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We show that multigrid ideas can be used to reduce the computational
complexity of estimating an expected value arising from a stochastic differ-
ential equation using Monte Carlo path simulations. In the simplest case
of a Lipschitz payoff and an Euler discretisation, the computational cost to
achieve an accuracy of O(ε) is reduced from O(ε−3) to O(ε−2(log ε)2). The
analysis is supported by numerical results showing significant computational
savings.
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1 Introduction

In Monte Carlo path simulations which are used extensively in computational finance,
one is interested in the expected value of a quantity which is a functional of the solution
to a stochastic differential equation. To be specific, suppose we have a vector SDE with
general drift and volatility terms,

dS(t) = a(S, t) dt + b(S, t) dW (t), 0 < t < T, (1.1)

and given initial data S0 we want to compute the expected value of f(S(T )) where f(S)
is a scalar function with a uniform Lipschitz bound, i.e. there exists a constant c such
that

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V. (1.2)

A simple Euler discretisation of this SDE with timestep h is

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn,

and the simplest estimate for E[f(ST )] is the mean of the payoff values f(ŜT/h), from
N independent path simulations,

Ŷ = N−1

N∑

i=1

f(Ŝ
(i)
T/h).

It is well established that, provided a(S, t) and b(S, t) satisfy certain conditions [13, 9, 1],

the expected mean-square-error (MSE) in the estimate Ŷ is asymptotically of the form

MSE ≈ c1N
−1 + c2h

2,

where c1, c2 are positive constants. The first term comes from the variance in Ŷ due to
the Monte Carlo sampling, and the second term comes from the O(h) bias introduced
by the Euler discretisation.

To make the MSE O(ε2), so that the r.m.s. error is O(ε), requires that N = O(ε−2)
and h = O(ε), and hence the computational complexity (cost) is O(ε−3) [4]. The main
theorem in this paper proves that the computational complexity for this simple case
can be reduced to O (ε−2(log ε)2) through the use of a multi-level method which reduces
the variance, leaving unchanged the bias due to the Euler discretisation. The multi-level
method is very easy to implement and can be combined, in principle, with other variance
reduction methods such as stratified sampling [5] and quasi Monte Carlo methods [11,
12, 10] to obtain even greater savings.

The method extends the recent work of Kebaier [8] who proved that the computa-
tional cost of the simple problem described above can be reduced to O(ε−2.5) through
the appropriate combination of results obtained using two levels of timestep, h and
O(h1/2). Our technique generalises this approach to multiple levels, using a geometric
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sequence of different timesteps hl = M−l, l = 0, 1, . . . , L, for integer M ≥ 2, with the
smallest timestep hL corresponding to the original h which determines the size of the
Euler discretisation bias.

This idea of using a geometric sequence of timesteps comes from the multigrid method
for the iterative solution of linear systems of equations arising from the discretisation
of elliptic partial differential equations [14, 2]. The multigrid method uses a geometric
sequence of grids, each typically twice as fine in each direction as its predecessor. If
one were to use only the finest grid, the discretisation error would be very small, but
the computational cost of a Jacobi or Gauss-Seidel iteration would be very large. On a
much coarser grid, the accuracy is much less, but the cost is also much less. Multigrid
solves the equations on the finest grid, by computing corrections using all of the grids,
thereby achieving the fine grid accuracy at a much lower cost. This is a very simpli-
fied explanation of multigrid, but it is the same essential idea which will be used here,
retaining the accuracy/bias associated with the smallest timestep, but using calcula-
tions with larger timesteps to reduce the variance in a way that minimises the overall
computational complexity.

The paper begins with the introduction of the new multi-level method and an out-
line of its asymptotic accuracy and computational complexity for the simple problem
described above. The main theorem and its proof are then presented. This estab-
lishes the computational complexity for a broad category of applications and numerical
discretisations with certain properties. The applicability of the theorem to the Eu-
ler discretisation is a consequence of its well-established weak and strong convergence
properties. The paper then discusses some refinements to the method and its imple-
mentation, and the effects of different payoff functions and numerical discretisations.
Finally, numerical results are presented to provide support for the theoretical analysis,
and directions for further research are outlined.

