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Aerodynami design optimisation for omplexgeometries using unstrutured grids
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These leture notes, prepared for the 1997 VKI Leture Course onInverse Design, disuss the use of unstrutured grid CFD methods inthe design of omplex aeronautial geometries. The emphasis is ongradient-based optimisation approahes. The evaluation of approxi-mate and exat linear sensitivities is desribed, as are di�erent waysof formulating the adjoint equations to greatly redue the omputa-tional ost when dealing with large numbers of design parameters.The urrent state-of-the-art is illustrated by two examples fromturbomahinery and airraft design.
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21 IntrodutionFor simple aeronautial appliations suh as airraft wing/fuselage analysis andturbomahinery asade analysis, the standard CFD approah is to use a stru-tured grid, often ontaining just a single strutured blok. In these ases, thegrid generation is relatively easy and the strutured grid CFD methods havethe advantages of better auray and lower omputational ost ompared tounstrutured grid methods.However, in aeronautial design one is often onerned with muh more om-plex geometries. With airraft, in addition to the wing and fuselage one mightwish to inlude the tail, winglets, the engines and their pylons, the underwingtrak fairings for the aps and even the extended aps in the high-lift on�gu-ration. In turbomahinery, there are omplex geometries in the bypass duts ofturbofan engines, ombustors, internal ooling passages within turbine blades,et. For suh appliations, the generation of an appropriate multi-blok stru-tured grid beomes a diÆult time-onsuming task. Furthermore, the topologialrestritions of suh grids usually result in exessive grid resolution in some partsof the ow �eld in order to ahieve adequate grid resolution in other areas.It is for suh appliations with omplex geometries that the use of unstru-tured grid CFD algorithms is most appropriate. Given a valid CAD/CAM def-inition of the omplex objet as a set of interseting solids/surfaes, there arenow grid generators whih an produe a good quality grid with one milliontetrahedra for invisid ow analysis in ten minutes on a standard workstation.There is still onsiderable researh on the issues of visous grid generation andsimplifying the user spei�ation of the desired grid resolution in di�erent partsof the grid. However, steady progress is being made in these areas so that itwill soon be possible to reate high quality unstrutured grids for visous owanalysis with a minimum of user intervention. The fat that one an ensurethat all of the unstrutured grid points are where they are needed to resolvethe ow features, o�sets the inherent poorer auray of these unstrutured griddisretisation ompared to those using smoothly varying strutured grids. In ad-dition, grid adaptation through insertion of additional grid points is very easilyaomplished. Thus, for a given level of the auray, the omputational ost ofunstrutured grid CFD algorithms is omparable to that of multi-blok stru-tured grid algorithms. This takes into aount advanes in multigrid aelerationalgorithms whih now give the same speedup bene�ts for unstrutured grids asfor strutured grids.It is not my intention here to present a omprehensive review of the sub-stantial literature on unstrutured grid ow algorithms; there are many goodreview artiles on this subjet. Instead, my objetive is to disuss the use of suhmethods for the purposes of design. The next setion briey outlines the stan-dard analysis approah, and the way in whih it an be used within stohastioptimisation.



