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1 Introduction

This paper is concerned with a detailed error analysis of a particularly simple problem,
a forward Euler central space discretisation of the one-dimensional constant coefficient
convection/diffusion equation on an infinite domain with Dirac initial data. The analytic
approach which is followed, embedding the discrete equations within a semi-discrete
system of equations which can be analysed by Fourier transformation, is based on the
approach used by Brenner, Thomée and Wahlbin [3]. However, their interest was in
studying convergence for Lp initial data, as opposed to the Dirac initial data of interest
in this paper.

The reason for the focus on Dirac initial data is concern with the convergence of
adjoint discretisations. Adjoint methods are being used heavily for optimal design [8, 9],
error analysis and correction for integral outputs [10, 6, 1], and optimal grid adaptation
[2, 4]. In applications in which the original p.d.e. is nonlinear, the adjoint discretisa-
tion is usually obtained in one of two ways, either as a discretisation of the adjoint
p.d.e. corresponding to the linearisation of the original p.d.e., or as the transposed equa-
tion corresponding to the linearised discretisation of the original p.d.e. In either case, if
the original nonlinear solution is smooth, then the coefficients of the adjoint discretisa-
tion will be smooth, and it is possible to prove convergence in both steady and unsteady
applications as the mesh spacing and timestep approach zero [11, 12]. However, when
the underlying nonlinear solution is discontinuous, as in the case of shocks in compress-
ible flow, then there is numerical evidence [5] showing that one must be careful in the
treatment of the discontinuity to obtain convergence for the adjoint discretisation.

To understand the connection between Dirac initial data and adjoint equations, con-
sider the following system of linear equations,

Un+1 = AnUn,

arising from the discretisation of an unsteady linear one-dimensional p.d.e. Here Un

represents the approximation to a scalar variable u(x, t) on a one-dimensional grid with
uniform spacing h at time tn = nk. If one is interested in the value of an integral output

J =

∫ ∞

−∞

g(x) u(x, T ) dx,

this may be approximated as

Jh = h
∑

j

g(xj) UN
j ,

where T = Nk. Alternatively, but equivalently, it can be evaluated as

Jh = h
∑

j

V 0
j U0

j ,

where the adjoint solution V n
j satisfies the adjoint discrete equations

V n = (An)TV n+1,
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subject to the final data
V N

j = g(xj).

The equivalence follows immediately from the identity

(V 0)T U0 = (V N )T AN−1AN−2 . . . A1A0 U0 = (V N)T UN .

This adjoint approach to evaluating the output functional is advantageous when
there is a single output functional of interest, but many different sets of initial data.
Under these circumstances, the standard approach would require a separate forward
analysis for each set of initial data, whereas the adjoint approach requires just one
adjoint calculation, plus an inexpensive inner product evaluation for each set of initial
data.

In the particular case of Dirac initial data with

U0
j = h−1δj,0 ≡

{
h−1, j = 0

0, otherwise

one obtains
V 0

0 = h
∑

j

g(xj) UN
j .

Thus, convergence of the integral output for Dirac initial data is equivalent to pointwise
convergence of the adjoint discretisation. The results in this paper will be used in a
future paper [7] to prove the pointwise convergence of adjoint discretisations when there
are discontinuities in the solution of the underlying nonlinear p.d.e..

2 Fourier analysis of analytic problem

Fourier analysis will be used to analyse the discrete problem, so here we review the
Fourier analysis of the analytic problem. The p.d.e. is

ut = −aux + εuxx, a > 0, ε > 0,

with initial data
u(x, 0) = δ(x).

The Fourier transform

û(κ, t) =

∫ ∞

−∞

u(x, t) exp(−iκx) dx,

satisfies the equation
ût = (−iaκ − εκ2) û,

with initial data
û(κ, 0) = 1.



4

Hence,
û(κ, t) = exp(−iaκ − εκ2)t,

and therefore

u(x, t) =
1√
4πεt

exp
(x−at)2

4εt
=

1√
2εt

N

(
x−at√

2εt

)
,

where

N(x) =
1√
2π

exp

(
−x2

2

)
,

is the standard normal distribution with zero mean and unit variance.

