
Report no. 95/18
AIRCRAFT COMPUTATIONS USING MULTIGRIDAND AN UNSTRUCTURED PARALLEL LIBRARY

Paul I. Crumpton Michael B. GilesThis paper examines the application of unstructured multigrid,using a sequence of independent tetrahedral grids. The test casesexamined are for inviscid
ow over an aircraft and an M6 wing. Thesensitivity of the method to grid sequence and cycling strategy areinvestigated.All of the calculations were performed on a parallel computer.This was achieved by using the OPlus library which, by the straight-forward insertion of subroutine calls, facilitates parallelisation of theresulting code. A single source OPlus application code can be com-piled to executed on either a parallel or sequential machine. Thisgreatly increases the usability of the parallel machine, and the main-tainability of the code.This work was presented at the AIAA meeting, January 1995,(Paper AIAA 95-0210).Key words and phrases: unstructured grids, multigrid, parallel libraryThis work was performed within Oxford Parallel, with �nancial support fromRolls{Royce plc, DTI and SERC.Oxford University Computing LaboratoryNumerical Analysis GroupWolfson BuildingParks RoadOxford, England OX1 3QD April, 1997

21 IntroductionThe eventual goal of this work is to accurately model
ow over realistic con�gu-rations. Consequently there is a need for:1. a physically realistic mathematical model,2. an unstructured mesh to resolve thecomplex geometry,3. an e�cient numerical algorithm such as multigrid,4. the e�ective utilisation of modern supercomputers, which entails parallelcomputation.This paper addresses the latter three items. An Unstructured Multigrid algo-rithm is described and applied to inviscid
ow over an aircraft con�guration.The relative merits and complexities of the algorithm are discussed. This al-gorithm is parallelised using the OPlus subroutine library. This, by means ofthe straightforward insertion of subroutine calls at a loop level, enables a singlesource FORTRAN 77 program to be executed on either a sequential or a parallelmachine.2 Unstructured MultigridMultigrid has become a crucial algorithm for CFD, especially for structured gridapplications [1]. Multigrid for unstructured tetrahedral grids is still at an earlystage of development, [2], [3] and needs further validation and evaluation tobecome mainstream. This section discusses and analyses the merits and com-plexities of the approach.Multigrid is an acceleration technique that requires three components:1. A sequence of grids ranging from coarse to �ne grid resolution;2. Grid transfer operators, Restriction IHh from �ne to coarse, and Prolonga-tion IhH from coarse to �ne.3. A smoother, or iterative solver, that quickly damps all high frequency errorcomponents in the solution, thus leaving only low frequency components,that can be well approximated on a coarse grid;These three components are discussed in detail in the following sections.0Copyright c
1994 by the American Institute of Aeronautics and Astronautics, Inc. Allrights reserved.

32.1 Sequence of gridsHere, as in [2], [3], a sequence on non-nested, independent tetrahedral gridsare generated for a speci�c geometry (see Fig. 4, Fig. 1). The reason foradopting this approach is the availability of a \black box" grid generator. Thisleads to the extra
exibility of being able to choose coarse grids for optimalperformance, but the problem of linking sequences of unstructured tetrahedralgrids needs to be addressed. That is, for all nodes on a particular grid thetetrahedra which contain those nodes on the coarser and �ner grids are required.At curved boundaries of the mesh this is not always possible, in which case\nearest" tetrahedra are required. An e�cient algorithm based on directed linesearches has been developed, which takes O(M) time, where M is the size of thelargest grid being linked.The grid generation was performed using the advancing front method of [4].This requires the de�nition of a background grid, which contains point/line/planesources which de�ne exponential functions to control local mesh density. Thesefunctions are scaled by � such that � = 1 is the �ne grid, and � > 1 produces acoarser grid. In this way it is easy to generate a sequence of grids for multigridcalculations.An alternative to this \independent grid" approach is agglomerationmultigrid[5], where a �nite volume method is formulated using edge based coe�cients,which can be \agglomerated" to form coarser grids. This has the advantage thatthe coarse grids are automatically generated form �nest grid; however, there arelimitations in the data structure (edge based), and the order of the prolongation([5]).2.2 Transfer OperatorsThe current implementation uses linear interpolation for both prolongation andrestriction. Using a superscript to denote the grid, for a node xKj on grid K ascalar qj would be transferred from grid K � 1 byqKj =X(i2CK!K�1j)�K�1i (xKj)qK�1i (2.1)where �Ki are the piecewise linear basis functions centred at node xKi on gridK and the set CK!K�1j contains the nodes of the tetrahedra on grid K � 1that contains xKj . As already mentioned, near curved boundaries xKj may notbe inside mesh K � 1 and consequently some of the � weights will be negative,corresponding to extrapolation. Where this occurred the negative weights wereset to zero and the sum of the weights re{normalised to unity, so as to preventthe interpolation creating oscillations. It is believed any inaccuracies due to thiswill only cause minor local oscillations that should be immediately damped bythe smoother. This transfer operation is simpler than that required in [3] toobtain stable computations.