3Thereafter, the fous is on gradient-based optimisation methods in whih theoptimisation of an objetive funtion is aomplished using information aboutits gradient with respet to the design parameters. This gradient an be de-rived in a number of di�erent ways. Finite di�erening the results of nonlinearow omputations is the simplest. To obtain aurate approximate derivativesrequires the use of onsistently perturbed grids. Grid movement algorithms toaomplish this are desribed in the third setion.An alternative approah to obtain the linear sensitivities is exat linearisationleading to the disrete adjoint equations whih is the subjet of the fourth setion.This setion also disusses the analyti formulation of the adjoint equations,whih an then be disretised to again obtain approximate linear sensitivities atlow omputational ost.The �nal setion presents some examples of the use of unstrutured grid meth-ods for design appliations. These 3D examples are all very reent, illustratingthe urrent state of researh in this area.2 Analysis methods and stohasti optimisationAn unstrutured grid CFD analysis system has two main omponents, the gridgenerator and the ow ode.Grid generation for visous ow analysis is usually aomplished in threephases, the seond of whih is omitted when the grid is to be used for invisidow analysis:� SurfaeThe gridding of the surfae starts by plaing grid points along key lines,suh as the leading edge of the wing, the intersetion of the fuselage withthe symmetry plane, the intersetion of a blade with the hub or tip annuli,et. These lines divide the surfae of the omplex objet into a number ofpiees, eah of whih is then triangulated, often using an advaning frontalgorithm.� B.l./wakeThis is still an ative researh area, but at present the most suessfulmethods generate the grid for the boundary layer and wake by advaningoutwards from the triangulated surfae along lines whih are approximatelynormal to the surfae, reating new grid points and generating prisms whihare subsequently ut into tetrahedra [5, 17℄.� InteriorHaving also triangulated any domain boundary surfaes (far-�eld, symme-try, inow/outow) the �nal step is to reate the grid points and tetrahedra



4 in the remainder of the interior of the domain. The fastest methods for thisare based on the Delauney algorithm [32℄, but advaning front methods arealso used beause they o�er additional exibility in ontrolling the qualityof the grid that is generatedIn eah phase the user has to ontrol the grid resolution whih is desired;the surfae grid density in the �rst phase, the boundary layer resolution in theseond, and the volumetri grid density in the third. In 2D appliations, the griddensity is often ontrolled through the use of a `bakground grid', a triangulargrid used to de�ne a pieewise linear spaing funtion Æ(x; y) [22℄. To ensuregood resolution at the leading edge of a wing, one would plae a grid point ofthe bakground grid inside the leading edge irle, and speify a small spaingvalue at that point. In 2D it is relatively easy to reate this bakground grid,but in 3D it is muh harder. One approah is to de�ne the surfae grid densitybased on the loal urvature and then interpolate from this to de�ne the interiorgrid spaing [33℄. In priniple, this is a good idea, but in pratie there areproblems with it produing too many grid points in some regions and too few inothers. An alternative approah is to de�ne a default spaing, and then use aombination of point, line and planar `soures' to de�ne inreased grid resolutionin ertain regions [31, 33℄. Using this tehnique, inreased grid resolution nearthe leading edge of a 3D wing is aomplished by plaing a spanwise line soureinside the leading edge of the wing. The boundary layer resolution is ontrolledby speifying a boundary layer grid thikness funtion on the surfae of the objet(possibly using a `bakground grid' on eah piee of the surfae) and speifyingthe desired number of grid points aross the boundary layer.Unstrutured grid ow solvers are also the subjet of muh urrent researh.There are now a number of well established algorithms for disretising the Eulerequations on tetrahedral grids. There are also well-developed multigrid algo-rithms for aelerating the steady-state onvergene of Euler omputations, us-ing non-nested grids [6, 21℄, ell agglomeration [28℄, edge-ollapsing [7℄ and othermethods. Methods for parallelising suh ow odes have also been developed [8,9℄, so that it is now possible to ahieve four orders of magnitude onvergene(suÆient for engineering auray) on a grid with 1 million tetrahedra in 1 houron an 8-proessor parallel omputer. Thus, invisid ow alulations for omplexgeometries using large grids are beoming a pratial engineering tool.It is the visous algorithms on unstrutured grids whih require further devel-opment. The disretisations on the highly strethed tetrahedral grids neessaryfor high Reynolds number appliations are still not as aurate as those for stru-tured grids. It is possible the solution is the use of prism ells in the boundarylayer [20℄. There is sope for improving the multigrid algorithms as well, as so farthey do not ahieve the same speedup as the multigrid methods for visous om-putations on strutured grids. In the longer term, it is inreasingly believed thatthe optimum solution will be a hybrid method, using a ombination of strutured