2 Multi-level Monte Carlo method

Consider Monte Carlo path simulations with different timesteps hl = M−l T , l =
0, 1, . . . , L. For a given Brownian path W (t), let P denote the payoff f(S(T )), and

let Ŝl,M l and P̂l denote the approximations to S(T ) and P using a numerical discretisa-
tion with timestep hl.

It is clearly true that

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1].

The multi-level method independently estimates each of the expectations on the right-
hand side in a way which minimises the computational complexity.

Let Ŷ0 be an estimator for E[P̂0] using N0 samples, and let Ŷl for l>0 be an estimator

for E[P̂l−P̂l−1] using Nl paths. The simplest estimator that one might use is a mean of
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Nl independent samples, which for l>0 is

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
. (2.1)

The key point here is that the quantity P̂
(i)
l −P̂

(i)
l−1 comes from two discrete approximations

with different timesteps but the same Brownian path. This is easily implemented by first
constructing the Brownian increments for the simulation of the discrete path leading to
the evaluation of P̂

(i)
l , and then summing them in groups of size M to give the discrete

Brownian increments for the evaluation of P̂
(i)
l−1.

The variance of this simple estimator is V [Ŷl] = N−1
l Vl where Vl is the variance of a

single sample. The same inverse dependence on Nl would apply in the case of a more
sophisticated estimator using stratified sampling or a zero-mean control variate to reduce
the variance,

The variance of the combined estimator Ŷ =
L∑

l=0

Ŷl is

V [Ŷ ] =
L∑

l=0

N−1
l Vl.

The computational cost, if one ignores the asymptotically negligible cost of the final
payoff evaluation, is proportional to

L∑

l=0

Nl h
−1
l .

Treating the Nl as continuous variables, the variance is minimised for a fixed computa-
tional cost by choosing Nl to be proportional to

√
Vl hl.

In the particular case of the Euler discretisation and the Lipschitz payoff function,
provided a(S, t) and b(S, t) satisfy certain conditions [13, 9, 1], there is O(h) weak con-
vergence, so that

E[P̂l − P ] = O(hl),

and O(h1/2) strong convergence, so that

E[ ‖Ŝl,M l − S(T )‖2 ] = O(hl).

From the latter, together with the Lipschitz property (1.2), it follows that

V [P̂l−P ] ≤ E[(P̂l−P )2] ≤ c2 E[‖Ŝl,M l − S(T )‖2],

and therefore V [P̂l−P ] = O(hl). Furthermore,

(P̂l−P̂l−1) = (P̂l−P ) − (P̂l−1−P )

=⇒ V [P̂l−P̂l−1] ≤
(
(V [P̂l−P ])1/2 + (V [P̂l−1−P ])1/2

)2

.
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Hence for the simple estimator (2.1), the single sample variance Vl is O(hl), and the
optimal choice for Nl is asymptotically proportional to hl. Setting Nl = O(ε−2Lhl), the

variance of the combined estimator Ŷ is O(ε2). If L is chosen such that

L =
log ε−1

log M
+ O(1),

as ε→0, then hl = M−L = O(ε), and so the bias error E[P̂l − P ] is O(ε). Consequently,
we obtain a MSE which is O(ε2), with a computational complexity which is O(ε−2L2) =
O(ε−2(log ε)2).

3 Complexity theorem

The main theorem is worded quite generally so that it can be applied to a variety of
financial models with output functionals which are not necessarily Lipschitz functions
of the terminal state but may instead be a discontinuous function of the terminal state,
or even path-dependent as in the case of barrier and lookback options. The theorem
also does not specify which numerical approximation is used. Instead, it proves a result
concerning the computational complexity of the multi-level method conditional on cer-
tain features of the underlying numerical approximation and the multi-level estimators.
This approach is similar to that used by Duffie and Glynn [4].