4 If a nested coarse grid could be generated, eg. by skipping alternate pointsin a structured hexahedral grid that has been split into tetrahedra, then thisrestriction is equivalent to injection (ie copying the residual at the nested nodesbetween grids). This is well known to produce non{optimal performance forElliptic equations; the optimal treatment uses a full weighted restriction, whichaverages the copied residual with its neighbours. However, for the unstructuredtetrahedral grids, the interpolation procedure itself will produce some averaging,and for the Euler application, further averaging was found to be ine�ective.As part of the grid transfer operation boundary conditions are imposed. Forexample, as corrections are prolonged from coarse to �ne grid, the corrections areset to zero on Dirichlet boundaries, and the normal component of the momentumcorrection is disregarded on an inviscid wall boundary.2.3 SmootherThe purpose of the smoother is to damp high frequency error modes in the solu-tion. Assuming that N(W) = f is a nonlinear system whose solutionW approx-imates a partial di�erential equation over the tetrahedral mesh, the smoothingiteration can be expressed asW n+1 = W n + J�1(f �N(W n)) n = 1; 2; ::: (2.2)where J is some approximation to the Jacobian of N(W).To demonstrate the applicability of the multigrid method, the Euler equationsr:F = 0; F = (f; g; h)T ; F = F(q) (2.3)were discretised using a cell vertex �nite volume discretisation, with a blend offourth and second order arti�cial viscosity. The resulting nodal equations can beexpressed as Nj(W) = 1Vj X�2Cj V� [D�;jR� +A�;j]whereWj are the conserved variables (�; �u; �v; �w;E),Cj is the set of cells surrounding node j,R� is the cell based residual (H�F :nds) for tetrahedral cell �,D�;j are distribution matrices mapping the cell residual to the nodes, derivedfrom a Lax{Wendro� procedure,A�;j is a cell based scalar blend of 2nd and 4th order arti�cial dissipation, whichis transparent to a linear solution.

5The philosophy adopted in this approach for the spatial discretisation is a gen-eralisation of that described in [6]. The Jacobian is approximated by a simplepseudo{timestep, hence the resulting iteration is explicit in nature, and so issuitable for parallelising. This algorithm requires two loops over tetrahedra (1)to accumulate an undivided Laplacian for the 4th order dissipation, and (2) toperform a Lax{Wendro� update with 2nd and 4th order smoothing. Over 90%of the cpu time are spent in these loops, consequently the work associated withthe Euler solver can be assumed to be directly proportional to the number oftetrahedra. This will become an issue when considering the parallel aspects ofthe method.2.4 Multigrid AlgorithmThe FAS multigrid algorithm is summarised below:1. Pre-smooth errors on the �ne grid by �1 relaxationsW n+1h = W nh + J�1h (fh �Nh(W nh)) (2.4)2. Form a coarse grid right hand side:fH = IHh (fh �Nh(W nh)) +NH(IHh Wh) (2.5)and do
 iterations of multigrid on NH(WH) = fH unless it's the coarsestmesh, in which case do ncrs smoothing iterations,3. Prolong the coarse grid correction:Wh := Wh + IhH(WH � IHh Wh) (2.6)4. Post-smooth errors on the �ne grid by �2 relaxations:W n+1h = W nh + J�1h (fh �Nh(W nh)) (2.7)5.The multigrid cycling parameters are �1 and �2 for the smoothing and
 = 1 forV{cycles,
 = 2 for W{cycles. ncrs, the number of iteration on the coarsest gridwas always chosen to be 10. The above algorithm is exactly the same as thatused on traditional structured grids. Fundamentally there is no extra complexityin the unstructured multigrid over the structured multigrid. However, in practicecareful thought needs to put into the design of the software. Unlike the structuredgrid case;1. the sizes of the grids bear no relation to each other,