5and unstrutured grids, bene�tting from the auray and low omputationalost of body-�tted strutured grids in most of the ow domain, together withthe exibility of unstrutured grids in regions of geometri omplexity.Whether or not the future lies with simple tetrahedral grids or more ompli-ated hybrid grids, it seems likely that in the next 5 years Reynolds-averagedNavier-Stokes omputations for omplex geometries will start to beome a rou-tine engineering analysis tool. This then raises the question of how best to usethese for design optimisation. Coneptually, the simplest approah is to use ge-neti algorithms [10℄ or some other form of stohasti optimisation. All theseoptimisation methods require is the ability to alulate the ow �eld given thevalues of a set of design parameters.However, in pratie, there are two major diÆulties. One is due to thegrid generation proess desribed above. Suppose that the CAD/CAM systeman automatially generate the new solid body geometry given the values of thedesign parameters. The problem is that the grid generator annot automatiallygenerate a new grid beause at present user input is needed to de�ne the requiredgrid resolution, modifying the bakground grid or point/line soures as neessary.For example, if the sweep angle of the airraft wing is hanged (or lean of theturbine blade staking) then the leading edge of the wing or blade will be in adi�erent plae, and so the line soure plaed inside the leading edge will needto be moved. One solution to this problem is the use of grid movement (tobe desribed in the next setion) to generate a deform an initial grid as thedesign parameters hange. However, this fores the grid to remain topologiallyidential whih in turn prevents onsideration of design parameter values whihhange the topology of the airraft. The other possible solution is an advanein grid generation tehniques to automatially de�ne the grid resolution (for agiven overall number of grid points) based on the geometry of the airraft orturbomahine, using information suh as the surfae urvature.The seond problem is the omputational ost. Stohasti methods requireseveral hundred ow alulations. If all of these are performed on �ne grids withthe resolution needed to produe answers with aeptable engineering auray,the total ost is prohibitive and looks likely to remain so for the next twentyyears. A possible solution to this problem is to use oarser grids (or the Eu-ler equations instead of the Navier-Stokes equations) during the initial phasesof the optimisation, swithing progressively to the �ner grids (and more au-rate modelling) as the design onverges towards the optimum. In this way, themore aurate (and more expensive) results an be used to `orret' the moreapproximate values. This is a promising line of researh whih ould greatly re-due the ost of stohasti optimisation. However, at present, I believe the mostost-e�etive approah to optimising omplex geometries lies with lassial opti-misation methods whih use the gradient of the objetive funtion with respetto the design parameters.



63 Approximate sensitivities and grid movementOne simple way in whih to alulate the approximate sensitivity of the ow�eld to hanges in eah design parameters is through �nite di�erening of thesolutions from a number of nonlinear omputations [25, 26℄. Thus, for eah setof design parameters �, the disrete ow equationsF (U ;�) = 0;are solved to impliitly obtain the ow �eld U as a funtion of the design param-eters �. To obtain the gradient of an objetive funtion I(U ;�) when there areN design parameters requires at least N+1 alulations. The simplest approahis to use one-sided di�erening so that the derivative of the objetive funtionwith respet to the kth design parameter is approximated bydId�k � I(U(�+�kek);�+�kek)� I(U(�);�)�kwhere ek is a vetor whose elements are zero exept for the kth whih is unity,and �k is some suitably small perturbation.Perturbing the design parameters hanges the surfae geometry of the airraftor turbomahine, and hene perturbs the grid. If the new grid is reated by thestandard unstrutured grid generator, there is the possibility that the new gridwill be topologially di�erent to the original. This ould lead to signi�ant errorsin the approximate sensitivity that is omputed. A hange in the topology willlead to a small disontinuity in the value of the objetive funtion; if �k is verysmall then in the worst ase this disontinuity in objetive funtion will lead toa very large error in the approximate gradient. The other problem with usingthe standard grid generator to reate eah grid is the one raised in the previoussetion, that signi�ant user input is often required to ensure good grid resolutionin the regions that require it.A better approah is to reate a perturbed grid with the same topology asthe original, by perturbing the oordinates of the grid points of the original gridin a way whih is onsistent with the perturbation to the surfae geometry ofthe airraft. Referring bak to the three phases of grid generation outlined inthe last setion, the �rst step is to de�ne perturbations to the grid nodes lyingon the surfae. In pratie, this is also the hardest step. The methods whihare urrently used [12, 25, 26℄ employ simple algebrai funtions to perturb thesurfae points. These perturbations are not ompatible with the standard solidbody representations in CAD/CAM software and so the body whih is designedwould have to be modi�ed to be stored within the CAD/CAM system.A muh better solution would be to interfae to the CAD/CAM system di-retly. Maintaining the relative spaing along the key lines suh as the leadingedge line would de�ne the movement of the grid points as the lines themselves