Theorem 1 Let P denote a functional of the solution of stochastic differential equation
(1.1) for a given Brownian path W (t), and let P̂l denote the corresponding approximation
using a numerical discretisation with timestep hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo samples, and posi-
tive constants α≥ 1

2
, β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =

{
E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V [Ŷl] ≤ c2 N−1
l hβ

l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l ,

then there exists a positive constant c4 such that for any ε<e−1 there are values L and
Nl for which the multi-level estimator

Ŷ =
L∑

l=0

Ŷl,
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has a mean-square-error with bound

MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤





c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.

Proof Using the notation dxe to denote the unique integer n satisfying the inequalities
x ≤ n < x+1, we start by choosing L to be

L =

⌈
log(

√
2 c1 Tα ε−1)

α log M

⌉
,

so that 1√
2
M−αε < c1 hα

l ≤ 1√
2
ε and hence, because of properties i) and ii),

(
E[Ŷ ] − E[P ]

)2
≤ 1

2 ε2.

We now need to consider the different possible values for β. If β=1, we set

Nl =
⌈
2 ε−2 (L+1) c2 hl

⌉

so that

V [Ŷ ] =

L∑

l=0

N−1
l Vl ≤ 1

2ε2,

Together with the 1
2ε2 bound on the square of the bias error, this establishes the ε2 upper

bound on the estimator MSE. To bound the computational complexity C we begin with an
upper bound on L given by

L ≤ log ε−1

α log M
+

log(2 c1 Tα)

α log M
+ 1.

Given that 1< log ε−1 for ε<e−1, it follows that

L+1 ≤ c5 log ε−1,

where

c5 =
1

α log M
+ max

(
0,

log(2 c1 Tα)

α log M

)
+ 2.

Upper bounds for Nl are given by

Nl ≤ 2ε−2 (L+1) c2 hl + 1.
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Hence the computational complexity is bounded by

C ≤ c3

L∑

l=0

Nl h
−1
l

≤ c3

(
2 ε−2(L+1)2 c2 +

L∑

l=0

h−1
l

)

≤ c3

(
2 ε−2(L+1)2 c2 +

M2

M−1

(
ε

2c1

)−1/α
)

,

since
L∑

l=0

h−1
l <

M

M−1
h−1

L <
M2

M−1

(
ε

2c1

)−1/α

.

Using the upper bound for L+1 and noting that ε−1/α ≤ ε−2(log ε)2 it follows that C ≤
c4 ε−2(log ε)2 where

c4 = 2 c3 c2
5 + c3

M2

M−1
(2c1)

1/α.

For β>1, setting

Nl =

⌈
2 ε−2 c2

(
1−M−(1−β)/2

)−1
h

(1+β)/2
l

⌉
,

it is easily checked that the MSE is again less than ε2. The corresponding complexity bound
is a decreasing geometric series, resulting in the bound stated in the theorem.

For β<1, the appropriate choice for Nl is

Nl =

⌈
2 ε−2c2

(
1−M−(β−1)/2

)−1
h
−(1−β)/2
L h

(1+β)/2
l

⌉
.

This again gives an MSE which is less than ε2, but in this case the corresponding complexity

bound is an increasing geometric series, resulting in the bound stated in the theorem. �

In applying the theorem in different contexts, there will often be existing litera-
ture on weak convergence which will establish the correct exponent α for condition i).
Constructing estimators with properties ii) and iv) is also straightforward. The main
challenge will be in determining and proving the appropriate exponent β for iii). An
even bigger challenge might be to develop better estimators with a higher value for β.

In the case of the Euler discretisation with a Lipschitz payoff, there is existing lit-
erature on the conditions on a(S, t) and b(S, t) for O(h) weak convergence and O(h1/2)
strong convergence [13, 9, 1], which in turn gives β =1 as explained earlier.

The convergence is degraded if the payoff function f(S(T )) has a finite number of
discontinuities. In this case, for a given timestep hl, a fraction of the paths of size
O(h

1/2
l ) will have a final Ŝl,M l which is O(h

1/2
l ) from a discontinuity. With the Euler

discretisation, this fraction of the paths have an O(1) probability of P̂l−P̂l−1 being O(1),
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Figure 1: A plot of the function (M−M−1)/(log M)2

due to Ŝl,M l and Ŝl−1,M l−1 being on opposite sides of the discontinuity, and therefore

Vl = O(h
1/2
l ) and β = 1

2
. Because the weak order of convergence is still O(hl) [1] so α=1,

the overall complexity is O(ε−2.5), which is still better than the O(ε−3) complexity of the
standard Monte Carlo method with an Euler discretisation. Further improvement may
require the development of new methods with increased sampling of those paths with
large values for P̂l−P̂l−1.

