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Aerodynamic design optimisation for complex
geometries using unstructured grids

M. B. Giles

These lecture notes, prepared for the 1997 VKI Lecture Course on
Inverse Design, discuss the use of unstructured grid CFD methods in
the design of complex aeronautical geometries. The emphasis is on
gradient-based optimisation approaches. The evaluation of approxi-
mate and exact linear sensitivities is described, as are different ways
of formulating the adjoint equations to greatly reduce the computa-
tional cost when dealing with large numbers of design parameters.

The current state-of-the-art is illustrated by two examples from
turbomachinery and aircraft design.
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1 Introduction

For simple aeronautical applications such as aircraft wing/fuselage analysis and
turbomachinery cascade analysis, the standard CFD approach is to use a struc-
tured grid, often containing just a single structured block. In these cases, the
grid generation is relatively easy and the structured grid CFD methods have
the advantages of better accuracy and lower computational cost compared to
unstructured grid methods.

However, in aeronautical design one is often concerned with much more com-
plex geometries. With aircraft, in addition to the wing and fuselage one might
wish to include the tail, winglets, the engines and their pylons, the underwing
track fairings for the flaps and even the extended flaps in the high-lift configu-
ration. In turbomachinery, there are complex geometries in the bypass ducts of
turbofan engines, combustors, internal cooling passages within turbine blades,
etc. For such applications, the generation of an appropriate multi-block struc-
tured grid becomes a difficult time-consuming task. Furthermore, the topological
restrictions of such grids usually result in excessive grid resolution in some parts
of the flow field in order to achieve adequate grid resolution in other areas.

It is for such applications with complex geometries that the use of unstruc-
tured grid CFD algorithms is most appropriate. Given a valid CAD/CAM def-
inition of the complex object as a set of intersecting solids/surfaces, there are
now grid generators which can produce a good quality grid with one million
tetrahedra for inviscid flow analysis in ten minutes on a standard workstation.
There is still considerable research on the issues of viscous grid generation and
simplifying the user specification of the desired grid resolution in different parts
of the grid. However, steady progress is being made in these areas so that it
will soon be possible to create high quality unstructured grids for viscous flow
analysis with a minimum of user intervention. The fact that one can ensure
that all of the unstructured grid points are where they are needed to resolve
the flow features, offsets the inherent poorer accuracy of these unstructured grid
discretisation compared to those using smoothly varying structured grids. In ad-
dition, grid adaptation through insertion of additional grid points is very easily
accomplished. Thus, for a given level of the accuracy, the computational cost of
unstructured grid CFD algorithms is comparable to that of multi-block struc-
tured grid algorithms. This takes into account advances in multigrid acceleration
algorithms which now give the same speedup benefits for unstructured grids as
for structured grids.

It is not my intention here to present a comprehensive review of the sub-
stantial literature on unstructured grid flow algorithms; there are many good
review articles on this subject. Instead, my objective is to discuss the use of such
methods for the purposes of design. The next section briefly outlines the stan-
dard analysis approach, and the way in which it can be used within stochastic
optimisation.



Thereafter, the focus is on gradient-based optimisation methods in which the
optimisation of an objective function is accomplished using information about
its gradient with respect to the design parameters. This gradient can be de-
rived in a number of different ways. Finite differencing the results of nonlinear
flow computations is the simplest. To obtain accurate approximate derivatives
requires the use of consistently perturbed grids. Grid movement algorithms to
accomplish this are described in the third section.

An alternative approach to obtain the linear sensitivities is exact linearisation
leading to the discrete adjoint equations which is the subject of the fourth section.
This section also discusses the analytic formulation of the adjoint equations,
which can then be discretised to again obtain approximate linear sensitivities at
low computational cost.

The final section presents some examples of the use of unstructured grid meth-
ods for design applications. These 3D examples are all very recent, illustrating
the current state of research in this area.

2 Analysis methods and stochastic optimisation

An unstructured grid CFD analysis system has two main components, the grid
generator and the flow code.