3 Fourier analysis of discrete approximation

The standard forward Euler central space discretisation on a uniform grid with spacing
h and timestep k is

Un+1
j = Un

j − r

2
(Un

j+1 − Un
j−1) + d (Un

j+1 − 2Un
j + Un

j−1)

where

d =
εk

h2
, r =

ak

h
.

The discrete approximation to the Dirac initial data is

U0
j = h−1δj,0 ≡

{
h−1, j = 0

0, otherwise.

The aim of the convergence analysis is to find the l∞ and l1 norms of the error Un
j −

u(xj, t
n), defined as

‖Un − u(·, tn)‖l∞ = max
j

∣∣Un
j − u(xj, t

n)
∣∣ ,

‖Un − u(·, tn)‖l1 = h
∑

j

∣∣Un
j − u(xj, t

n)
∣∣ ,

at a fixed time tn = nk, n≥ 1 as h→ 0 with d held fixed at a constant value d < 1
2

for
which the discretisation is stable for sufficiently small h. Initially, we will consider the
particular case in which ε=1 and t=1, and hence r = a d h. A similarity argument will
then be used to extend the results to arbitrary values of both ε and t.

3.1 Unit viscosity Fourier analysis

To apply Fourier analysis, we first embed this problem within a semi-discrete problem
by defining

Û0(κ) = H
(
κ + π

h

)
− H

(
κ − π

h

)
≡

{
1, |κ| < π/h

0, otherwise
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for which the inverse Fourier transform gives

U0(x) =
sin(πx

h
)

πx
≡ h−1sinc

(
πx
h

)
.

Note that U0(xj) = U0
j , so these initial conditions have nodal values matching those of

the discrete solution. The evolution of the semi-discrete solution is defined by the same
finite difference equation,

Un+1(x) = Un(x) − a d h

2
(Un(x+h) − Un(x−h))

+d
(
Un(x+h) − 2Un(x) + Un(x−h)

)
,

so it follows that Un(xj) = Un
j for all j, n.

The Fourier transform of this equation yields

Ûn(κ) = zn(κ) Û0(κ),

where

z(κ) = 1 − i a d h sin κh − 4d sin2 κh

2
.

If we now define a new quantity e(x) as

e(x) = − d

4
√

2
a2N ′′

(
x−a√

2

)
−

(
1

24
− d

4

)
aN ′′′

(
x−a√

2

)

+

(
1

48
√

2
− d

8
√

2

)
N ′′′′

(
x−a√

2

)
, (3.1)

with Fourier transform

ê(κ) =

(
d

2
a2κ2 +

(
1

6
− d

)
i a κ3 +

(
1

12
− d

2

)
κ4

)
exp

(
−iaκ − κ2

)
, (3.2)

then the following lemma proves that h2 ê(κ) is the leading order term in the Fourier
transform of the solution error at time t=1.

3.2 Analysis of Fourier transform error

Lemma 1 Defining r(x) through the error decomposition

Un(x) = u(x, 1) + h2e(x) + r(x),

for n k=1, with e(x) as defined in Equation (3.1), then for any 0<d< 1
2

and 0<m< 1
2
,

there exists h0(m) > 0 such that for all h < h0(m) the Fourier transform r̂(κ) satisfies
the bounds

|r̂(κ)| <





400 h4
(
|aκ|3 + κ6 + (aκ)4 + κ8

)
exp(−κ2), |κ| ≤ h−m,

exp

(
−4 (1−2d) κ2

π2

)
+

(
1 + h2 ((aκ)2 + κ4)

)
exp(−κ2), |κ| > h−m.
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Proof The proof has two parts, dealing with the two different ranges for κ.

i) |κ| ≤ h−m

An analytic function f(δ) has a truncated Taylor expansion of the form

f(δ) =
n−1∑

p=0

δp

p!
f (p)(0) +

δn

n!
fn, |fn| ≤ sup

|ξ|≤δ

|f (n)(ξ)|. (3.3)

The analysis now proceeds by using a sequence of three such expansions. Firstly, applying
the expansion with n=6 to z(h) gives

z = 1 + a1h
2 + a2h

4 + a3h
6,

where
a1 =

(
−i a κ − κ2

)
d,

a2 =
(

1
6 i a κ3 + 1

12κ4
)
d,

|a3| ≤
(

1
120 |a||κ|

5 + 1
360κ6

)
d.

