Report no. 95/18

AIRCRAFT COMPUTATIONS USING MULTIGRID
AND AN UNSTRUCTURED PARALLEL LIBRARY

Paul I. Crumpton Michael B. Giles

This paper examines the application of unstructured multigrid,
using a sequence of independent tetrahedral grids. The test cases
examined are for inviscid flow over an aircraft and an M6 wing. The
sensitivity of the method to grid sequence and cycling strategy are
investigated.

All of the calculations were performed on a parallel computer.
This was achieved by using the OPlus library which, by the straight-
forward insertion of subroutine calls, facilitates parallelisation of the
resulting code. A single source OPlus application code can be com-
piled to executed on either a parallel or sequential machine. This
greatly increases the usability of the parallel machine, and the main-
tainability of the code.

This work was presented at the ATAA meeting, January 1995,
(Paper ATAA 95-0210).

Key words and phrases: unstructured grids, multigrid, parallel library

This work was performed within Oxford Parallel, with financial support from
Rolls—Royce plc, DTIT and SERC.

Oxford University Computing Laboratory

Numerical Analysis Group

Wolfson Building

Parks Road

Oxford, England OX1 3QD April, 1997

1 Introduction

The eventual goal of this work is to accurately model flow over realistic configu-
rations. Consequently there is a need for:

1. a physically realistic mathematical model,

2. an unstructured mesh to resolve the
complex geometry,

3. an efficient numerical algorithm such as multigrid,

4. the effective utilisation of modern supercomputers, which entails parallel
computation.

This paper addresses the latter three items. An Unstructured Multigrid algo-
rithm is described and applied to inviscid flow over an aircraft configuration.
The relative merits and complexities of the algorithm are discussed. This al-
gorithm is parallelised using the OPlus subroutine library. This, by means of
the straightforward insertion of subroutine calls at a loop level, enables a single
source FORTRAN 77 program to be executed on either a sequential or a parallel
machine.

2 Unstructured Multigrid

Multigrid has become a crucial algorithm for CFD, especially for structured grid
applications [1]. Multigrid for unstructured tetrahedral grids is still at an early
stage of development, [2], [3] and needs further validation and evaluation to
become mainstream. This section discusses and analyses the merits and com-
plexities of the approach.

Multigrid is an acceleration technique that requires three components:

1. A sequence of grids ranging from coarse to fine grid resolution;

2. Grid transfer operators, Restriction I} from fine to coarse, and Prolonga-
tion I? from coarse to fine.

3. A smoother, or iterative solver, that quickly damps all high frequency error
components in the solution, thus leaving only low frequency components,
that can be well approximated on a coarse grid;

These three components are discussed in detail in the following sections.

OCopyright (©1994 by the American Institute of Aeronautics and Astronautics, Inc. All
rights reserved.

2.1 Sequence of grids

Here, as in [2], [3], a sequence on non-nested, independent tetrahedral grids
are generated for a specific geometry (see Fig. 4, Fig. 1). The reason for
adopting this approach is the availability of a “black box” grid generator. This
leads to the extra flexibility of being able to choose coarse grids for optimal
performance, but the problem of linking sequences of unstructured tetrahedral
grids needs to be addressed. That is, for all nodes on a particular grid the
tetrahedra which contain those nodes on the coarser and finer grids are required.
At curved boundaries of the mesh this is not always possible, in which case
“nearest” tetrahedra are required. An efficient algorithm based on directed line
searches has been developed, which takes O(M) time, where M is the size of the
largest grid being linked.

The grid generation was performed using the advancing front method of [4].
This requires the definition of a background grid, which contains point/line/plane
sources which define exponential functions to control local mesh density. These
functions are scaled by ¢ such that ¢ =1 is the fine grid, and ¢ > 1 produces a
coarser grid. In this way it is easy to generate a sequence of grids for multigrid
calculations.