Grid generation for viscous flow analysis is usually accomplished in three
phases, the second of which is omitted when the grid is to be used for inviscid
flow analysis:

e Surface

The gridding of the surface starts by placing grid points along key lines,
such as the leading edge of the wing, the intersection of the fuselage with
the symmetry plane, the intersection of a blade with the hub or tip annuli,
etc. These lines divide the surface of the complex object into a number of
pieces, each of which is then triangulated, often using an advancing front
algorithm.

e B.l./wake

This is still an active research area, but at present the most successful
methods generate the grid for the boundary layer and wake by advancing
outwards from the triangulated surface along lines which are approximately
normal to the surface, creating new grid points and generating prisms which
are subsequently cut into tetrahedra [5,17].

e Interior

Having also triangulated any domain boundary surfaces (far-field, symme-
try, inflow /outflow) the final step is to create the grid points and tetrahedra



in the remainder of the interior of the domain. The fastest methods for this
are based on the Delauney algorithm [32], but advancing front methods are
also used because they offer additional flexibility in controlling the quality
of the grid that is generated

In each phase the user has to control the grid resolution which is desired;
the surface grid density in the first phase, the boundary layer resolution in the
second, and the volumetric grid density in the third. In 2D applications, the grid
density is often controlled through the use of a ‘background grid’, a triangular
grid used to define a piecewise linear spacing function §(x,y) [22]. To ensure
good resolution at the leading edge of a wing, one would place a grid point of
the background grid inside the leading edge circle, and specify a small spacing
value at that point. In 2D it is relatively easy to create this background grid,
but in 3D it is much harder. One approach is to define the surface grid density
based on the local curvature and then interpolate from this to define the interior
grid spacing [33]. In principle, this is a good idea, but in practice there are
problems with it producing too many grid points in some regions and too few in
others. An alternative approach is to define a default spacing, and then use a
combination of point, line and planar ‘sources’ to define increased grid resolution
in certain regions [31,33]. Using this technique, increased grid resolution near
the leading edge of a 3D wing is accomplished by placing a spanwise line source
inside the leading edge of the wing. The boundary layer resolution is controlled
by specifying a boundary layer grid thickness function on the surface of the object
(possibly using a ‘background grid’ on each piece of the surface) and specifying
the desired number of grid points across the boundary layer.

Unstructured grid flow solvers are also the subject of much current research.
There are now a number of well established algorithms for discretising the Euler
equations on tetrahedral grids. There are also well-developed multigrid algo-
rithms for accelerating the steady-state convergence of Euler computations, us-
ing non-nested grids [6, 21], cell agglomeration [28], edge-collapsing [7] and other
methods. Methods for parallelising such flow codes have also been developed [8,
9], so that it is now possible to achieve four orders of magnitude convergence
(sufficient for engineering accuracy) on a grid with 1 million tetrahedra in 1 hour
on an 8-processor parallel computer. Thus, inviscid flow calculations for complex
geometries using large grids are becoming a practical engineering tool.

It is the viscous algorithms on unstructured grids which require further devel-
opment. The discretisations on the highly stretched tetrahedral grids necessary
for high Reynolds number applications are still not as accurate as those for struc-
tured grids. It is possible the solution is the use of prism cells in the boundary
layer [20]. There is scope for improving the multigrid algorithms as well, as so far
they do not achieve the same speedup as the multigrid methods for viscous com-
putations on structured grids. In the longer term, it is increasingly believed that
the optimum solution will be a hybrid method, using a combination of structured



and unstructured grids, benefitting from the accuracy and low computational
cost of body-fitted structured grids in most of the flow domain, together with
the flexibility of unstructured grids in regions of geometric complexity.

Whether or not the future lies with simple tetrahedral grids or more compli-
cated hybrid grids, it seems likely that in the next 5 years Reynolds-averaged
Navier-Stokes computations for complex geometries will start to become a rou-
tine engineering analysis tool. This then raises the question of how best to use
these for design optimisation. Conceptually, the simplest approach is to use ge-
netic algorithms [10] or some other form of stochastic optimisation. All these
optimisation methods require is the ability to calculate the flow field given the
values of a set of design parameters.

However, in practice, there are two major difficulties. One is due to the
grid generation process described above. Suppose that the CAD/CAM system
can automatically generate the new solid body geometry given the values of the
design parameters. The problem is that the grid generator cannot automatically
generate a new grid because at present user input is needed to define the required
grid resolution, modifying the background grid or point/line sources as necessary.
For example, if the sweep angle of the aircraft wing is changed (or lean of the
turbine blade stacking) then the leading edge of the wing or blade will be in a
different place, and so the line source placed inside the leading edge will need
to be moved. One solution to this problem is the use of grid movement (to
be described in the next section) to generate a deform an initial grid as the
design parameters change. However, this forces the grid to remain topologically
identical which in turn prevents consideration of design parameter values which
change the topology of the aircraft. The other possible solution is an advance
in grid generation techniques to automatically define the grid resolution (for a
given overall number of grid points) based on the geometry of the aircraft or
turbomachine, using information such as the surface curvature.