If the Euler discretisation is replaced by Milstein’s method for a scalar SDE, its O(h)
strong convergence results in Vl = O(h2

l ) for a Lipschitz payoff. Future research will
investigate the possibility of obtaining the same order of convergence for vector SDEs.
This might be achievable by modifying the estimator to include a zero-mean control
variate [5].

4 Extensions

4.1 Optimal M

In the analysis so far, the value of the integer M , which is the factor by which the
timestep is refined at each level, has not been specified. In the multigrid method for the
iterative solution of discretisations of elliptic PDEs, it is usually optimal to use M =2,
but that is not necessarily the case with the multi-level Monte Carlo method introduced
in this paper.
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For the simple Euler discretisation with a Lipschitz payoff, V [P̂l−P ] ≈ c0 hl asymp-
totically, for some positive constant c0. From the identity

(P̂l−P̂l−1) = (P̂l−P ) − (P̂l−1−P )

we obtain, asymptotically, the upper and lower bounds

(√
M − 1

)2

c1 hl ≤ V [P̂l−P̂l−1] ≤
(√

M + 1
)2

c1 hl,

with the two extremes corresponding to perfect correlation and anti-correlation between
P̂l−P and P̂l−1−P .

Suppose now that the value of V [P̂l−P̂l−1] is given approximately by the geometric
mean of the two limits,

V [P̂l−P̂l−1] ≈ (M−1) c0 hl,

which results in
Nl ≈ 2ε−2(L+1) (M−1) c0 hl.

The computational cost of evaluating Ŷl is proportional to

Nl (h
−1
l +h−1

l−1) = Nl hl (1+M−1) ≈ 2 ε−2(L+1)2 (M−M−1) c0.

Since L = O(log ε−1/ log M), we conclude that asymptotically the total computational
cost for fixed ε is proportional to

M−M−1

(log M)2
.

This function is illustrated in Figure 1. Its minimum near M =7 is about half the value
at M =2, giving twice the computational efficiency.

For β<1, it may be that even larger values for M will be optimal, whereas for β>1,
values much closer to M =2 are likely to be best.

4.2 Bias estimation and Richardson extrapolation

In the multi-level method, the estimates for the correction E[P̂l−P̂l−1] at each level give
information which can be used to estimate the remaining bias. In particular, in the case
of the Euler discretisation with a Lipschitz payoff, the correction from the final level
E[P̂L−P̂L−1] is asymptotically equal to (M−1) E[P−P̂L].

This information can be used in one of two ways. The first is to use it as an approx-
imate bound on the remaining bias, so that one increases the value for L until

∣∣∣ŶL

∣∣∣ < 1√
2
(M−1) ε.

Being more cautious, the condition which we use in the numerical results presented later
is

max
{

M−1
∣∣∣ŶL−1

∣∣∣ ,
∣∣∣ŶL

∣∣∣
}

< 1√
2
(M−1) ε. (4.1)
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This ensures that the remaining error based on an extrapolation from either of the
two finest timesteps is within the desired range. This modification is designed to avoid
possible problems due to a change in sign of the correction, E[P̂l−P̂l−1].

An alternative approach is to use Richardson extrapolation to eliminate the leading
order bias. If E[P̂L−P̂L−1] ≈ c1hL, then E[P−P̂L] ≈ c1(M−1)−1hL and so by changing
the combined estimator to

(
L∑

l=0

Ŷl

)
+ (M−1)−1ŶL = (M−1)−1

{
MŶ0 +

L∑

l=1

(
MŶl − Ŷl−1

)}
,

the leading order bias is eliminated and the remaining bias is o(hL) (probably either
O(h3/2) or O(h2). The advantage of re-writing the new combined estimator in the form
shown above on the right-hand-side, is that one can monitor the convergence of the
terms MŶl − Ŷl−1 to decide when the remaining bias is sufficiently small, in exactly the
same way as described previously for Ŷl.