7move in response to hanges in a design parameter. On eah surfae path, thegeometry is represented in parametri form as (x(�; �); y(�; �); z(�; �)) where �; �are general surfae oordinates. Knowing the e�; e� perturbations to the pointsalong the bounding lines, orresponding perturbations to the other grid pointson the surfae ould be onstruted using either the method of `springs' or theellipti p.d.e. approah to be desribed shortly. Having determined the e�; e� per-turbations to the surfae grid points, the orresponding Cartesian perturbationsex; ey; ez are then easily evaluated.One the surfae perturbations are onstruted it is relatively easy to on-strut orresponding oordinate perturbations for all interior grid points, inlud-ing those in the boundary layer and wake region. The method of springs onsidersall edges in the grid to be springs [2, 29℄. The base grid is de�ned to be in equi-librium due to the addition of nodal fores. The displaement of the surfae gridpoints upsets this equilibrium, and so the perturbation of the interior grid pointsis de�ned to re-establish an equilibrium of fores ating on eah interior gridpoint. It is ommon to de�ne the spring onstant for eah spring to be inverselyproportional to the length of the edge. The e�et of this is to maintain the gridspaing aross a boundary layer and prevent the formation of a grid singularityleading to ells with negative volumes.The alternative approah is to ompute the oordinate perturbation ex(x) bysolving an ellipti p.d.e. of the formr � (k(x)rex) = 0;subjet to Dirihlet boundary onditions [7℄. The hoie of an ellipti p.d.e. en-sures a smooth perturbation. Using a standard Galerkin �nite element disreti-sation, the di�usivity fator k is hosen to be proportional to the ell volumeof the perturbed grid. This ensures that the volume of the ells in the bound-ary layer is almost unhanged, maintaining the desired grid resolution aross theboundary layer, and again prevents the reation of ells with negative volume.4 Linearisation and adjoint equations methodsMathematially, the simplest form of linear analysis is equivalent to the nonlinearanalysis in the limit as �k ! 0. If we de�ne fUk to be the sensitivity of Uto hanges in the kth design parameter, then linearising the nonlinear disreteequations yields �F�U fUk + �F��k = 0:The term �F��k arises from the fat that the the ux residuals depend on theoordinates of the grid points, represented olletively by the symbolX, and thegrid in turn depends on the design parameters. Hene, by the hain rule one



8obtains �F��k = �F�X �X��k :where �X��k represents the linearised grid sensitivity to perturbations in the kthdesign parameter. In priniple, one ould de�ne �X��k to be non-zero only atsurfae points. Suh an approah was adopted in the �rst methods for linearisedunsteady potential ow analysis [30, 34℄ but it was later disovered that usinga ontinuously deforming grid gave improved numerial auray [13, 35℄. Thusit is probable that here too one will obtain improved auray from using �X��kde�ned from a smooth grid perturbation.The linear perturbation equation an be solved by the standard multigridmethod to obtain fUk. The total derivative of an objetive funtion with respetto the kth design parameter is then given bydId�k = �I�U fUk + �I��k :The drawbak with this approah is that it involves the development of an entirelynew CFD ode, and sine it still requires a separate alulation for eah designparameter it o�ers no bene�ts in omputational ost ompared to using nonlinearomputations to obtain the approximate sensitivities. The one exeption to thisis an unusual turbomahinery appliation in whih one designs a blade row witha sinusoidal irumferential variation in amber with the aim of produing aorresponding pressure variation anelling that produed by a single large pylon.In this ase the nonlinear analysis must be performed for the full annulus whereasthe linear analysis an be performed using omplex variables on a single bladepassage with a omplex phase shift between its two periodi boundaries [25, 26℄.The desire to redue the omputational ost leads to the use of the adjointequations. The disrete adjoint approah [12, 11, 19℄ starts from the linear equa-tions above and eliminates fUk to obtaindId�k = � �I�U  �F�U !�1 �F��k + �I��k :This an then be written as dId�k = V T �F��k + �I��k ;where the vetor V satis�es the equation �F�U !T V +  �I�U !T = 0:The great advantage of this approah is that one only needs to solve a single�nite di�erene equation to get the sensitivities of I with respet to all of the



