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21 Introdu
tionFor simple aeronauti
al appli
ations su
h as air
raft wing/fuselage analysis andturboma
hinery 
as
ade analysis, the standard CFD approa
h is to use a stru
-tured grid, often 
ontaining just a single stru
tured blo
k. In these 
ases, thegrid generation is relatively easy and the stru
tured grid CFD methods havethe advantages of better a

ura
y and lower 
omputational 
ost 
ompared tounstru
tured grid methods.However, in aeronauti
al design one is often 
on
erned with mu
h more 
om-plex geometries. With air
raft, in addition to the wing and fuselage one mightwish to in
lude the tail, winglets, the engines and their pylons, the underwingtra
k fairings for the 
aps and even the extended 
aps in the high-lift 
on�gu-ration. In turboma
hinery, there are 
omplex geometries in the bypass du
ts ofturbofan engines, 
ombustors, internal 
ooling passages within turbine blades,et
. For su
h appli
ations, the generation of an appropriate multi-blo
k stru
-tured grid be
omes a diÆ
ult time-
onsuming task. Furthermore, the topologi
alrestri
tions of su
h grids usually result in ex
essive grid resolution in some partsof the 
ow �eld in order to a
hieve adequate grid resolution in other areas.It is for su
h appli
ations with 
omplex geometries that the use of unstru
-tured grid CFD algorithms is most appropriate. Given a valid CAD/CAM def-inition of the 
omplex obje
t as a set of interse
ting solids/surfa
es, there arenow grid generators whi
h 
an produ
e a good quality grid with one milliontetrahedra for invis
id 
ow analysis in ten minutes on a standard workstation.There is still 
onsiderable resear
h on the issues of vis
ous grid generation andsimplifying the user spe
i�
ation of the desired grid resolution in di�erent partsof the grid. However, steady progress is being made in these areas so that itwill soon be possible to 
reate high quality unstru
tured grids for vis
ous 
owanalysis with a minimum of user intervention. The fa
t that one 
an ensurethat all of the unstru
tured grid points are where they are needed to resolvethe 
ow features, o�sets the inherent poorer a

ura
y of these unstru
tured griddis
retisation 
ompared to those using smoothly varying stru
tured grids. In ad-dition, grid adaptation through insertion of additional grid points is very easilya

omplished. Thus, for a given level of the a

ura
y, the 
omputational 
ost ofunstru
tured grid CFD algorithms is 
omparable to that of multi-blo
k stru
-tured grid algorithms. This takes into a

ount advan
es in multigrid a

elerationalgorithms whi
h now give the same speedup bene�ts for unstru
tured grids asfor stru
tured grids.It is not my intention here to present a 
omprehensive review of the sub-stantial literature on unstru
tured grid 
ow algorithms; there are many goodreview arti
les on this subje
t. Instead, my obje
tive is to dis
uss the use of su
hmethods for the purposes of design. The next se
tion brie
y outlines the stan-dard analysis approa
h, and the way in whi
h it 
an be used within sto
hasti
optimisation.



3Thereafter, the fo
us is on gradient-based optimisation methods in whi
h theoptimisation of an obje
tive fun
tion is a

omplished using information aboutits gradient with respe
t to the design parameters. This gradient 
an be de-rived in a number of di�erent ways. Finite di�eren
ing the results of nonlinear
ow 
omputations is the simplest. To obtain a

urate approximate derivativesrequires the use of 
onsistently perturbed grids. Grid movement algorithms toa

omplish this are des
ribed in the third se
tion.An alternative approa
h to obtain the linear sensitivities is exa
t linearisationleading to the dis
rete adjoint equations whi
h is the subje
t of the fourth se
tion.This se
tion also dis
usses the analyti
 formulation of the adjoint equations,whi
h 
an then be dis
retised to again obtain approximate linear sensitivities atlow 
omputational 
ost.The �nal se
tion presents some examples of the use of unstru
tured grid meth-ods for design appli
ations. These 3D examples are all very re
ent, illustratingthe 
urrent state of resear
h in this area.2 Analysis methods and sto
hasti
 optimisationAn unstru
tured grid CFD analysis system has two main 
omponents, the gridgenerator and the 
ow 
ode.Grid generation for vis
ous 
ow analysis is usually a