6 2. the grid connectivity needs to be explicitly stored,3. extra connectivity is required to link grids together.The software is written in FORTRAN 77 and arranged so that a table ofstarting addresses is constructed; these point into a large one dimensional array,which is made multidimensional through subroutine calls. This gives the
exibil-ity to have any number of grids, reuse workspace, and allocate workspace arrayson each grid.2.5 Multigrid Performance2.5.1 M6 wing

Figure 1: M6 wing sequence of grids for N=4In an attempt to �nd the best grid sequence, for a �xed �nest and coarsestgrids, a variety of intermediate grids were generated and the performance ana-lyzed. An M6 wing geometry was chosen for this test. The coarsening parameter

7sN 1.51 1.68 2.0 2.82 1.0N 6 5 4 3 1ncell 250000 250000 250000 250000 250000r 3.1 4.2 6.7 16.3ncell 81400 60000 38000 15000r 3.1 3.9 5.5 8.9ncell 26000 15000 6900 1700r 2.8 3.3 3.9ncell 9300 4600 1700r 2.4 2.7ncell 3800 1700r 2.2ncell 1700Table 1: The number of tetrahedra on the di�ering grid sequences for the M6wing� was set to 8 for the coarsest grid and � = 1 on the �nest grid, see Fig, 1. � = 8was the largest � for which the grid generator was successful; failure was due tothe granularity of the surface spline patches. Grid sequences of N grids wheregenerated by taking powers of sN , that is� = si�1N for i = 1; :::N (2.8)where sN = 81=(N�1). Table 1 gives the resulting number of tetrahedra on eachgrid, and the ratio between grids, for all sequences. Clearly, this ratio is notconstant for each grid sequence, although this may be a desirable property andis a consequence of the non{linear mesh density functions. Fig 1 shows thesurface triangles for the N = 4 case.All convergence plots are work units against log10 of the residual norm, wherea work unit is a residual evaluation on the �nest grid. The oscillations near theorigin is because of the Full MultiGrid (FMG) startup procedure, where theinitial solution on each grid is prolonged from a coarser grid.In order to test the grid sequence e�ciency, a robust cycling strategy waschosen, �1 = �2 = 6,
 = 2. Fig 2 shows the convergence for each grid sequenceexcept N = 2 that failed. The failure is attributed to an excessive jump in griddensity. All the other grid sequences showed a good speed up over the single gridperformance, that is, a healthy invariance to the grid sequence is observed.Fig. 2 also shows the convergence plots for the N = 4 grid sequence, with�1 = � = set to 6; 3; 2; 1. The actual work required for convergence seemsinvariant to the amount of pre{ and post{smoothing.Finally, Fig. 2 compares the performance for V and W cycles for N = 4,�2 = �1 = 2. The W{cycles exhibit a two{fold speed{up over the V{cycles. This