An alternative to this “independent grid” approach is agglomeration multigrid
[5], where a finite volume method is formulated using edge based coefficients,
which can be “agglomerated” to form coarser grids. This has the advantage that
the coarse grids are automatically generated form finest grid; however, there are
limitations in the data structure (edge based), and the order of the prolongation

([51)-

2.2 Transfer Operators

The current implementation uses linear interpolation for both prolongation and
restriction. Using a superscript to denote the grid, for a node iBJK on grid K a
scalar g; would be transferred from grid K — 1 by

q]K = Z(iecjf(%K*I)q)iK_l(mgK)qu_l (21)

where ®X are the piecewise linear basis functions centred at node zX on grid
K and the set C’JKﬁK’1 contains the nodes of the tetrahedra on grid K — 1
that contains mjK . As already mentioned, near curved boundaries iBJK may not
be inside mesh K — 1 and consequently some of the ® weights will be negative,
corresponding to extrapolation. Where this occurred the negative weights were
set to zero and the sum of the weights re-normalised to unity, so as to prevent
the interpolation creating oscillations. It is believed any inaccuracies due to this
will only cause minor local oscillations that should be immediately damped by
the smoother. This transfer operation is simpler than that required in [3] to

obtain stable computations.

If a nested coarse grid could be generated, eg. by skipping alternate points
in a structured hexahedral grid that has been split into tetrahedra, then this
restriction is equivalent to injection (ie copying the residual at the nested nodes
between grids). This is well known to produce non-optimal performance for
Elliptic equations; the optimal treatment uses a full weighted restriction, which
averages the copied residual with its neighbours. However, for the unstructured
tetrahedral grids, the interpolation procedure itself will produce some averaging,
and for the Euler application, further averaging was found to be ineffective.

As part of the grid transfer operation boundary conditions are imposed. For
example, as corrections are prolonged from coarse to fine grid, the corrections are
set to zero on Dirichlet boundaries, and the normal component of the momentum
correction is disregarded on an inviscid wall boundary.

2.3 Smoother

The purpose of the smoother is to damp high frequency error modes in the solu-
tion. Assuming that N(W) = f is a nonlinear system whose solution W approx-
imates a partial differential equation over the tetrahedral mesh, the smoothing
iteration can be expressed as

Wt =W+ JH(f = NW") n=12,.. (2.2)

where J is some approximation to the Jacobian of N(W).
To demonstrate the applicability of the multigrid method, the Euler equations

VF=0, F=(fgn", F=F(Q) (2.3)

were discretised using a cell vertex finite volume discretisation, with a blend of
fourth and second order artificial viscosity. The resulting nodal equations can be
expressed as
1
Ni(W) = 37 2. ValDajRa + Ayl

J CMEC]‘
where
W; are the conserved variables (p, pu, pv, pw, E),
C; is the set of cells surrounding node j,

R, is the cell based residual (§, F.nds) for tetrahedral cell «,

D, ; are distribution matrices mapping the cell residual to the nodes, derived
from a Lax—Wendroff procedure,

A, ; is a cell based scalar blend of 2nd and 4th order artificial dissipation, which
is transparent to a linear solution.

The philosophy adopted in this approach for the spatial discretisation is a gen-
eralisation of that described in [6]. The Jacobian is approximated by a simple
pseudo—timestep, hence the resulting iteration is explicit in nature, and so is
suitable for parallelising. This algorithm requires two loops over tetrahedra (1)
to accumulate an undivided Laplacian for the 4th order dissipation, and (2) to
perform a Lax—Wendroff update with 2nd and 4th order smoothing. Over 90%
of the cpu time are spent in these loops, consequently the work associated with
the Euler solver can be assumed to be directly proportional to the number of
tetrahedra. This will become an issue when considering the parallel aspects of
the method.

2.4 Multigrid Algorithm

The FAS multigrid algorithm is summarised below:

1. Pre-smooth errors on the fine grid by pu; relaxations

Wit = Wi+ T (fn = Na (W) (2.4)

2. Form a coarse grid right hand side:
frr = Iy (fo = Na (W) + Nu (L Wh) (2.5)

and do 7 iterations of multigrid on Ny (Wpg) = fg unless it’s the coarsest
mesh, in which case do n..; smoothing iterations,

3. Prolong the coarse grid correction:

Wy =W, + [(Wy — IFW,,) (2.6)

4. Post-smooth errors on the fine grid by u» relaxations:

Wit = Wi+ I (fn = Na (W) (2.7)

5.