If h0 is initially defined as h0 = (|a|+1)−1, then for h < h0, |κ| ≤ h−m ≤ h−1, we have the
inequalities

60 |a3|h6 ≤ 6 |a2|h4 ≤ |a1|h2 ≤ d

and hence |z| > 1
3 .

Secondly, applying Equation (3.3) for n = 3 to f(δ) = log
(
1+a1δ+a2δ

2+a3δ
3
)
, with a3

treated as a constant not a function of δ, we obtain

f ′(0) = a1,

f ′′(0) = 2a2 − a2
1,

f ′′′(δ) =
6a3

(1+a1δ+a2δ2+a3δ3)
− 3(2a2+6a3δ)(a1+2a2δ+3a3δ

2)

(1 + a1δ + a2δ2 + a3δ3)2

+
2(a1+2a2δ+3a3δ

2)3

(1 + a1δ + a2δ2 + a3δ3)3
.

Setting δ=h2, then the inequalities above for a1, a2, a3 imply that

sup
|ξ|≤δ

|f ′′′(ξ)| ≤ 18 |a3| + 100 |a1a2| + 144 |a1|3.

Hence, for h<h0, |κ|<h−m,

log z = b1dh2 + b2dh4 + b3dh6,

where
b1 = −i a κ − κ2,

b2 =
d

2
a2κ2 +

(
1

6
− d

)
ia κ3 +

(
1

12
− d

2

)
κ4,

|b3| ≤ 18 |a3| + 100 |a1a2| + 144 |a1|3
6d

≤ 40
(
|aκ|3 + κ6

)
.
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From this it follows, using nk = ndh2 = 1, that

n log z = b1 + b2 h2 + b3 h4,

and therefore
zn = exp(−i a κ − κ2) exp(b2 h2 + b3 h4).

The restriction 0<m< 1
2 ensures that both b2 h2 and b3 h4 are o(1) as h → 0 with κ≤h−m. It

is therefore possible to choose a new, smaller value for h0(m) > 0 such that for all h<h0(m)
and κ≤h−m

|b2|h2 + |b3|h4 ≤ 1.

Finally, applying Equation (3.3) for n=2 to f(δ) = exp
(
b2δ+b3δ

2
)
, with b3 treated as a

constant not a function of δ, we obtain

f ′(0) = b2,

f ′′(δ) =
(
2b3(1+2b2δ+2b3δ

2) + b2
2

)
exp

(
b2δ+b3δ

2
)
.

Setting δ=h2, then the inequality above involving b2 and b3 implies that

sup
|ξ|≤δ

|f ′′(ξ)| ≤
(
6|b3| + |b2|2

)
exp(1).

Hence, for all h<h0(m) and κ≤h−m

exp
(
b2 h2+b3 h4

)
= 1 + b2h

2 + b4h
4,

with
|b4| ≤ 400

(
|aκ|3 + κ6 + (aκ)4 + κ8

)
.

Thus, given the definition of ê(κ) in Equation (3.2),

zn = exp(−i a κ − κ2)
(
1 + b2h

2 + b4h
4
)

= û(κ, 1) + h2ê(κ) + b4h
4 exp(−i a κ − κ2),

and the upper bound on |b4| gives the desired result.

ii) |κ|>h−m

Since |a|h0(m)<1, then for |κ|>h−m, h<h0(m),

|z|2 = 1 − 8 d sin2 κh

2

(
1 − 2d sin2 κh

2
− 1

2(ah)2d cos2 κh

2

)

≤ 1 − 8 d(1−2d) sin2 κh

2
.