8superior performance of W{cycles is often observed in the literature, see [2].One conclusion of the above experiments is that a good cycling strategy is�2 = �1 = 2 with W{cycles, with a tetrahedra ratio between grids of about 4.More importantly, the achieved convergence rates are relatively insensitive to thegrid sequence and the cycling strategy used. Fig. 3 shows the solution, and theconvergence history of the optimised multigrid against the single grid iteration.A ten{fold speedup is observed.2.5.2 Aircraft simulationUsing the above strategy, the following grid sequence, for an aircraft con�gura-tion, was generated: ncells 746286r 4.6ncells 163768r 5.9ncells 27831The surface triangulations for this grid sequence can be seen in Fig 4. Fig5 shows the surface pressure contours along with the comparison of single andmultigrid convergence. Clearly multigrid is an e�ective acceleration procedurefor such large complex con�gurations.3 OPlus: Parallel ComputingThe aforementioned multigrid application leads to a complex and intricate code.A one{o� parallelisation of such a code using a message passing library such asPVM would be a time{consuming and error prone task, and the resulting codewould be di�cult to maintain and develop. The purpose of the OPlus library isto take the burden from the application programmer [7]. Emphasis is put ongenerality: OPlus uses arbitrary data structures which can include edge/cell/facebased data structure for any grid type (triangle/quadrilaterals (2D) ortetrahedra/prisms/hexahedra etc... (or any combination),performance: Messages are only sent when necessary, are concatenated to re-duce latency, and computation is overlapped with computation whereverpossible,portability: OPlus is a library that can be interfaced to general message passinglibraries such as PVM and MPI, or the native message passing library ofthe machine,

9single source: A single source code can be executed either sequentially or inparallel, this greatly simpli�es development and maintenance of parallelcode.There have been several authors who have pursued the idea of constructing alibrary for parallelising programs for MIMDmachines. These are mainly aimed atstructured grids. De Keyser developed a software tool called LOCO [8] for struc-tured grids with re�ned regions. Dellagiacoma et al constructed PARAGRID [9]which uses overlapping domain decomposition techniques on block{structuredgrids. Williams created DIME (Distributed Irregular Mesh Environment) [10]and Das et al developed PARTI (Parallel Automated Runtime Toolkit at ICASE)[11] for unstructured mesh algorithms on distributed machines. However, DIMErestricts the user to two dimensional triangular grid calculations. PARTI paral-lelises problems in any dimensions, but is not believed to be as communicatione�cient and easy to use as the current work.The OPlus framework uses a data parallel approach. Consequently certainalgorithmic restrictions must be enforced to ensure the solutions from paralleland sequential executions are identical, to within machine accuracy. For ex-ample, algorithms involving matrix{vector multiplications can be handled, suchas conjugate gradient methods with simple preconditioning, explicit time step-ping methods and Jacobi relaxation. Excluded algorithms are globally implicitmethods, such as ADI and sweeping relaxation schemes like Gauss{Seidel.3.1 Top Level ConceptsThe concept behind the OPlus framework is that unstructured grids can bedescribed by a number of sets. Depending on the application, these sets mightbe of nodes, edges, triangular faces, quadrilateral faces, cells of a variety of types,far-�eld boundary nodes, wall boundary faces, etc. Associated with these setsare both data (e.g. coordinate data at nodes, volumes at cells, normals on faces)and pointers to other sets (e.g. edge pointers to the two nodes at each end ofthe edge). All of the numerically-intensive operations can then be described asa function operating on all members of a set (eg. looping over cells, calculatingvolumes from the nodal coordinate values). The function can operate on dataassociated directly with the set or with another set through a pointer.The OPlus framework makes the important restriction that a function willoperate on all members of a set and the order it operates on the members will nota�ect the �nal result. If a function needs to be applied on a subset of membersthen another set should be formed containing only these members. Consequently,the OPlus routines can choose an ordering to achieve maximum parallel e�ciency.It is this restriction that negates the framework being applied to Gauss{Seidelrelaxation or globally implicit methods.