omplished in threephases, the se
ond of whi
h is omitted when the grid is to be used for invis
id
ow analysis:� Surfa
eThe gridding of the surfa
e starts by pla
ing grid points along key lines,su
h as the leading edge of the wing, the interse
tion of the fuselage withthe symmetry plane, the interse
tion of a blade with the hub or tip annuli,et
. These lines divide the surfa
e of the 
omplex obje
t into a number ofpie
es, ea
h of whi
h is then triangulated, often using an advan
ing frontalgorithm.� B.l./wakeThis is still an a
tive resear
h area, but at present the most su

essfulmethods generate the grid for the boundary layer and wake by advan
ingoutwards from the triangulated surfa
e along lines whi
h are approximatelynormal to the surfa
e, 
reating new grid points and generating prisms whi
hare subsequently 
ut into tetrahedra [5, 17℄.� InteriorHaving also triangulated any domain boundary surfa
es (far-�eld, symme-try, in
ow/out
ow) the �nal step is to 
reate the grid points and tetrahedra



4 in the remainder of the interior of the domain. The fastest methods for thisare based on the Delauney algorithm [32℄, but advan
ing front methods arealso used be
ause they o�er additional 
exibility in 
ontrolling the qualityof the grid that is generatedIn ea
h phase the user has to 
ontrol the grid resolution whi
h is desired;the surfa
e grid density in the �rst phase, the boundary layer resolution in these
ond, and the volumetri
 grid density in the third. In 2D appli
ations, the griddensity is often 
ontrolled through the use of a `ba
kground grid', a triangulargrid used to de�ne a pie
ewise linear spa
ing fun
tion Æ(x; y) [22℄. To ensuregood resolution at the leading edge of a wing, one would pla
e a grid point ofthe ba
kground grid inside the leading edge 
ir
le, and spe
ify a small spa
ingvalue at that point. In 2D it is relatively easy to 
reate this ba
kground grid,but in 3D it is mu
h harder. One approa
h is to de�ne the surfa
e grid densitybased on the lo
al 
urvature and then interpolate from this to de�ne the interiorgrid spa
ing [33℄. In prin
iple, this is a good idea, but in pra
ti
e there areproblems with it produ
ing too many grid points in some regions and too few inothers. An alternative approa
h is to de�ne a default spa
ing, and then use a
ombination of point, line and planar `sour
es' to de�ne in
reased grid resolutionin 
ertain regions [31, 33℄. Using this te
hnique, in
reased grid resolution nearthe leading edge of a 3D wing is a

omplished by pla
ing a spanwise line sour
einside the leading edge of the wing. The boundary layer resolution is 
ontrolledby spe
ifying a boundary layer grid thi
kness fun
tion on the surfa
e of the obje
t(possibly using a `ba
kground grid' on ea
h pie
e of the surfa
e) and spe
ifyingthe desired number of grid points a
ross the boundary layer.Unstru
tured grid 
ow solvers are also the subje
t of mu
h 
urrent resear
h.There are now a number of well established algorithms for dis
retising the Eulerequations on tetrahedral grids. There are also well-developed multigrid algo-rithms for a

elerating the steady-state 
onvergen
e of Euler 
omputations, us-ing non-nested grids [6, 21℄, 
ell agglomeration [28℄, edge-
ollapsing [7℄ and othermethods. Methods for parallelising su
h 
ow 
odes have also been developed [8,9℄, so that it is now possible to a
hieve four orders of magnitude 
onvergen
e(suÆ
ient for engineering a

ura
y) on a grid with 1 million tetrahedra in 1 houron an 8-pro
essor parallel 
omputer. Thus, invis
id 
ow 
al
ulations for 
omplexgeometries using large grids are be
oming a pra
ti
al engineering tool.It is the vis
ous algorithms on unstru
tured grids whi
h require further devel-opment. The dis
retisations on the highly stret
hed tetrahedral grids ne
essaryfor high Reynolds number appli
ations are still not as a

urate as those for stru
-tured grids. It is possible the solution is the use of prism 
ells in the boundarylayer [20℄. There is s
ope for improving the multigrid algorithms as well, as so farthey do not a
hieve the same speedup as the multigrid methods for vis
ous 
om-putations on stru
tured grids. In the longer term, it is in
reasingly believed thatthe optimum solution will be a hybrid method, using a 
ombination of stru
tured