9design parameters. This is beause the same solution V is used for eah valueof k. The only additional ost for eah design parameter is the omputation of�F��k and �I��k , whih is inexpensive, and the dot produt V T �F��k whih is evenheaper.The drawbak of the adjoint approah is that a separate adjoint equationmust be solved for eah objetive funtion or onstraint funtion. Hene, in ahighly onstrained design in whih the number of ative onstraints is omparablewith the number of ative design parameters, there is little to be gained fromthe adjoint approah.The label `adjoint' omes from the alternative treatment in whih one startswith the linearised partial di�erential equation and onverts the linear sensitivityof the objetive funtion into an equivalent form involving the solution of theadjoint partial di�erential equation with appropriate boundary onditions [18℄.This an then be disretised and solved numerially [1, 3, 4, 14, 15, 16, 23, 27℄. Thetheoretial development of the adjoint p.d.e. will not be presented here. Insteadwe onsider the formulation of the linearised equations. In almost all of thereferenes listed above, the linearised equations are formulated using urvilinearoordinates (�; �; �) suh that the airfoil is always a oordinate surfae, suhas � = 0. This approah is appropriate for developing CFD methods using astrutured grid with a single grid blok, but a di�erent approah is neessarywhen using unstrutured grids.For simpliity, we onsider the 2D Euler equations whih may be written inonservation form are ��xFx(U) + ��yFy(U) = 0;where U is the vetor of onservation variables and Fx(U) and Fy(U) are nonlin-ear ux funtions,U = 0BBB� ��ux�uy�E 1CCCA ; Fx = 0BBB� �ux�u2x + p�uxuy�uxH 1CCCA ; Fy = 0BBB� �uy�uxuy�u2y + p�uyH 1CCCA :Simply linearising about a given steady-state solution, U(x; y), leads to the equa-tion Lu � ��x (Axu) + ��y (Ayu) = 0;where u is de�ned to be the linear hange in the ow solution at a point with�xed oordinates (x; y), and the spatially varying matries Ax; Ay are de�ned byAx � �Fx�U �����U(x;y) ; Ay � �Fy�U �����U(x;y) :This approah, extended to the Navier-Stokes equations, is the one used in Ref-erene [1℄. However, this de�nition of u leads to diÆulties in approximating