10 Before parallel execution can proceed, three main initialisation phases takeplace:partitioning All sets are partitioned and each partition is assigned an ownerprocessor. Processors must compute and store the values of the membersthey own.halo construction If the application of a function to an element of a set (andother data pointed to by that element) requires data which is not locallyowned that element is referred to as a \halo" member. The data at thehalo member itself may, or may not, be owned. Copies of the required datamust be communicated before halo execution.local renumbering All sets are locally renumbered to minimise the memoryrequirements of each process. The pointers have to be similarly renumberedto ensure consistency.It is important to note that all of the above operations are performed automati-cally by the OPlus library, not the application, which only need specify the setsand pointers.3.2 Input/OutputInput/OutputAn aim of the framework is to allow users to write a single source code whichwill execute either sequentially or in parallel depending on how the executableis linked. To achieve this it is necessary for the program to handle all disk andterminal i/o via appropriate subroutines.1. For sequential execution the user's main program is linked to user{writtensubroutines which handle all i/o. This will enable the user to develop,debug and maintain their sequential code without any parallel messagepassing libraries.2. For parallel execution the OPlus framework creates server and client pro-grams from the user's single source, Fig. 6. The server program is formedby linking the OPlus server process to the user's i/o routines, while theclient program is created by linking the user's compute process to OPlusclient routines.The current implementation of this client server model uses two messagepassing systems.PVM to communicate between the server and clients, thus giving the
exibility to having the server on any machine, and the possible poor

11performance of using PVM is irrelevant because i/o should not be abottleneck within the OPlus framework.BSP FORTRAN is used for client{client communication [12]; this is de-signed to be portable and give high parallel performance for SPMDapplications on homogeneous machines and so is ideally suited for theclient communication.Together this gives a
exible and e�cient solution to the portable perfor-mance problem.3.3 Loop SyntaxThe following example is given to illustrate how a loop is parallelised. Supposethat a triangular cell area, AREAC, is distributed to the cell's nodes using a pointer,NCELL, which points from the cell to its three nodes. This can be carried out forall the cells in the triangular mesh by the following DO{loop:FORTRAN loopDO IC = 1, NCELLSI1 = NCELL(1,IC)I2 = NCELL(2,IC)I3 = NCELL(3,IC)AREAN(I1) = AREAN(I1) + AREAC(IC)/3.0AREAN(I2) = AREAN(I2) + AREAC(IC)/3.0AREAN(I3) = AREAN(I3) + AREAC(IC)/3.0ENDDOThis becomes, using the OPlus framework:

12 FORTRAN OPlus loopDO WHILE(OP_PAR_LOOP(NCELLS,ISTART,IFINISH))CALL OP_ACCESS_R8('read' ,AREAC,1,NCELLS,NULL ,0,0,1,1)CALL OP_ACCESS_R8('update',AREAN,1,NNODES,NCELL,1,1,1,3)DO IC = ISTART, IFINISHI1 = NCELL(1,IC)I2 = NCELL(2,IC)I3 = NCELL(3,IC)AREAN(I1) = AREAN(I1) + AREAC(IC)/3.0AREAN(I2) = AREAN(I2) + AREAC(IC)/3.0AREAN(I3) = AREAN(I3) + AREAC(IC)/3.0ENDDOEND WHILEEssentially the DO WHILE loop is similar to a colouring loop that would be nec-essary for vectorisation. OP PAR LOOP is a logical function which returns as ar-guments the start and �nish indices of the inner loop. For sequential execution,ISTART and IFINISH are set to 1 and NCELLS respectively. OP ACCESS tells thelibrary how the arrays in the main loop are to be accessed and enables the libraryto perform runtime data dependency analysis. The contents of the inner loophave not changed during parallelisation. Full details of the arguments and otherroutines can be found in [13]. With this syntax the OPlus library can concate-nate client to client messages to reduce latency, minimise the size of message sentand overlap communication with computation.3.4 Parallel PerformanceMultigrid using W{cycles on �ve aircraft grids represents a challenge to boththe
exibility and the performance of the OPlus library. The sets on each gridassociated with this problem are:1. tetrahedra,2. nodes,3. boundary faces,4. boundary nodes.The grid sequence is that seen in Fig. 4 with intermediate grids. The pointersper grid level required for this calculation are:

13pointer from to lengthnodes �ne nodes 4nodes coarse nodes 4tetrahedral cell nodes 4boundary faces nodes 3boundary nodes nodes 1The partitioning strategy used is to partition the �nest grid by geometricinertial bisection, and let the coarse grids \inherit" the �ne grid partition bylooking through the grid{grid pointer tables. This is performed automaticallyby the OPlus library. The advantage with this method is that data remains localthroughout the multigrid cycle; however, the coarse grids will not be load bal-anced, ie. inheriting the partitions on the coarse grids will not ensure the samenumber of tetrahedra on each partition. Another load balancing issue is the re-dundant computations that are performed because of the OPlus parallel strategy.Thus, there is a limit L on the achievable speed up caused by partitioning andredundant computation given byL = sequential workmax slave work :Since all the work in the Euler code is performed over tetrahedra this can beevaluated for grid i to be Li = Timax� T �i � pwhere Ti is the number of tetrahedra on the complete grid i and T �i is the numberof tetrahedra executed on partition �. For a multigrid iteration this becomesLMG = PN�1i=1 c
i�1Ti + ncrsTNPN�1i=1 c
i�1max� T �i + ncrsmax� T �Nwhere c = �1+�2+1. For the �ve level multigrid on eight processors these limitsare L5 5.2L4 5.9L3 6.2L2 6.2L1 6.6LMG 6.1where L1 is the �nest grid and L5 is the coarsest grid. Clearly the e�ect ofinheriting the partitions from grid 1 is manifesting itself in a decreasing L forcoarser grids. However, since less work is performed on the coarse meshes, LMGis dominated by the partitioning of the �nest grid.Calculations were performed on the following machines:

14 � an 8 node distributed memory IBM SP1,� 4 processor shared memory SGI Power Challenge.The time spent partitioning, calculating local numbers and reading all the pointertables was less than 60 sections elapsed time; this is thought to be negligible. Theelapsed times, in seconds, per multigrid cycle, along with the speed up achieved(SU) is given in the following table.IBM SP1 SGI PCp LMG time S U time S U1 1.0 1006 1.0 419 1.02 1.9 556 1.8 216 1.93 2.7 384 2.6 149 2.84 3.5 310 3.2 116 3.65 4.1 270 3.7 | |6 4.8 234 4.3 | |7 5.4 211 4.8 | |8 6.1 190 5.3 | |Clearly the LMG limit on the performance is more signi�cant than the com-munication cost, and so if faster times are sought the partitioning strategy shouldbe reevaluated. It is possible with the OPlus framework to independently parti-tion each grid but this would incur a communication penalty when performinggrid transfers. The SGI Power Challenge managed to run faster than LMG usingfour processors, this is accounted for by better cache utilisation on the smallerpartitioned grids.The key point of this table is that worthwhile parallel speed up has beenachieved for a highly complex, worst case multigrid method with little user in-tervention.4 VisualisationFor such large applications it becomes prohibitive to rely on graphics work-stations to manipulate and render the complete solution. To remedy this, thecompute intensive part of the visualisation is performed on the parallel machine,along with the
ow solver, while all the rendering is performed on the graphicsworkstation, thus maximising the use of both sets of hardware. This uses thepV3 software [14], which �ts easily in the OPlus framework.5 ConclusionsAn unstructured multigrid algorithm has been found to be e�ective for large scalegeometrically complex con�gurations. The performance of the multigrid has been