5and unstru
tured grids, bene�tting from the a

ura
y and low 
omputational
ost of body-�tted stru
tured grids in most of the 
ow domain, together withthe 
exibility of unstru
tured grids in regions of geometri
 
omplexity.Whether or not the future lies with simple tetrahedral grids or more 
ompli-
ated hybrid grids, it seems likely that in the next 5 years Reynolds-averagedNavier-Stokes 
omputations for 
omplex geometries will start to be
ome a rou-tine engineering analysis tool. This then raises the question of how best to usethese for design optimisation. Con
eptually, the simplest approa
h is to use ge-neti
 algorithms [10℄ or some other form of sto
hasti
 optimisation. All theseoptimisation methods require is the ability to 
al
ulate the 
ow �eld given thevalues of a set of design parameters.However, in pra
ti
e, there are two major diÆ
ulties. One is due to thegrid generation pro
ess des
ribed above. Suppose that the CAD/CAM system
an automati
ally generate the new solid body geometry given the values of thedesign parameters. The problem is that the grid generator 
annot automati
allygenerate a new grid be
ause at present user input is needed to de�ne the requiredgrid resolution, modifying the ba
kground grid or point/line sour
es as ne
essary.For example, if the sweep angle of the air
raft wing is 
hanged (or lean of theturbine blade sta
king) then the leading edge of the wing or blade will be in adi�erent pla
e, and so the line sour
e pla
ed inside the leading edge will needto be moved. One solution to this problem is the use of grid movement (tobe des
ribed in the next se
tion) to generate a deform an initial grid as thedesign parameters 
hange. However, this for
es the grid to remain topologi
allyidenti
al whi
h in turn prevents 
onsideration of design parameter values whi
h
hange the topology of the air
raft. The other possible solution is an advan
ein grid generation te
hniques to automati
ally de�ne the grid resolution (for agiven overall number of grid points) based on the geometry of the air
raft orturboma
hine, using information su
h as the surfa
e 
urvature.The se
ond problem is the 
omputational 
ost. Sto
hasti
 methods requireseveral hundred 
ow 
al
ulations. If all of these are performed on �ne grids withthe resolution needed to produ
e answers with a

eptable engineering a

ura
y,the total 
ost is prohibitive and looks likely to remain so for the next twentyyears. A possible solution to this problem is to use 
oarser grids (or the Eu-ler equations instead of the Navier-Stokes equations) during the initial phasesof the optimisation, swit
hing progressively to the �ner grids (and more a

u-rate modelling) as the design 
onverges towards the optimum. In this way, themore a

urate (and more expensive) results 
an be used to `
orre
t' the moreapproximate values. This is a promising line of resear
h whi
h 
ould greatly re-du
e the 
ost of sto
hasti
 optimisation. However, at present, I believe the most
ost-e�e
tive approa
h to optimising 
omplex geometries lies with 
lassi
al opti-misation methods whi
h use the gradient of the obje
tive fun
tion with respe
tto the design parameters.



63 Approximate sensitivities and grid movementOne simple way in whi
h to 
al
ulate the approximate sensitivity of the 
ow�eld to 
hanges in ea
h design parameters is through �nite di�eren
ing of thesolutions from a number of nonlinear 
omputations [25, 26℄. Thus, for ea
h setof design parameters �, the dis
rete 
ow equationsF (U ;�) = 0;are solved to impli
itly obtain the 
ow �eld U as a fun
tion of the design param-eters �. To obtain the gradient of an obje
tive fun
tion I(U ;�) when there areN design parameters requires at least N+1 
al
ulations. The simplest approa
his to use one-sided di�eren
ing so that the derivative of the obje
tive fun
tionwith respe
t to the kth design parameter is approximated bydId�k � I(U(�+�kek);�+�kek)� I(U(�);�)�kwhere ek is a ve
tor whose elements are zero ex
ept for the kth whi
h is unity,and �k is some suitably small perturbation.Perturbing the design parameters 
hanges the surfa
e geometry of the air
raftor turboma
hine, and hen
e perturbs the grid. If the new grid is 
reated by thestandard unstru
tured grid generator, there is the possibility that the new gridwill be topologi
ally di�erent to the original. This 
ould lead to signi�
ant errorsin the approximate sensitivity that is 
omputed. A 
hange in the topology willlead to a small dis
ontinuity in the value of the obje
tive fun
tion; if �k is verysmall then in the worst 
ase this dis
ontinuity in obje
tive fun
tion will lead toa very large error in the approximate gradient. The other problem with usingthe standard grid generator to 
reate ea
h grid is the one raised in the previousse
tion, that signi�
ant user input is often required to ensure good grid resolutionin the regions that require it.A better approa
h is to 
reate a perturbed grid with the same topology asthe original, by perturbing the 
oordinates of the grid points of the original gridin a way whi
h is 
onsistent with the perturbation to the surfa
e geometry ofthe air
raft. Referring ba
k to the three phases of grid generation outlined inthe last se
tion, the �rst step is to de�ne perturbations to the grid nodes lyingon the surfa
e. In pra
ti
e, this is also the hardest step. The methods whi
hare 
urrently used [12, 25, 26℄ employ simple algebrai
 fun
tions to perturb thesurfa
e points. These perturbations are not 
ompatible with the standard solidbody representations in CAD/CAM software and so the body whi
h is designedwould have to be modi�ed to be stored within the CAD/CAM system.A mu
h better solution would be to interfa
e to the CAD/CAM system di-re
tly. Maintaining the relative spa
ing along the key lines su
h as the leadingedge line would de�ne the movement of the grid points as the lines themselves