The multigrid cycling parameters are p; and ps for the smoothing and v = 1 for
V-—cycles, v = 2 for W-cycles. n.,s, the number of iteration on the coarsest grid
was always chosen to be 10. The above algorithm is exactly the same as that
used on traditional structured grids. Fundamentally there is no extra complexity
in the unstructured multigrid over the structured multigrid. However, in practice
careful thought needs to put into the design of the software. Unlike the structured
grid case;

1. the sizes of the grids bear no relation to each other,

2. the grid connectivity needs to be explicitly stored,
3. extra connectivity is required to link grids together.

The software is written in FORTRAN 77 and arranged so that a table of
starting addresses is constructed; these point into a large one dimensional array,
which is made multidimensional through subroutine calls. This gives the flexibil-
ity to have any number of grids, reuse workspace, and allocate workspace arrays
on each grid.

2.5 Multigrid Performance
2.5.1 M6 wing

OSSN A
R TS
e e

N

%)

e AvaAvavavaws
N S AT avan
SRR RSERSS
2
BRSPS
RRSEESRSS IR
SHISEDSZSE
Nt e A
e e

Figure 1: M6 wing sequence of grids for N=4

In an attempt to find the best grid sequence, for a fixed finest and coarsest
grids, a variety of intermediate grids were generated and the performance ana-
lyzed. An M6 wing geometry was chosen for this test. The coarsening parameter

SN 1.51 1.68 2.0 2.82 1.0
N 6 5 4 3 1
ncell | 250000 | 250000 | 250000 | 250000 | 250000
r 3.1 4.2 6.7 16.3
ncell | 81400 | 60000 | 38000 | 15000
r 3.1 3.9 5.5 8.9
ncell | 26000 | 15000 6900 1700
r 2.8 3.3 3.9
ncell | 9300 4600 1700
r 2.4 2.7
ncell | 3800 1700
r 2.2
ncell | 1700

Table 1: The number of tetrahedra on the differing grid sequences for the M6
wing

¢ was set to 8 for the coarsest grid and ¢ = 1 on the finest grid, see Fig, 1. ¢ =8
was the largest ¢ for which the grid generator was successful; failure was due to
the granularity of the surface spline patches. Grid sequences of N grids where
generated by taking powers of sy, that is

p=s5v" for i=1,..N (2.8)

where sy = 8/(N=1_ Table 1 gives the resulting number of tetrahedra on each
grid, and the ratio between grids, for all sequences. Clearly, this ratio is not
constant for each grid sequence, although this may be a desirable property and
is a consequence of the non-linear mesh density functions. Fig 1 shows the
surface triangles for the N = 4 case.

All convergence plots are work units against log,, of the residual norm, where
a work unit is a residual evaluation on the finest grid. The oscillations near the
origin is because of the Full MultiGrid (FMG) startup procedure, where the
initial solution on each grid is prolonged from a coarser grid.

In order to test the grid sequence efficiency, a robust cycling strategy was
chosen, py = o = 6, v = 2. Fig 2 shows the convergence for each grid sequence
except N = 2 that failed. The failure is attributed to an excessive jump in grid
density. All the other grid sequences showed a good speed up over the single grid
performance, that is, a healthy invariance to the grid sequence is observed.

Fig. 2 also shows the convergence plots for the N = 4 grid sequence, with
iy = p = set to 6,3,2,1. The actual work required for convergence seems
invariant to the amount of pre— and post-smoothing.

Finally, Fig. 2 compares the performance for V and W cycles for N = 4,
fo = p1 = 2. The W—cycles exhibit a two—fold speed—up over the V-cycles. This

superior performance of W—cycles is often observed in the literature, see [2].

One conclusion of the above experiments is that a good cycling strategy is
to = p; = 2 with W-cycles, with a tetrahedra ratio between grids of about 4.
More importantly, the achieved convergence rates are relatively insensitive to the
grid sequence and the cycling strategy used. Fig. 3 shows the solution, and the
convergence history of the optimised multigrid against the single grid iteration.
A ten—fold speedup is observed.