10the boundary onditions on a perturbed surfae, sine a point whih used to beon the surfae may no longer be. For the Navier-Stokes equations, the no-slipboundary ondition requires that ux = uy = 0:Linearising these onditions when the surfae is displaed through distane exgives eux + ex � rux = euy + ex � ruy = 0:Thus, the boundary onditions for the linearised problem involve the evaluationof gradients of the original base solution. In the boundary layer these gradientsare very large, resulting in signi�ant errors. This approah, and its weaknesses,are similar to the lassial treatment of linear unsteady ow analysis, as disussedearlier.To avoid these problems, what is needed is a treatment whih uses a gridwhih deforms linearly in a way whih is onsistent with the design hanges tothe surfae geometry. Therefore, u is de�ned to be the linear perturbation in theow solution taking into aount a linear perturbation in the oordinates. Thestarting point for this formulation is the onservative form of the Euler equationusing general urvilinear oordinates,���  Fx�y�� � Fy �x��!+ ���  Fy �x�� � Fx�y��! = 0:We now de�ne the perturbed oordinates asx = � + �X(�; �); y = � + �Y (�; �);where � is a design variable. X(�; �) and Y (�; �) are smooth funtions whihmath the surfae perturbations due to the design variable, so that a point (�; �)whih is initially on a solid surfae remains so as the design variable hanges.Linearising with respet to � yields��� (Axu) + ��� (Ayu) = � ���  Fx�Y�� � Fy �X�� !� ���  Fy �X�� � Fx�Y�� ! ;where u is now the perturbation in the ow variables for �xed (�; �) rather than�xed (x; y), and the uxes Fx and Fy are based on the unperturbed ow variablesU . Swithing notation from (�; �) bak to (x; y) then produes an inhomogeneousp.d.e. of the form Lu = f , where L represents the di�erential operator. Inessene, this treatment is very similar to that used by Jameson and others forsingle-blok Euler and Navier-Stokes omputations. The di�erene is that inJameson's formulation the solid surfae orresponds to part of the oordinatesurfae � = 0, whereas in this formulation the solid surfae is the original surfaede�ned in Cartesian oordinates. As a onsequene, this new formulation an beused with an unstrutured grid disretisation for omplex geometries.
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Figure 1: sequene of grids used by multigrid (outer annulus not plotted)

DatumUnderturnedDatumOverturnedDatum

Figure 2: grouping of OGV's for 3 blade design5 Examples5.1 Outlet guide vane optimisationShrinivas has used nonlinear approximate sensitivities for a 3D design appliationonerning the bypass dut of a turbofan aeroengine [24℄; this is an extension ofearlier researh by Shrinivas and Giles using 2D modelling [25, 26℄.Figure 1 shows the geometry of the bypass dut and three of the grids usedfor the multigrid aeleration. For larity, only the inner annulus of the dut isnot plotted. Figure 2 displays an `unwrapped' irumferential view of the mid-span geometry, halfway between the inner and outer annuli. There is a largepylon whih is the main strutural support for the engine ore. Upstream ofthe pylon is a set of outlet guide vanes (OGVs) and upstream of these wouldbe the rotating fan in the atual engine. The fan generates a irumferentialomponent of ow veloity and the purpose of the OGVs is to turn the ow