7move in response to 
hanges in a design parameter. On ea
h surfa
e pat
h, thegeometry is represented in parametri
 form as (x(�; �); y(�; �); z(�; �)) where �; �are general surfa
e 
oordinates. Knowing the e�; e� perturbations to the pointsalong the bounding lines, 
orresponding perturbations to the other grid pointson the surfa
e 
ould be 
onstru
ted using either the method of `springs' or theellipti
 p.d.e. approa
h to be des
ribed shortly. Having determined the e�; e� per-turbations to the surfa
e grid points, the 
orresponding Cartesian perturbationsex; ey; ez are then easily evaluated.On
e the surfa
e perturbations are 
onstru
ted it is relatively easy to 
on-stru
t 
orresponding 
oordinate perturbations for all interior grid points, in
lud-ing those in the boundary layer and wake region. The method of springs 
onsidersall edges in the grid to be springs [2, 29℄. The base grid is de�ned to be in equi-librium due to the addition of nodal for
es. The displa
ement of the surfa
e gridpoints upsets this equilibrium, and so the perturbation of the interior grid pointsis de�ned to re-establish an equilibrium of for
es a
ting on ea
h interior gridpoint. It is 
ommon to de�ne the spring 
onstant for ea
h spring to be inverselyproportional to the length of the edge. The e�e
t of this is to maintain the gridspa
ing a
ross a boundary layer and prevent the formation of a grid singularityleading to 
ells with negative volumes.The alternative approa
h is to 
ompute the 
oordinate perturbation ex(x) bysolving an ellipti
 p.d.e. of the formr � (k(x)rex) = 0;subje
t to Diri
hlet boundary 
onditions [7℄. The 
hoi
e of an ellipti
 p.d.e. en-sures a smooth perturbation. Using a standard Galerkin �nite element dis
reti-sation, the di�usivity fa
tor k is 
hosen to be proportional to the 
ell volumeof the perturbed grid. This ensures that the volume of the 
ells in the bound-ary layer is almost un
hanged, maintaining the desired grid resolution a
ross theboundary layer, and again prevents the 
reation of 
ells with negative volume.4 Linearisation and adjoint equations methodsMathemati
ally, the simplest form of linear analysis is equivalent to the nonlinearanalysis in the limit as �k ! 0. If we de�ne fUk to be the sensitivity of Uto 
hanges in the kth design parameter, then linearising the nonlinear dis
reteequations yields �F�U fUk + �F��k = 0:The term �F��k arises from the fa
t that the the 
ux residuals depend on the
oordinates of the grid points, represented 
olle
tively by the symbolX, and thegrid in turn depends on the design parameters. Hen
e, by the 
hain rule one