The second problem is the computational cost. Stochastic methods require
several hundred flow calculations. If all of these are performed on fine grids with
the resolution needed to produce answers with acceptable engineering accuracy,
the total cost is prohibitive and looks likely to remain so for the next twenty
years. A possible solution to this problem is to use coarser grids (or the Eu-
ler equations instead of the Navier-Stokes equations) during the initial phases
of the optimisation, switching progressively to the finer grids (and more accu-
rate modelling) as the design converges towards the optimum. In this way, the
more accurate (and more expensive) results can be used to ‘correct’ the more
approximate values. This is a promising line of research which could greatly re-
duce the cost of stochastic optimisation. However, at present, I believe the most
cost-effective approach to optimising complex geometries lies with classical opti-
misation methods which use the gradient of the objective function with respect
to the design parameters.



3 Approximate sensitivities and grid movement

One simple way in which to calculate the approximate sensitivity of the flow
field to changes in each design parameters is through finite differencing of the
solutions from a number of nonlinear computations [25,26]. Thus, for each set
of design parameters «, the discrete flow equations

F(U,a) =0,

are solved to implicitly obtain the flow field U as a function of the design param-
eters a. To obtain the gradient of an objective function I(U, ) when there are
N design parameters requires at least N+1 calculations. The simplest approach
is to use one-sided differencing so that the derivative of the objective function
with respect to the k' design parameter is approximated by

dI  I(U(a+eper), a+eer) — [(U(a), o)

~
~

dOék €k

where ey, is a vector whose elements are zero except for the k* which is unity,
and ¢, is some suitably small perturbation.

Perturbing the design parameters changes the surface geometry of the aircraft
or turbomachine, and hence perturbs the grid. If the new grid is created by the
standard unstructured grid generator, there is the possibility that the new grid
will be topologically different to the original. This could lead to significant errors
in the approximate sensitivity that is computed. A change in the topology will
lead to a small discontinuity in the value of the objective function; if ¢ is very
small then in the worst case this discontinuity in objective function will lead to
a very large error in the approximate gradient. The other problem with using
the standard grid generator to create each grid is the one raised in the previous
section, that significant user input is often required to ensure good grid resolution
in the regions that require it.

A better approach is to create a perturbed grid with the same topology as
the original, by perturbing the coordinates of the grid points of the original grid
in a way which is consistent with the perturbation to the surface geometry of
the aircraft. Referring back to the three phases of grid generation outlined in
the last section, the first step is to define perturbations to the grid nodes lying
on the surface. In practice, this is also the hardest step. The methods which
are currently used [12,25,26] employ simple algebraic functions to perturb the
surface points. These perturbations are not compatible with the standard solid
body representations in CAD/CAM software and so the body which is designed
would have to be modified to be stored within the CAD/CAM system.

A much better solution would be to interface to the CAD/CAM system di-
rectly. Maintaining the relative spacing along the key lines such as the leading
edge line would define the movement of the grid points as the lines themselves



move in response to changes in a design parameter. On each surface patch, the
geometry is represented in parametric form as (z(&,n),y(£, 1), 2(£,1)) where £, 9
are general surface coordinates. Knowing the &, 7 perturbations to the points
along the bounding lines, corresponding perturbations to the other grid points
on the surface could be constructed using either the method of ‘springs’ or the
elliptic p.d.e. approach to be described shortly. Having determined the §~ , 1) per-
turbations to the surface grid points, the corresponding Cartesian perturbations
Z,1, Z are then easily evaluated.

Once the surface perturbations are constructed it is relatively easy to con-
struct corresponding coordinate perturbations for all interior grid points, includ-
ing those in the boundary layer and wake region. The method of springs considers
all edges in the grid to be springs [2,29]. The base grid is defined to be in equi-
librium due to the addition of nodal forces. The displacement of the surface grid
points upsets this equilibrium, and so the perturbation of the interior grid points
is defined to re-establish an equilibrium of forces acting on each interior grid
point. It is common to define the spring constant for each spring to be inversely
proportional to the length of the edge. The effect of this is to maintain the grid
spacing across a boundary layer and prevent the formation of a grid singularity
leading to cells with negative volumes.