15found to be insensitive to the grid sequence and multigrid cycling strategy.A
exible and general approach has been demonstrated to parallelise unstruc-tured grid applications. This involves the programmer adopting the OPlus loopstyle of programming and all i/o being sent through speci�c subroutine calls.The resulting code will execute on a sequential machine (without the need forany parallel libraries) or in parallel (on a MIMD architecture). This single sourceis of major bene�t for the development and maintenance of the code.The OPlus parallel execution is fully optimised to concatenate messages, min-imise number of messages sent and overlap communication with computation.This library is intended for large applications, which warrant the use of parallelmachines, and has been demonstrated by the aforementioned 3D Euler multigridsolver for a complete aircraft con�guration. For this realistic industrial appli-cation a worthwhile speed up has been achieved with very little e�ort from theapplication programmer.References[1] P. Wesseling. An introduction to multigrid methods. John Wiley, 1992.[2] D. Mavriplis and A. Jameson. Multigrid solution of the Euler Equations onunstructured and adaptive meshes. ICASE Report 87{53, 1987.[3] J. Peraire, J. Peiro, and K. Morgan. A 3{D �nite element multigrid solverfor the Euler equations. AIAA Paper 92{0449, 1992.[4] K. Morgan, J. Peraire, and J. Peir�o. Unstructured grid methods for com-pressible
ows. AGARD, R{787:5.1{5.39, May 1992.[5] V. Venkatakrishnan and D.J. Mavripolis. Agglomeration multigrid for thetree{dimensional Euler equations. ICASE Report No. 94-5, 1994.[6] P.I. Crumpton, J.A. Mackenzie, and K.W. Morton. Cell vertex algorithmsfor the compressible Navier-Stokes equations. J. Comput. Phys., 109(1):1{15, 1993.[7] D. A. Burgess, P. I. Crumpton, and M. B. Giles. A parallel framework forunstructured mesh solvers. IFIP WG10.3 Working Conference on Program-ming Environments for Massively Parallel Disributed Systems, 1994.[8] J.De Keyser. LOCO1.0: a library supporting data parallelism on MIMDcomputers. Department of Computer Science, Katholieke Universiteit Leu-ven, Leuven, Belgium, March 1993.

16[9] F. Dellagiacoma, S. Paoletti, F. Poggi, and M. Vitaletti. PARAGRID: aparallel multi{block environment for Computational Fluid Dynamics. IBMECSEC,Viale Oceano Paci�co 173, 00144 Rome, Italy.[10] R. D. Williams. DIME Distributed Irregular Mesh Environment. ReportC3P 861, Cal. Tech. Pasadena, CA, 1990.[11] H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adaptivescienti�c algorithms on distributed memory architectures. Concurrency:Practice and experiernce, 3(3), 1991.[12] R. Miller. A library for bulk{synchronous parallel programming. Britishcomputer society parallel processinghttp://www.comlab.ox.uk/oucl/oxpara/bsplib.html, 1993.[13] P.I. Crumpton and M.B. Giles. OPlus programmer's manual. Oxford Uni-versity Computing Laboratory, 1993.[14] R. Haimes. pV3: A distributed system for large scale unsteady CFD visu-alisation. AIAA Paper 94{0321, 1994.

17

0: 400: 800: 1200: 1600: 2000:�11:0�10:0�9:0�8:0�7:0�6:0�5:0�4:0�3:0�2:0

work units
log res N=1

N=6N=3N=5N=4

0: 200: 400: 600: 800: 1000:�11:0�10:0�9:0�8:0�7:0�6:0�5:0�4:0�3:0

work units
log res

0: 400: 800: 1200: 1600: 2000:�11:0�10:0�9:0�8:0�7:0�6:0�5:0�4:0�3:0�2:0

work units
log res W VFigure 2: Top: comparison of convergence for grid sequences N=1,2,3,6 ; Mid-dle: comparison of convergence for �1 = �2 = 1; 2; 3; 6, Botton: comparison ofconvergence for W and V cycles, �1=�2.

18

0: 2000: 4000: 6000: 8000: 10000:�11:0�10:0�9:0�8:0�7:0�6:0�5:0�4:0�3:0�2:0

work units
log res

Multigrid Single GridFigure 3: Contours of pressure and convergence history for the M6 wing

19

Figure 4: The sequence of grids used for the aircraft con�guration

20

0: 2000: 4000: 6000: 8000: 10000:�16:0�14:0�12:0�10:0�8:0�6:0�4:0�2:0

work units
log res

Multigrid Single Grid
Figure 5: Contours of pressure and convergence history for the aircraft con�gu-ration

21

Sequential programuser'scomputeprocessuser'si/oroutines

Server programOPlusserverprocessuser'si/oroutines

Client programs
user'scomputeprocessOPlusclientroutinesFigure 6: Sequential and parallel versions of user's program