8obtains �F��k = �F�X �X��k :where �X��k represents the linearised grid sensitivity to perturbations in the kthdesign parameter. In prin
iple, one 
ould de�ne �X��k to be non-zero only atsurfa
e points. Su
h an approa
h was adopted in the �rst methods for linearisedunsteady potential 
ow analysis [30, 34℄ but it was later dis
overed that usinga 
ontinuously deforming grid gave improved numeri
al a

ura
y [13, 35℄. Thusit is probable that here too one will obtain improved a

ura
y from using �X��kde�ned from a smooth grid perturbation.The linear perturbation equation 
an be solved by the standard multigridmethod to obtain fUk. The total derivative of an obje
tive fun
tion with respe
tto the kth design parameter is then given bydId�k = �I�U fUk + �I��k :The drawba
k with this approa
h is that it involves the development of an entirelynew CFD 
ode, and sin
e it still requires a separate 
al
ulation for ea
h designparameter it o�ers no bene�ts in 
omputational 
ost 
ompared to using nonlinear
omputations to obtain the approximate sensitivities. The one ex
eption to thisis an unusual turboma
hinery appli
ation in whi
h one designs a blade row witha sinusoidal 
ir
umferential variation in 
amber with the aim of produ
ing a
orresponding pressure variation 
an
elling that produ
ed by a single large pylon.In this 
ase the nonlinear analysis must be performed for the full annulus whereasthe linear analysis 
an be performed using 
omplex variables on a single bladepassage with a 
omplex phase shift between its two periodi
 boundaries [25, 26℄.The desire to redu
e the 
omputational 
ost leads to the use of the adjointequations. The dis
rete adjoint approa
h [12, 11, 19℄ starts from the linear equa-tions above and eliminates fUk to obtaindId�k = � �I�U  �F�U !�1 �F��k + �I��k :This 
an then be written as dId�k = V T �F��k + �I��k ;where the ve
tor V satis�es the equation �F�U !T V +  �I�U !T = 0:The great advantage of this approa
h is that one only needs to solve a single�nite di�eren
e equation to get the sensitivities of I with respe
t to all of the



9design parameters. This is be
ause the same solution V is used for ea
h valueof k. The only additional 
ost for ea
h design parameter is the 
omputation of�F��k and �I��k , whi
h is inexpensive, and the dot produ
t V T �F��k whi
h is even
heaper.The drawba
k of the adjoint approa
h is that a separate adjoint equationmust be solved for ea
h obje
tive fun
tion or 
onstraint fun
tion. Hen
e, in ahighly 
onstrained design in whi
h the number of a
tive 
onstraints is 
omparablewith the number of a
tive design parameters, there is little to be gained fromthe adjoint approa
h.The label `adjoint' 
omes from the alternative treatment in whi
h one startswith the linearised partial di�erential equation and 
onverts the linear sensitivityof the obje
tive fun
tion into an equivalent form involving the solution of theadjoint partial di�erential equation with appropriate boundary 
onditions [18℄.This 
an then be dis
retised and solved numeri
ally [1, 3, 4, 14, 15, 16, 23, 27℄. Thetheoreti
al development of the adjoint p.d.e. will not be presented here. Insteadwe 
onsider the formulation of the linearised equations. In almost all of thereferen
es listed above, the linearised equations are formulated using 
urvilinear
oordinates (�; �; �) su
h that the airfoil is always a 
oordinate surfa
e, su
has � = 0. This approa
h is appropriate for developing CFD methods using astru
tured grid with a single grid blo
k, but a di�erent approa
h is ne
essarywhen using unstru
tured grids.For simpli
ity, we 
onsider the 2D Euler equations whi
h may be written in
onservation form are ��xFx(U) + ��yFy(U) = 0;where U is the ve
tor of 
onservation variables and Fx(U) and Fy(U) are nonlin-ear 
ux fun
tions,U = 0BBB� ��ux�uy�E 1CCCA ; Fx = 0BBB� �ux�u2x + p�uxuy�uxH 1CCCA ; Fy = 0BBB� �uy�uxuy�u2y + p�uyH 1CCCA :Simply linearising about a given steady-state solution, U(x; y), leads to the equa-tion Lu � ��x (Axu) + ��y (Ayu) = 0;where u is de�ned to be the linear 
hange in the 
ow solution at a point with�xed 
oordinates (x; y), and the spatially varying matri
es Ax; Ay are de�ned byAx � �Fx�U �����U(x;y) ; Ay � �Fy�U �����U(x;y) :This approa
h, extended to the Navier-Stokes equations, is the one used in Ref-eren
e [1℄. However, this de�nition of u leads to diÆ
ulties in approximating