The alternative approach is to compute the coordinate perturbation &(x) by
solving an elliptic p.d.e. of the form

V- (k(z)VZE) = 0,

subject to Dirichlet boundary conditions [7]. The choice of an elliptic p.d.e. en-
sures a smooth perturbation. Using a standard Galerkin finite element discreti-
sation, the diffusivity factor k£ is chosen to be proportional to the cell volume
of the perturbed grid. This ensures that the volume of the cells in the bound-
ary layer is almost unchanged, maintaining the desired grid resolution across the
boundary layer, and again prevents the creation of cells with negative volume.

4 Linearisation and adjoint equations methods

Mathematically, the simplest form of linear analysis is equivalent to the nonlinear
analysis in the limit as ¢, — 0. If we define U, to be the sensitivity of U
to changes in the k' design parameter, then linearising the nonlinear discrete
equations yields

OF — N oF 0
ou " da,
The term ‘gTi arises from the fact that the the flux residuals depend on the

coordinates of the grid points, represented collectively by the symbol X, and the
grid in turn depends on the design parameters. Hence, by the chain rule one



obtains
OF  OF 0X
8ak N 0X 8ak )
where % represents the linearised grid sensitivity to perturbations in the k'
k
design parameter. In principle, one could define %l to be non-zero only at

surface points. Such an approach was adopted in the first methods for linearised
unsteady potential flow analysis [30,34] but it was later discovered that using

a continuously deforming grid gave improved numerical accuracy [13,35]. Thus

it is probable that here too one will obtain improved accuracy from using % BX

defined from a smooth grid perturbation.

The linear perturbation equation can be solved by the standard multigrid
method to obtain Uy. The total derivative of an objective function with respect
to the k' design parameter is then given by

dIl 0l — ol

doy U "
The drawback with this approach is that it involves the development of an entirely
new CFD code, and since it still requires a separate calculation for each design
parameter it offers no benefits in computational cost compared to using nonlinear
computations to obtain the approximate sensitivities. The one exception to this
is an unusual turbomachinery application in which one designs a blade row with
a sinusoidal circumferential variation in camber with the aim of producing a
corresponding pressure variation cancelling that produced by a single large pylon.
In this case the nonlinear analysis must be performed for the full annulus whereas
the linear analysis can be performed using complex variables on a single blade
passage with a complex phase shift between its two periodic boundaries [25, 26].

The desire to reduce the computational cost leads to the use of the adjoint
equations. The discrete adjoint approach [12,11,19] starts from the linear equa-
tions above and eliminates U}, to obtain

dI oI (ap)l OF oI

doy, 90U \OU

ooy’

8704,6 8ak )

This can then be written as
dl 7 OF ol
- - + -

dak Sak 80% ,

where the vector V satisfies the equation

oF\" ar\"
— |V — ] =0.
(o) v+ (i)
The great advantage of this approach is that one only needs to solve a single
finite difference equation to get the sensitivities of I with respect to all of the



design parameters. This is because the same solution V' is used for each value
of k. The only additional cost for each design parameter is the computation of
% and 3‘%, which is inexpensive, and the dot product VT% which is even
cheaper.

The drawback of the adjoint approach is that a separate adjoint equation
must be solved for each objective function or constraint function. Hence, in a
highly constrained design in which the number of active constraints is comparable
with the number of active design parameters, there is little to be gained from
the adjoint approach.

The label ‘adjoint’ comes from the alternative treatment in which one starts
with the linearised partial differential equation and converts the linear sensitivity
of the objective function into an equivalent form involving the solution of the
adjoint partial differential equation with appropriate boundary conditions [18].
This can then be discretised and solved numerically [1, 3,4, 14,15, 16, 23,27]. The
theoretical development of the adjoint p.d.e. will not be presented here. Instead
we consider the formulation of the linearised equations. In almost all of the
references listed above, the linearised equations are formulated using curvilinear
coordinates (§,7,() such that the airfoil is always a coordinate surface, such
as 1 = 0. This approach is appropriate for developing CFD methods using a
structured grid with a single grid block, but a different approach is necessary
when using unstructured grids.