12bak in the axial diretion. The design problem is that the very large pylonauses a blokage whih produes a pressure �eld whih deays very slowly inthe axial diretion. The OGVs shield it to some extent, but nevertheless thereis a signi�ant irumferential pressure variation upstream of the OGVs. In theengine this leads to an unsteady interation with the rotating fan, produinghigher stress levels and redued aerodynami eÆieny.The objetive of the design proess is to redue this interation to a minimumby re-designing the OGV's to ounterat the pressure �eld reated by the pylon.The objetive funtion is a disrete approximation to the following integral ofthe irumferential pressure variation on a plane upstream of the OGVs.I = Z Z (p(r; �)� p(r))2 d� drwhere p(r) represents the irumferentially averaged pressure at a partiularradius.The invisid ow ode that was used in this work was developed by Crumpton[7℄. It uses an edge-based disretisation of the Euler equations and a standardRunge-Kutta time-marhing algorithm. Edge-ollapsing is used to generate theoarser grids for the multigrid algorithm. The exeution speed is further im-proved through parallel omputing on mahines suh as the IBM SP2 using theOPlus parallel library [8℄.Two design exerises have been onduted. In eah ase, the amber of theOGVs is altered through a irumferential displaement �� whih varies quadrat-ially in the axial diretion and linearly in the spanwise diretion,�� = (x� xl:e:(r))2 (ar + b)with xl:e:(r) being the axial loation of the leading edge.In the �rst design exerise, the onstants a; b vary sinusoidally from one OGVto the next, with the OGVs nearest to the pylon and farthest from it havingzero perturbations. This is appropriate beause of the symmetry of the designproblem. Thus, there are just 2 design parameters, the values for a and b for theblade with maximum displaement. Figure 3 shows the derease in the level ofirumferential pressure variation at mid-span, and the assoiated derease in thevalue of the objetive funtion. Beause the objetive funtion is approximatelyquadrati, and the method of diret sensitivities provides a very good estimateof the Hessian, the design optimum is almost ahieved in one iteration.From a pratial engineering viewpoint, this design is far from ideal beause itrequires eah OGV to be unique, inreasing the ost of manufature and the num-ber of spare parts the airlines must keep. The seond design exerise addressesthis by allowing only 3 blade types, the original datum blade, an overturnedblade with inreased amber and an underturned blade with dereased amber.Figure 2 shows the hosen grouping of these blades. There are still just two
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Figure 5: Initial surfae grid for airraft wing design [12℄5.2 Airraft wing designA reent paper by Elliot and Peraire [12℄ shows the state-of-the-art in the useof adjoint equations for design optimisation on unstrutured grids. The mainappliation onsidered is the wing optimisation for a business jet. The surfaegrid for the baseline on�guration is shown in Figure 5.Simple algebrai funtions are used to de�ne 6 design perturbation modesfor the wing surfae; are was taken to ensure ompatible perturbations to gridpoints on the fuselage. The authors omment that a more ideal solution wouldinvolve oupling to a CAD/CAM system, as desribed earlier in these leturenotes. A linearised version of the method of springs is used to reate the griddeformations in the interior.The optimisation uses the disrete adjoint method, based on a linearisationof the disrete ow equations. Multigrid and parallel omputing, using MPI orPVM on mahines suh the IBM SP2 or CRAY-T3D, are employed to reduethe exeution time.The objetive funtion is the mean-square deviation from a target pressure
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Figure 6: Evolution of the wing geometry during design [12℄

Figure 7: Evolution of the pressure distribution on the wing [12℄



16distribution orresponding to a `lean wing' in the absene of the rear-mountedengine naelle and pylon. Two design iterations are taken, dereasing the obje-tive funtion by 75%. Figures 6 and 7 show the evolution of the wing geometryand pressure distributions, respetively.6 ConlusionsThe optimisation of omplex aeronautial geometries using unstrutured gridCFD methods is an ative area of researh. Most of the referenes in this paperare from the last 5 years, and it an be expeted that there will be signi�antnew developments in the next 5 years.Inreased omputational power will make design optimisation using the Navier-Stokes equations feasible. A oupling of the design system to solid geometryCAD/CAM systems seems essential for industrial use; although there is no the-oretial diÆulty in aomplishing this, it may involve a substantial amount ofsoftware engineering.Thereafter, the hallenge will be to takle inreasingly diÆult design appli-ations, involving many more design variables and onstraints. Only then will itbe possible to properly assess the advantages and disadvantages of the di�erentoptimisation approahes.Referenes[1℄ W.K. Anderson and V. Venkatakrishnan. Aerodynami design optimizationon unstrutured grids with a ontinuous adjoint formulation. AIAA Paper97-0643, 1997.[2℄ J. Batina. Impliit ux split Euler sheme for unsteady aerodynami analysisinvolving unstrutured dynami meshes. AIAA J., 29(11):1836{1843, 1991.[3℄ O. Baysal and M. Eleshaky. Aerodynami design optimization using sensi-tivity analysis and omputational uid dynamis. AIAA J., 30(3):718{725,1992.[4℄ O. Baysal and M.E. Eleshaky. Aerodynami sensitivity analysis methodsfor the ompressible Euler equations. J. Fluids. Engrg., 113:681{688, 1991.[5℄ S. Connell and M. Braaten. Semi-strutured mesh generation for 3D Navier-Stokes alulations. AIAA Paper 95-1679, 1995.[6℄ P.I. Crumpton and M.B. Giles. Airraft omputations using multigrid andan unstrutured parallel library. AIAA Paper 95-0210, 1995.
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