10the boundary 
onditions on a perturbed surfa
e, sin
e a point whi
h used to beon the surfa
e may no longer be. For the Navier-Stokes equations, the no-slipboundary 
ondition requires that ux = uy = 0:Linearising these 
onditions when the surfa
e is displa
ed through distan
e exgives eux + ex � rux = euy + ex � ruy = 0:Thus, the boundary 
onditions for the linearised problem involve the evaluationof gradients of the original base solution. In the boundary layer these gradientsare very large, resulting in signi�
ant errors. This approa
h, and its weaknesses,are similar to the 
lassi
al treatment of linear unsteady 
ow analysis, as dis
ussedearlier.To avoid these problems, what is needed is a treatment whi
h uses a gridwhi
h deforms linearly in a way whi
h is 
onsistent with the design 
hanges tothe surfa
e geometry. Therefore, u is de�ned to be the linear perturbation in the
ow solution taking into a

ount a linear perturbation in the 
oordinates. Thestarting point for this formulation is the 
onservative form of the Euler equationusing general 
urvilinear 
oordinates,���  Fx�y�� � Fy �x��!+ ���  Fy �x�� � Fx�y��! = 0:We now de�ne the perturbed 
oordinates asx = � + �X(�; �); y = � + �Y (�; �);where � is a design variable. X(�; �) and Y (�; �) are smooth fun
tions whi
hmat
h the surfa
e perturbations due to the design variable, so that a point (�; �)whi
h is initially on a solid surfa
e remains so as the design variable 
hanges.Linearising with respe
t to � yields��� (Axu) + ��� (Ayu) = � ���  Fx�Y�� � Fy �X�� !� ���  Fy �X�� � Fx�Y�� ! ;where u is now the perturbation in the 
ow variables for �xed (�; �) rather than�xed (x; y), and the 
uxes Fx and Fy are based on the unperturbed 
ow variablesU . Swit
hing notation from (�; �) ba
k to (x; y) then produ
es an inhomogeneousp.d.e. of the form Lu = f , where L represents the di�erential operator. Inessen
e, this treatment is very similar to that used by Jameson and others forsingle-blo
k Euler and Navier-Stokes 
omputations. The di�eren
e is that inJameson's formulation the solid surfa
e 
orresponds to part of the 
oordinatesurfa
e � = 0, whereas in this formulation the solid surfa
e is the original surfa
ede�ned in Cartesian 
oordinates. As a 
onsequen
e, this new formulation 
an beused with an unstru
tured grid dis
retisation for 
omplex geometries.
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Figure 1: sequen
e of grids used by multigrid (outer annulus not plotted)

DatumUnderturnedDatumOverturnedDatum

Figure 2: grouping of OGV's for 3 blade design5 Examples5.1 Outlet guide vane optimisationShrinivas has used nonlinear approximate sensitivities for a 3D design appli
ation
on
erning the bypass du
t of a turbofan aeroengine [24℄; this is an extension ofearlier resear
h by Shrinivas and Giles using 2D modelling [25, 26℄.Figure 1 shows the geometry of the bypass du
t and three of the grids usedfor the multigrid a

eleration. For 
larity, only the inner annulus of the du
t isnot plotted. Figure 2 displays an `unwrapped' 
ir
umferential view of the mid-span geometry, halfway between the inner and outer annuli. There is a largepylon whi
h is the main stru
tural support for the engine 
ore. Upstream ofthe pylon is a set of outlet guide vanes (OGVs) and upstream of these wouldbe the rotating fan in the a
tual engine. The fan generates a 
ir
umferential
omponent of 
ow velo
ity and the purpose of the OGVs is to turn the 
ow