2.5.2 Aircraft simulation

Using the above strategy, the following grid sequence, for an aircraft configura-
tion, was generated:

ncells | 746286

r 4.6
ncells | 163768
r 5.9

ncells | 27831

The surface triangulations for this grid sequence can be seen in Fig 4. Fig
5 shows the surface pressure contours along with the comparison of single and
multigrid convergence. Clearly multigrid is an effective acceleration procedure
for such large complex configurations.

3 OPlus: Parallel Computing

The aforementioned multigrid application leads to a complex and intricate code.
A one—off parallelisation of such a code using a message passing library such as
PVM would be a time-consuming and error prone task, and the resulting code
would be difficult to maintain and develop. The purpose of the OPlus library is
to take the burden from the application programmer [7]. Emphasis is put on

generality: OPlus uses arbitrary data structures which can include edge/cell /face
based data structure for any grid type (triangle/quadrilaterals (2D) or
tetrahedra/prisms/hexahedra etc... (or any combination),

performance: Messages are only sent when necessary, are concatenated to re-
duce latency, and computation is overlapped with computation wherever
possible,

portability: OPlus is a library that can be interfaced to general message passing
libraries such as PVM and MPI, or the native message passing library of
the machine,

single source: A single source code can be executed either sequentially or in
parallel, this greatly simplifies development and maintenance of parallel
code.

There have been several authors who have pursued the idea of constructing a
library for parallelising programs for MIMD machines. These are mainly aimed at
structured grids. De Keyser developed a software tool called LOCO [8] for struc-
tured grids with refined regions. Dellagiacoma et al constructed PARAGRID [9]
which uses overlapping domain decomposition techniques on block—structured
grids. Williams created DIME (Distributed Irregular Mesh Environment) [10]
and Das et al developed PARTT (Parallel Automated Runtime Toolkit at ICASE)
[11] for unstructured mesh algorithms on distributed machines. However, DIME
restricts the user to two dimensional triangular grid calculations. PARTT paral-
lelises problems in any dimensions, but is not believed to be as communication
efficient and easy to use as the current work.

The OPlus framework uses a data parallel approach. Consequently certain
algorithmic restrictions must be enforced to ensure the solutions from parallel
and sequential executions are identical, to within machine accuracy. For ex-
ample, algorithms involving matrix—vector multiplications can be handled, such
as conjugate gradient methods with simple preconditioning, explicit time step-
ping methods and Jacobi relaxation. Excluded algorithms are globally implicit
methods, such as ADI and sweeping relaxation schemes like Gauss—Seidel.

3.1 Top Level Concepts

The concept behind the OPlus framework is that unstructured grids can be
described by a number of sets. Depending on the application, these sets might
be of nodes, edges, triangular faces, quadrilateral faces, cells of a variety of types,
far-field boundary nodes, wall boundary faces, etc. Associated with these sets
are both data (e.g. coordinate data at nodes, volumes at cells, normals on faces)
and pointers to other sets (e.g. edge pointers to the two nodes at each end of
the edge). All of the numerically-intensive operations can then be described as
a function operating on all members of a set (eg. looping over cells, calculating
volumes from the nodal coordinate values). The function can operate on data
associated directly with the set or with another set through a pointer.

The OPlus framework makes the important restriction that a function will
operate on all members of a set and the order it operates on the members will not
affect the final result. If a function needs to be applied on a subset of members
then another set should be formed containing only these members. Consequently,
the OPlus routines can choose an ordering to achieve maximum parallel efficiency.
It is this restriction that negates the framework being applied to Gauss—Seidel
relaxation or globally implicit methods.

10

Before parallel execution can proceed, three main initialisation phases take
place:

partitioning All sets are partitioned and each partition is assigned an owner
processor. Processors must compute and store the values of the members
they own.

halo construction If the application of a function to an element of a set (and
other data pointed to by that element) requires data which is not locally
owned that element is referred to as a “halo” member. The data at the
halo member itself may, or may not, be owned. Copies of the required data
must be communicated before halo execution.

local renumbering All sets are locally renumbered to minimise the memory
requirements of each process. The pointers have to be similarly renumbered
to ensure consistency.

It is important to note that all of the above operations are performed automati-
cally by the OPlus library, not the application, which only need specify the sets
and pointers.