For simplicity, we consider the 2D Euler equations which may be written in
conservation form are

0 0

—F, —F, =

where U is the vector of conservation variables and F3(U) and F,(U) are nonlin-
ear flux functions,

P /;Ux PUy
u=| |, B=|PetP | g | Pl
Py Pl Uy pUy +p
pE pu. H puy, H

Simply linearising about a given steady-state solution, U(z, y), leads to the equa-
tion

0 0

where u is defined to be the linear change in the flow solution at a point with
fixed coordinates (z,y), and the spatially varying matrices A,, A, are defined by

OF, OF,

, Ay = —
U |70 U |

This approach, extended to the Navier-Stokes equations, is the one used in Ref-
erence [1]. However, this definition of u leads to difficulties in approximating

A, =

z,Y)
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the boundary conditions on a perturbed surface, since a point which used to be
on the surface may no longer be. For the Navier-Stokes equations, the no-slip
boundary condition requires that

Uy = Uy = 0.

Linearising these conditions when the surface is displaced through distance T
gives
Uy +x-Vuy, =1u, +T - Vu, =0.

Thus, the boundary conditions for the linearised problem involve the evaluation
of gradients of the original base solution. In the boundary layer these gradients
are very large, resulting in significant errors. This approach, and its weaknesses,
are similar to the classical treatment of linear unsteady flow analysis, as discussed
earlier.

To avoid these problems, what is needed is a treatment which uses a grid
which deforms linearly in a way which is consistent with the design changes to
the surface geometry. Therefore, u is defined to be the linear perturbation in the
flow solution taking into account a linear perturbation in the coordinates. The
starting point for this formulation is the conservative form of the Euler equation
using general curvilinear coordinates,

0 dy ox 0 ox oy
I (p% ROy, 9 (po® pdl)_,
ag(‘”an yan>+an<yag Iag) 0

We now define the perturbed coordinates as

r=&6+aX(§n), y=n+aY(n),

where « is a design variable. X (&, 1) and Y (£,n) are smooth functions which
match the surface perturbations due to the design variable, so that a point (£, )
which is initially on a solid surface remains so as the design variable changes.
Linearising with respect to « yields

0 0 0 oy 0X 0 0X oYy
geten+ 3w =~ (R~ B) = 5 (e — 5 )
where u is now the perturbation in the flow variables for fixed (£, n) rather than
fixed (z,y), and the fluxes F, and F, are based on the unperturbed flow variables
U.

Switching notation from (£, n) back to (x,y) then produces an inhomogeneous
p.d.e. of the form Lu = f, where L represents the differential operator. In
essence, this treatment is very similar to that used by Jameson and others for
single-block Euler and Navier-Stokes computations. The difference is that in
Jameson’s formulation the solid surface corresponds to part of the coordinate
surface n = 0, whereas in this formulation the solid surface is the original surface
defined in Cartesian coordinates. As a consequence, this new formulation can be
used with an unstructured grid discretisation for complex geometries.
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Figure 1: sequence of grids used by multigrid (outer annulus not plotted)
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Figure 2: grouping of OGV’s for 3 blade design

5 Examples

5.1 Outlet guide vane optimisation

Shrinivas has used nonlinear approximate sensitivities for a 3D design application
concerning the bypass duct of a turbofan aeroengine [24]; this is an extension of
earlier research by Shrinivas and Giles using 2D modelling [25, 26].

Figure 1 shows the geometry of the bypass duct and three of the grids used
for the multigrid acceleration. For clarity, only the inner annulus of the duct is
not plotted. Figure 2 displays an ‘unwrapped’ circumferential view of the mid-
span geometry, halfway between the inner and outer annuli. There is a large
pylon which is the main structural support for the engine core. Upstream of
the pylon is a set of outlet guide vanes (OGVs) and upstream of these would
be the rotating fan in the actual engine. The fan generates a circumferential
component of flow velocity and the purpose of the OGVs is to turn the flow
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back in the axial direction. The design problem is that the very large pylon
causes a blockage which produces a pressure field which decays very slowly in
the axial direction. The OGVs shield it to some extent, but nevertheless there
is a significant circumferential pressure variation upstream of the OGVs. In the
engine this leads to an unsteady interaction with the rotating fan, producing
higher stress levels and reduced aerodynamic efficiency.

