265

Up

Having finished these preliminaries, we come to the main result of this section.

Lemma 8 Under the conditions of Lemma 7, and for h<hy,
vy, = v(zp) — RPw(z) + O(h?).

Proof Follows immediately from Property 1 and Lemma 7. =

A.2.3 Interpolation and functional errors

If one uses cubic spline interpolation to construct the approximate solutions u; and vy,
then the analysis from the previous sections together with standard interpolation error
analysis for cubic spline interpolation lead to error bounds of the following form.

|lup —ul| < dih?,
lop —v|| < doh?,

|G — G || < dsh®.

The error in the functional after the adjoint error correction can be split into three in-
ner products: (g(u)—9g(u,us), up—u), (gn—g(u), up—u), ((Lzh_Lzu,uh))UhaUh_U)- The
Fréchet derivative of g(u) is continuous and finite at all values of the analytic solution
u(z), and so there exists a constant d4 such that

lg(w) =g(u, un) || < dalun—wull,

and hence
|(G(u, up) —g(u), u—up)| < dydih®.

Considering the second of the inner products,

gh—g(u) = L;‘;hvh — Lyv
= (Ly,—Ly)vn + Ly (vp—v),
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%

by bounding the differences in the coefficient matrices in Ly and f(u’uh), which depend

dvp _ dv

Jx—a7, one obtains

on uy; and u, and using the second order bounds on u,—u, v,—v and
a bound of the form

lgn—g(w)|| < dsh?,
and hence
|(gn—g(u), up—u)| < dsdih*.

Turning to the final inner product, by again bounding the differences in the coefficient

matrices in L; and f?u’uh), one obtains a bound of the form

< d6||uh_u||7

H (Lzh _z(u,uh))vh

and hence
*

‘((Lzh—[,(u’%))vh,uh—uﬂ < ded?n®.

This completes the a priori analysis proving the fourth order accuracy of the corrected
functionals in the subsonic flow case when using cubic spline interpolation. When using
piecewise linear interpolation, some of the above analysis has to be modified because
there is now a first order error in %. Consequently, at first sight it appears that the
bound on the second inner product will become third order rather than fourth. However,
numerical results show that the second inner product term remains fourth order. To
explain this behaviour requires careful attention to the nature of the error introduced
by piecewise linear interpolation.

The starting point is the earlier result that

vy = v(mh) — th(mh) + O(hg)

Defining I, to be the operator performing piecewise linear interpolation through the
nodal values of a continuous function, and defining I to be the identity operator, then

vp = v — h*w + (I,—I)v + O(h%).
Next, we use standard results to express the interpolation error (I, —I')v as
(In—D)v = q(x) + O(K?),

where ¢(z) is a function which on the interval [z;, ;] is

q(x) = sa;(v— ;) (x— 7541),

go— LD
T h \de )

dvp,  dv 9
E — %+l(l‘)+0(h ),

with a; defined as
_ W
dx

Tj+1

Hence,
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where [(x) on the open interval (z;,7;11) is

I(7) = aj(r—2j41/2),

so [(x) is antisymmetric about x4 /o, the midpoint of the interval.
When this error representation is substituted into the second inner product error
term, the component involving [(z) is of the form

(Clyup—u),

where C'(z) is a matrix function which has a bounded derivative. Therefore, C'(z) can
be decomposed into a dominant part Cy which is constant on each subinterval, plus a
remainder which is O(h).

Also, the interpolation error u, —u can be decomposed into a dominant part r(x)
which, like ¢(z), is zero at nodes, piecewise quadratic and O(h?), plus a remainder which
is O(h?).

The key observation is that the inner product involving all of the leading order
terms, (Cyl,r), is zero because on each subinterval the product (Cyl)”r is anti-symmetric
about the midpoint of the interval. All of the other inner product contributions involve
integrals of products which are O(h*). Therefore, by bounding all of these one arrives
at the result that |(gn,—g(u),up—u)| is still O(h*). This concludes the proof that the
corrected functional value is fourth order accurate even when using linear interpolation.