3.2 Input/Output
Input/Output

An aim of the framework is to allow users to write a single source code which
will execute either sequentially or in parallel depending on how the executable
is linked. To achieve this it is necessary for the program to handle all disk and
terminal i/o via appropriate subroutines.

1. For sequential execution the user’s main program is linked to user—written
subroutines which handle all i/o. This will enable the user to develop,
debug and maintain their sequential code without any parallel message
passing libraries.

2. For parallel execution the OPlus framework creates server and client pro-
grams from the user’s single source, Fig. 6. The server program is formed
by linking the OPlus server process to the user’s i/o routines, while the
client program is created by linking the user’s compute process to OPlus
client routines.

The current implementation of this client server model uses two message
passing systems.

PVM to communicate between the server and clients, thus giving the
flexibility to having the server on any machine, and the possible poor

11

performance of using PVM is irrelevant because i/o should not be a
bottleneck within the OPlus framework.

BSP FORTRAN is used for client—client communication [12]; this is de-
signed to be portable and give high parallel performance for SPMD
applications on homogeneous machines and so is ideally suited for the
client communication.

Together this gives a flexible and efficient solution to the portable perfor-
mance problem.

3.3 Loop Syntax

The following example is given to illustrate how a loop is parallelised. Suppose
that a triangular cell area, AREAC, is distributed to the cell’s nodes using a pointer,
NCELL, which points from the cell to its three nodes. This can be carried out for
all the cells in the triangular mesh by the following DO-loop:

FORTRAN loop

DO IC = 1, NCELLS

I1 = NCELL(1,IC)
I2 = NCELL(2,IC)
I3 = NCELL(3,IC)

AREAN(I1) = AREAN(I1) + AREAC(IC)/3.0

AREAN(I2) = AREAN(I2) + AREAC(IC)/3.0
AREAN(I3) = AREAN(I3) + AREAC(IC)/3.0
ENDDO

This becomes, using the OPlus framework:

12

FORTRAN OPlus loop

DO WHILE(OP_PAR_LOOP(NCELLS,ISTART,IFINISH))
CALL OP_ACCESS_R8(’read’ ,AREAC,1,NCELLS,NULL ,0,0,1,1)
CALL OP_ACCESS_R8(’update’,AREAN,1,NNODES,NCELL,1,1,1,3)
DO IC = ISTART, IFINISH

I1 = NCELL(1,IC)
I2 = NCELL(2,IC)
I3 = NCELL(3,IC)
AREAN(I1) = AREAN(I1) + AREAC(IC)/3.0
AREAN(I2) = AREAN(I2) + AREAC(IC)/3.0
AREAN(I3) = AREAN(I3) + AREAC(IC)/3.0
ENDDO
END WHILE

Essentially the DO WHILE loop is similar to a colouring loop that would be nec-
essary for vectorisation. OP_PAR_LOOP is a logical function which returns as ar-
guments the start and finish indices of the inner loop. For sequential execution,
ISTART and IFINISH are set to 1 and NCELLS respectively. OP_ACCESS tells the
library how the arrays in the main loop are to be accessed and enables the library
to perform runtime data dependency analysis. The contents of the inner loop
have not changed during parallelisation. Full details of the arguments and other
routines can be found in [13]. With this syntax the OPlus library can concate-
nate client to client messages to reduce latency, minimise the size of message sent
and overlap communication with computation.

3.4 Parallel Performance

Multigrid using W-cycles on five aircraft grids represents a challenge to both
the flexibility and the performance of the OPlus library. The sets on each grid
associated with this problem are:

1. tetrahedra,

2. nodes,

3. boundary faces,
4. boundary nodes.