The objective of the design process is to reduce this interaction to a minimum
by re-designing the OGV’s to counteract the pressure field created by the pylon.
The objective function is a discrete approximation to the following integral of
the circumferential pressure variation on a plane upstream of the OGVs.

1= [[ (w(r,0) = () do dr

where D(r) represents the circumferentially averaged pressure at a particular
radius.

The inviscid flow code that was used in this work was developed by Crumpton
[7]. Tt uses an edge-based discretisation of the Euler equations and a standard
Runge-Kutta time-marching algorithm. Edge-collapsing is used to generate the
coarser grids for the multigrid algorithm. The execution speed is further im-
proved through parallel computing on machines such as the IBM SP2 using the
OPlus parallel library [8].

Two design exercises have been conducted. In each case, the camber of the
OGVs is altered through a circumferential displacement A which varies quadrat-
ically in the axial direction and linearly in the spanwise direction,

A = (z — xl_e_(r))2 (ar +b)

with x; (r) being the axial location of the leading edge.

In the first design exercise, the constants a, b vary sinusoidally from one OGV
to the next, with the OGVs nearest to the pylon and farthest from it having
zero perturbations. This is appropriate because of the symmetry of the design
problem. Thus, there are just 2 design parameters, the values for a and b for the
blade with maximum displacement. Figure 3 shows the decrease in the level of
circumferential pressure variation at mid-span, and the associated decrease in the
value of the objective function. Because the objective function is approximately
quadratic, and the method of direct sensitivities provides a very good estimate
of the Hessian, the design optimum is almost achieved in one iteration.

From a practical engineering viewpoint, this design is far from ideal because it
requires each OGV to be unique, increasing the cost of manufacture and the num-
ber of spare parts the airlines must keep. The second design exercise addresses
this by allowing only 3 blade types, the original datum blade, an overturned
blade with increased camber and an underturned blade with decreased camber.
Figure 2 shows the chosen grouping of these blades. There are still just two
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Figure 3: Optimisation using sinusoidal camber variation
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Figure 4: Optimisation using 3 blade types

design parameters, the constants a, b for the over-turned blade; the underturned
blade uses constants —a, —b giving a camber perturbation of equal magnitude
but opposite sign. Figure 4 shows that the design iteration still achieves near
convergence in just one iteration. As one would expect, the restriction of us-
ing just 3 blade types means that the optimum solution has a larger remaining
circumferential pressure variation than in the first design case.
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Figure 5: Initial surface grid for aircraft wing design [12]

5.2 Aircraft wing design

A recent paper by Elliot and Peraire [12] shows the state-of-the-art in the use
of adjoint equations for design optimisation on unstructured grids. The main
application considered is the wing optimisation for a business jet. The surface
grid for the baseline configuration is shown in Figure 5.

Simple algebraic functions are used to define 6 design perturbation modes
for the wing surface; care was taken to ensure compatible perturbations to grid
points on the fuselage. The authors comment that a more ideal solution would
involve coupling to a CAD/CAM system, as described earlier in these lecture
notes. A linearised version of the method of springs is used to create the grid
deformations in the interior.

The optimisation uses the discrete adjoint method, based on a linearisation
of the discrete flow equations. Multigrid and parallel computing, using MPT or
PVM on machines such the IBM SP2 or CRAY-T3D, are employed to reduce
the execution time.

The objective function is the mean-square deviation from a target pressure
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distribution corresponding to a ‘clean wing’ in the absence of the rear-mounted
engine nacelle and pylon. Two design iterations are taken, decreasing the objec-
tive function by 75%. Figures 6 and 7 show the evolution of the wing geometry
and pressure distributions, respectively.

6 Conclusions

The optimisation of complex aeronautical geometries using unstructured grid
CFD methods is an active area of research. Most of the references in this paper
are from the last 5 years, and it can be expected that there will be significant
new developments in the next 5 years.

Increased computational power will make design optimisation using the Navier-
Stokes equations feasible. A coupling of the design system to solid geometry
CAD/CAM systems seems essential for industrial use; although there is no the-
oretical difficulty in accomplishing this, it may involve a substantial amount of
software engineering.

Thereafter, the challenge will be to tackle increasingly difficult design appli-
cations, involving many more design variables and constraints. Only then will it
be possible to properly assess the advantages and disadvantages of the different
optimisation approaches.
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