5 Numerical results

Putting together the elements already discussed, the multi-level algorithm used for the
numerical tests is as follows:

1. start with L=0

2. estimate VL using an initial NL =104 samples

3. define optimal Nl, l = 0, . . . , L using Eqn. (5.1)

4. evaluate extra samples at each level as needed for new Nl

5. if L≥2, test for convergence using Eqn. (4.1)

6. if L<2 or not converged, set L := L+1 and go to 2.

The numerical results are all obtained using M =4. This gives most of the benefits
of a larger value of M , as analysed in the previous section, but at the same time M
is small enough to give a reasonable number of data points to observe the asymptotic
convergence.

The equation for the optimal Nl is

Nl =

⌈
2 ε−2

√
Vl hl

(
L∑

l=0

√
Vl/hl

)⌉
. (5.1)

This makes the overall variance less than 1
2
ε2, while Equation (4.1) ensures that the bias

is less than 1√
2
ε. Together, they give a mean-square-error which is less than ε2, with ε

being a user-specified r.m.s. accuracy.
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5.1 Geometric Brownian motion

Figures 2-5 present results for a simple geometric Brownian motion,

dS = r S dt + σ S dW, 0 < t < 1,

with S(0)=1, r=0.05 and σ=0.2, and four different kinds of option payoff.

5.1.1 European option

The results in Figure 2 are for the European call option for which the discounted payoff
function is

P = exp(−r) max(0, S(1)−1).

The top left plot shows the behaviour of the variance of both P̂l and P̂l− P̂l−1. The
slope of the latter is approximately −1 showing that Vl = V [P̂l− P̂l−1] = O(h). For

l=4, Vl is more than 1000 times smaller than the variance V [P̂l] of the standard Monte
Carlo method with the same timestep. The top right plot shows the O(h) convergence

of E[P̂l−P̂l−1]. Even at l=3, the relative error E[P−P̂l]/E[P ] is less than 10−3. These
two plots are both based on results from 106 paths, for each value of the timestep.

The bottom two plots have results from five multi-level calculations for different
values of ε. Each line in the bottom left plot shows the values for Nl, l = 0, . . . , L, with
the values decreasing with l because of the decrease in both Vl and hl. It can also be
seen that the value for L, the maximum level of timestep refinement, increases as the
value for ε decreases. The bottom right plot shows the variation with ε of ε2 C where
the computational complexity C is defined as

C =
∑

l

Nlh
−1
l .

One line shows the results for the multi-level calculation and the other shows the cor-
responding cost of a standard Monte Carlo simulation of the same accuracy, i.e. the
same bias error corresponding to the same value for L, and the same variance. It can be
seen that ε2C is a very slowly increasing function of ε−1 for the multi-level method, in
agreement with the theory which predicts it to be proportional to (log ε)2, whereas for
the standard Monte Carlo method it is approximately proportional to ε−1. For the most
accurate case, ε=5 × 10−5, the multi-level method is more than 60 times more efficient
than the standard method.

5.1.2 Asian option

Figure 3 has results for the Asian option payoff, P = exp(−r) max
(
0, S−1

)
, where

S =

∫ 1

0

S(t) dt,
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Figure 2: Geometric Brownian motion with European option
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which is approximated numerically by

Sl =

Nl∑

1

1
2
(Ŝn+Ŝn−1) hl.

The results are qualitatively similar, with O(h) convergence of both Vl and E[Pl−Pl−1],
and significant savings in computational complexity from using the multi-level method.

5.1.3 Lookback option

The results in Figure 4 are for the lookback option

P = exp(−r)
(
S(1) − min

0<t<1
S(t)

)
.

The minimum value of S(t) over the path is approximated numerically by

Ŝmin,l =
(
min

n
Ŝn

)(
1 − β∗σ

√
hl

)
.

β∗ ≈ 0.5826 is a constant which corrects the O(h1/2) leading order error due to the
discrete sampling of the path, and thereby restores O(h) weak convergence [3]. Despite
this, to get the desired accuracy requires larger values of L than for the other options,
and hence the multi-level method gives greater computational savings than in the other
cases.