The grid sequence is that seen in Fig. 4 with intermediate grids. The pointers
per grid level required for this calculation are:

13

pointer from to | length
nodes fine nodes | 4
nodes coarse nodes | 4
tetrahedral cell nodes | 4
boundary faces nodes | 3
boundary nodes nodes | 1

The partitioning strategy used is to partition the finest grid by geometric
inertial bisection, and let the coarse grids “inherit” the fine grid partition by
looking through the grid—grid pointer tables. This is performed automatically
by the OPlus library. The advantage with this method is that data remains local
throughout the multigrid cycle; however, the coarse grids will not be load bal-
anced, ie. inheriting the partitions on the coarse grids will not ensure the same
number of tetrahedra on each partition. Another load balancing issue is the re-
dundant computations that are performed because of the OPlus parallel strategy.
Thus, there is a limit L on the achievable speed up caused by partitioning and
redundant computation given by

I sequential work

max slave work

Since all the work in the Euler code is performed over tetrahedra this can be
evaluated for grid ¢ to be
T
Li=—"—
max, I X p
where T; is the number of tetrahedra on the complete grid ; and 7} is the number
of tetrahedra executed on partition a. For a multigrid iteration this becomes

N-1 . i—1
L _ i=1 CY 7—11 + ncrsTN
MG — N1 __i—
iy oy tmax, T + neps max, Ty

where ¢ = 1y + po+1. For the five level multigrid on eight processors these limits
are

Ls 5.2
L, 59
Ly 6.2
L, 6.2
L, 6.6
Luc 6.1

where L is the finest grid and Lj; is the coarsest grid. Clearly the effect of
inheriting the partitions from grid 1 is manifesting itself in a decreasing L for
coarser grids. However, since less work is performed on the coarse meshes, L;a
is dominated by the partitioning of the finest grid.

Calculations were performed on the following machines:

14

e an 8 node distributed memory IBM SP1,

e 4 processor shared memory SGI Power Challenge.

The time spent partitioning, calculating local numbers and reading all the pointer
tables was less than 60 sections elapsed time; this is thought to be negligible. The
elapsed times, in seconds, per multigrid cycle, along with the speed up achieved
(SU) is given in the following table.

IBM SP1 SGI PC
p| Lyg | time | SU | time | S U
1 1.0 | 1006 | 1.0 | 419 | 1.0
2 1.9 556 | 1.8] 216 | 1.9
3 2771 384 | 2.6 | 149 | 2.8
41 35| 310| 3.2 | 116 | 3.6
50 41| 270 3.7 — | —
6| 48] 234 | 4.3 — | —
7 5.4 | 211 | 4.8 — | —
8| 6.1 190 | 5.3 — | —

Clearly the Lj;q limit on the performance is more significant than the com-
munication cost, and so if faster times are sought the partitioning strategy should
be reevaluated. It is possible with the OPlus framework to independently parti-
tion each grid but this would incur a communication penalty when performing
grid transfers. The SGI Power Challenge managed to run faster than L,;s using
four processors, this is accounted for by better cache utilisation on the smaller
partitioned grids.

The key point of this table is that worthwhile parallel speed up has been
achieved for a highly complex, worst case multigrid method with little user in-
tervention.

4 Visualisation

For such large applications it becomes prohibitive to rely on graphics work-
stations to manipulate and render the complete solution. To remedy this, the
compute intensive part of the visualisation is performed on the parallel machine,
along with the flow solver, while all the rendering is performed on the graphics
workstation, thus maximising the use of both sets of hardware. This uses the
pV3 software [14], which fits easily in the OPlus framework.

5 Conclusions

An unstructured multigrid algorithm has been found to be effective for large scale
geometrically complex configurations. The performance of the multigrid has been

15

found to be insensitive to the grid sequence and multigrid cycling strategy.

A flexible and general approach has been demonstrated to parallelise unstruc-
tured grid applications. This involves the programmer adopting the OPlus loop
style of programming and all i/o being sent through specific subroutine calls.
The resulting code will execute on a sequential machine (without the need for
any parallel libraries) or in parallel (on a MIMD architecture). This single source
is of major benefit for the development and maintenance of the code.

The OPlus parallel execution is fully optimised to concatenate messages, min-
imise number of messages sent and overlap communication with computation.
This library is intended for large applications, which warrant the use of parallel
machines, and has been demonstrated by the aforementioned 3D Euler multigrid
solver for a complete aircraft configuration. For this realistic industrial appli-
cation a worthwhile speed up has been achieved with very little effort from the
application programmer.

References

[1] P. Wesseling. An introduction to multigrid methods. John Wiley, 1992.