12ba
k in the axial dire
tion. The design problem is that the very large pylon
auses a blo
kage whi
h produ
es a pressure �eld whi
h de
ays very slowly inthe axial dire
tion. The OGVs shield it to some extent, but nevertheless thereis a signi�
ant 
ir
umferential pressure variation upstream of the OGVs. In theengine this leads to an unsteady intera
tion with the rotating fan, produ
inghigher stress levels and redu
ed aerodynami
 eÆ
ien
y.The obje
tive of the design pro
ess is to redu
e this intera
tion to a minimumby re-designing the OGV's to 
ountera
t the pressure �eld 
reated by the pylon.The obje
tive fun
tion is a dis
rete approximation to the following integral ofthe 
ir
umferential pressure variation on a plane upstream of the OGVs.I = Z Z (p(r; �)� p(r))2 d� drwhere p(r) represents the 
ir
umferentially averaged pressure at a parti
ularradius.The invis
id 
ow 
ode that was used in this work was developed by Crumpton[7℄. It uses an edge-based dis
retisation of the Euler equations and a standardRunge-Kutta time-mar
hing algorithm. Edge-
ollapsing is used to generate the
oarser grids for the multigrid algorithm. The exe
ution speed is further im-proved through parallel 
omputing on ma
hines su
h as the IBM SP2 using theOPlus parallel library [8℄.Two design exer
ises have been 
ondu
ted. In ea
h 
ase, the 
amber of theOGVs is altered through a 
ir
umferential displa
ement �� whi
h varies quadrat-i
ally in the axial dire
tion and linearly in the spanwise dire
tion,�� = (x� xl:e:(r))2 (ar + b)with xl:e:(r) being the axial lo
ation of the leading edge.In the �rst design exer
ise, the 
onstants a; b vary sinusoidally from one OGVto the next, with the OGVs nearest to the pylon and farthest from it havingzero perturbations. This is appropriate be
ause of the symmetry of the designproblem. Thus, there are just 2 design parameters, the values for a and b for theblade with maximum displa
ement. Figure 3 shows the de
rease in the level of
ir
umferential pressure variation at mid-span, and the asso
iated de
rease in thevalue of the obje
tive fun
tion. Be
ause the obje
tive fun
tion is approximatelyquadrati
, and the method of dire
t sensitivities provides a very good estimateof the Hessian, the design optimum is almost a
hieved in one iteration.From a pra
ti
al engineering viewpoint, this design is far from ideal be
ause itrequires ea
h OGV to be unique, in
reasing the 
ost of manufa
ture and the num-ber of spare parts the airlines must keep. The se
ond design exer
ise addressesthis by allowing only 3 blade types, the original datum blade, an overturnedblade with in
reased 
amber and an underturned blade with de
reased 
amber.Figure 2 shows the 
hosen grouping of these blades. There are still just two
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Figure 5: Initial surfa
e grid for air
raft wing design [12℄5.2 Air
raft wing designA re
ent paper by Elliot and Peraire [12℄ shows the state-of-the-art in the useof adjoint equations for design optimisation on unstru
tured grids. The mainappli
ation 
onsidered is the wing optimisation for a business jet. The surfa
egrid for the baseline 
on�guration is shown in Figure 5.Simple algebrai
 fun
tions are used to de�ne 6 design perturbation modesfor the wing surfa
e; 
are was taken to ensure 
ompatible perturbations to gridpoints on the fuselage. The authors 
omment that a more ideal solution wouldinvolve 
oupling to a CAD/CAM system, as des
ribed earlier in these le
turenotes. A linearised version of the method of springs is used to 
reate the griddeformations in the interior.The optimisation uses the dis
rete adjoint method, based on a linearisationof the dis
rete 
ow equations. Multigrid and parallel 
omputing, using MPI orPVM on ma
hines su
h the IBM SP2 or CRAY-T3D, are employed to redu
ethe exe
ution time.The obje
tive fun
tion is the mean-square deviation from a target pressure
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Figure 6: Evolution of the wing geometry during design [12℄

Figure 7: Evolution of the pressure distribution on the wing [12℄



16distribution 
orresponding to a `
lean wing' in the absen
e of the rear-mountedengine na
elle and pylon. Two design iterations are taken, de
reasing the obje
-tive fun
tion by 75%. Figures 6 and 7 show the evolution of the wing geometryand pressure distributions, respe
tively.6 Con
lusionsThe optimisation of 
omplex aeronauti
al geometries using unstru
tured gridCFD methods is an a
tive area of resear
h. Most of the referen
es in this paperare from the last 5 years, and it 
an be expe
ted that there will be signi�
antnew developments in the next 5 years.In
reased 
omputational power will make design optimisation using the Navier-Stokes equations feasible. A 
oupling of the design system to solid geometryCAD/CAM systems seems essential for industrial use; although there is no the-oreti
al diÆ
ulty in a

omplishing this, it may involve a substantial amount ofsoftware engineering.Thereafter, the 
hallenge will be to ta
kle in
reasingly diÆ
ult design appli-
ations, involving many more design variables and 
onstraints. Only then will itbe possible to properly assess the advantages and disadvantages of the di�erentoptimisation approa
hes.Referen
es[1℄ W.K. Anderson and V. Venkatakrishnan. Aerodynami
 design optimizationon unstru
tured grids with a 
ontinuous adjoint formulation. AIAA Paper97-0643, 1997.[2℄ J. Batina. Impli
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