5.1.4 Digital option

The final payoff which is considered is a digital option, P =exp(−r) H(S(1)−1) where

H(x) is the Heaviside function. The results in Figure 5 show that Vl = O(h
1/2
l ), instead

of the O(hl) convergence of all of the previous options. This results in much larger values
for Nl to achieve comparable accuracy, and the efficiency gains of the multi-level method
are reduced accordingly.

Similar results have also been obtained for a barrier option.

5.2 Heston stochastic volatility model

Figure 6 presents results for the same European call payoff considered previously, but
this time based on the Heston stochastic volatility model [6],

dS = r S dt +
√

V S dW1, 0 < t < 1

dV = λ (σ2−V ) dt + ξ
√

V dW2,

with S(0) = 1, V (0) = 0.04, r = 0.05, σ = 0.2, λ = 5, ξ = 0.25, and correlation ρ =−0.5
between dW1 and dW2.
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Figure 4: Geometric Brownian motion with lookback option
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Figure 5: Geometric Brownian motion with digital option



17

0 1 2 3 4
−10

−8

−6

−4

−2

0

l

lo
g M

 v
ar

ia
nc

e

 

 

P
l

P
l
− P

l−1

0 1 2 3 4
−10

−8

−6

−4

−2

0

l

lo
g M

 |m
ea

n|

 

 

P
l

P
l
− P

l−1

0 1 2 3 4

10
4

10
6

10
8

10
10

l

N
l

 

 
ε=0.00005
ε=0.0001
ε=0.0002
ε=0.0005
ε=0.001

10
−4

10
−3

10
−1

10
0

10
1

ε

ε2  C
os

t

 

 

Std MC
MLMC

Figure 6: Heston model with European option
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In the discretisation
√

V is replaced by
√

max(V, 0) but as h→0 the probability of
the discrete approximation to the volatility becoming negative approaches zero, for the
chosen values of λ, σ, ξ [7]. Consequently, the Euler discretisation has the same order
of weak and strong convergence as for the geometric Brownian motion, and the multi-
level method again yields computational savings which increase rapidly with the desired
accuracy.

6 Concluding remarks

In this paper we have shown that a multi-level approach, using a geometric sequence
of timesteps, can reduce the order of complexity of Monte Carlo path simulations. If
we consider the generation of a discrete Brownian path through a recursive Brownian
Bridge construction, starting with the end points W0 and WT at level 0, then computing
the mid-point WT/2 at level 1, then the interval mid-points WT/4,W3T/4 at level 2, and
so on, then an interpretation of the multi-level method is that the level l correction,
E[P̂l−P̂l−1], corresponds to the effect on the expected payoff due to the extra detail that
is brought into the Brownian Bridge construction at level l. This interpretation is very
much in the same spirit as the multigrid method for solving elliptic PDEs, in which the
long wavelength corrections are computed on coarse grids, while the short wavelength
corrections are computed on fine grids.

There are three broad areas for further research arising from this work. The first
is the determination of the exponent β which is critical to the application of the main
theorem. This will require detailed analysis of each case, whether the output functional
is a function of the final state S(T ), or depends on the entire path as in the case of
barrier and lookback options.

A second direction for further study is an investigation into the use of standard
variance reduction techniques in conjunction with the multi-level method. There should
be no difficulty in using stratified sampling [5], for example, to reduce the computational
cost, while leaving its order of complexity unchanged. It may also be possible to reduce
the computational order of complexity by switching to quasi Monte Carlo methods [11,
12, 10].

In the examples in this paper, the estimators Ŷl are based on standard estimators
for P̂l and P̂l−1. The third area for future research is the development of new estimators
specifically designed to estimate the quantity E[P̂l− P̂l−1], with the goal of improving
the exponent β. It is thought this might be achievable for Lipschitz payoffs through
the use of a suitable zero-mean control variate based on the leading order term in an
asymptotic expansion of the difference P̂l−P̂l−1. However, other approaches are likely
to be required for discontinuous payoffs.
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