[2] D. Mavriplis and A. Jameson. Multigrid solution of the Euler Equations on
unstructured and adaptive meshes. ICASE Report 87-53, 1987.

[3] J. Peraire, J. Peiro, and K. Morgan. A 3-D finite element multigrid solver
for the Euler equations. AIAA Paper 92-0449, 1992.

[4] K. Morgan, J. Peraire, and J. Peiré. Unstructured grid methods for com-
pressible flows. AGARD, R-787:5.1-5.39, May 1992.

[5] V. Venkatakrishnan and D.J. Mavripolis. Agglomeration multigrid for the
tree—dimensional Euler equations. ICASE Report No. 94-5, 1994.

6] P.I. Crumpton, J.A. Mackenzie, and K.W. Morton. Cell vertex algorithms
for the compressible Navier-Stokes equations. J. Comput. Phys., 109(1):1-
15, 1993.

(7] D. A. Burgess, P. I. Crumpton, and M. B. Giles. A parallel framework for
unstructured mesh solvers. IFIP W(G10.3 Working Conference on Program-
ming Environments for Massively Parallel Disributed Systems, 1994.

8] J.De Keyser. LOCO1.0: a library supporting data parallelism on MIMD
computers. Department of Computer Science, Katholieke Universiteit Leu-
ven, Leuven, Belgium, March 1993.

16

9]

[10]

[11]

[12]

[13]

[14]

F. Dellagiacoma, S. Paoletti, F. Poggi, and M. Vitaletti. PARAGRID: a
parallel multi-block environment for Computational Fluid Dynamics. IBM
ECSEC,Viale Oceano Pacifico 173, 00144 Rome, Italy.

R. D. Williams. DIME Distributed Irregular Mesh Environment. Report
C3P 861, Cal. Tech. Pasadena, CA, 1990.

H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adaptive
scientific algorithms on distributed memory architectures. Concurrency:
Practice and experiernce, 3(3), 1991.

R. Miller. A library for bulk—synchronous parallel programming. British
computer society parallel processing
http://www.comlab.ox.uk/oucl/oxpara/bsplib.html, 1993.

P.I. Crumpton and M.B. Giles. OPlus programmer’s manual. Oxford Uni-
versity Computing Laboratory, 1993.

R. Haimes. pV3: A distributed system for large scale unsteady CFD visu-
alisation. ATAA Paper 94—0321, 1994.

17

s NN

N=4 N=5 N=3N=6

T T 7T
400.

T T T T T T T T T
800. 1200. 1600.
work units

T
2000.

log res -

—10.04

—11.0

—20q.

-3.0

T T T
200.

T T T T T T T T T 1
400. 600. 800.

I
1000.

—4.04M
—5.04
—6.04
—7.0
log res -
—8.04
—9.04

—10.04

—11.04—
0.

T T 7T
400.

work units
~
\\
\\
\\
\\
N
\\
~N
N
N o
\ ~N
‘ ~N
w A%
T T T T T T T T T
800. 1200. 1600.

work units

T
2000.

Figure 2: Top: comparison of convergence for grid sequences N=1,2,3,6 ; Mid-
dle: comparison of convergence for u; = us = 1,2, 3,6, Botton: comparison of
convergence for W and V cycles, 1y = ps.

18

—2.0

-3.0

—4.0 1

—7.0-
log res —
—8.0
—9.0

—10.0 4

—11.0

Multigrid

Single Grid

Figure 3: Contours of pressure and convergence history for the M6 wing

|
2000.

T T 1
4000.

work units

|
6000.

|
8000.

10000.

19

Figure 4: The sequence of grids used for the aircraft configuration

20

—8.0
log res

—10.0 4

—12.0 4

—14.0 4 \

\ Single Grid
Multigrid
—16.0 T 1

I I
4000. 6000.

work units

I
0. 2000.

Figure 5: Contours of pressure and convergence history for the aircraft configu-
ration

Sequential program

Server program

user’s
compute

process

21

Client programs

user’s
i/o

routines

OPlus user’s
server compute
process process
user’s OPlus
i/o client
routines routines L

Figure 6: Sequential and parallel versions of user’s program