Since sin2(θ/2) ≥ (θ/π)2 for θ ∈ [0, π], it follows that for |κ|≤π/h,

|z|2 ≤ 1 − 8 d(1−2d)κ2h2

π2
≤ exp

(
−8 d(1−2d)κ2h2

π2

)
,

and hence for fixed nk = ndh2 = 1 we obtain

|Ûn(κ)| ≤ exp

(
−4 (1−2d)κ2

π2

)
.
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Note that this inequality is also trivially satisfied for |κ|>π/h since Ûn(κ) is identically zero.

In addition,

|û(κ, 1)| = exp(−κ2),

and

|ê(κ)| <
(
(aκ)2+κ4

)
exp(−κ2).

Since

r̂(κ) = Ûn(κ) − û(κ, 1) − h2ê(κ),

it therefore follows that

|r̂(κ)| < exp

(
−4 (1−2d)κ2

π2

)
+

(
1 + h2

(
(aκ)2+κ4

))
exp(−κ2).

�

3.3 l∞ and l1 error estimates

The lemma in the previous section derived a representation of the Fourier transform of
the discretisation error. We now use the inverse Fourier transform to bound r(x).

Using the notation q(h) ' p(h) to denote that

q(h)

p(h)
− 1 = o(h), as h → 0,

then the main theorem of this paper is as follows:

Theorem 2 If r(x) is as defined in Lemma 3.1, then

‖r‖L∞
= O(h4),

and

‖r‖l1 = O(h3),

and hence

‖Un − u(·, 1)‖l∞
' h2 ‖e‖L∞

,

and

‖Un − u(·, 1)‖l1
' h2 ‖e‖L1

,

except for the specific case a=0, d= 1
6

for which e(x) is identically zero.

Proof

r(x) =
1

2π

∫ ∞

−∞
r̂(κ) exp(iκx) dκ,

so

|r(x)| ≤ 1

2π

∫ ∞

−∞
|r̂(κ)| dκ.
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Choosing any 0<m< 1
2 , and introducing the bounds on |r̂(κ)| from Lemma 3.1 gives

|r(x)| ≤ 400h4

2π

∫ ∞

−∞

(
|aκ|3 + κ6 + (aκ)4 + κ8

)
exp(−κ2) dκ

+
1

π

∫ ∞

h−m

exp

(
−4 (1−2d)κ2

π2

)
+

(
1 + h2

(
(aκ)2 + κ4

))
exp(−κ2) dκ,

for h<h0(m). The first of the above integrals is finite, and the second is o(h4) due to Lemma
A.1 in the Appendix. Hence, ‖r‖L∞

= O(h4).

Bounding ‖r(xj)‖l1 requires consideration of two contributions, from inside and outside
the interval [−nh, nh] = [−h−1, h−1]. Within the interval,

h
∑

|j|≤n

|r(xj)| ≤ (2n+1)h ‖r‖L∞
= O(h3).

Outside the interval [−h−1, h−1], Un
j is identically zero due to the explicit nature of the dis-

cretisation and the finite domain of influence associated with the Dirac initial data. Also,
outside this interval u(x, 1), e(x) and their derivatives and total variation are all o(hp) for any
p>1. Hence, again using the integral bounds in Lemma A.1,

h
∑

|j|>n

∣∣∣r(xj)
∣∣∣ = h

∑

|j|>n

∣∣∣u(xj , 1) + h2e(xj)
∣∣∣

≤
∫ −h−1

−∞
|u(x, 1) + h2e(x)| dx +

∫ ∞

h−1

|u(x, 1) + h2e(x)| dx + o(h3)

= o(h3).

Combining the contributions from inside and outside the interval [−h−1, h−1] proves that
‖r(xj)‖l1 = O(h3).

The final step, obtaining the asymptotically sharp error estimates, comes from the fact
that

Un
j − u(xj , 1) = h2e(xj) + r(xj)

and so therefore, by the triangle inequality,

h2‖e‖l∞ − ‖r‖l∞ ≤ ‖Un − u(·, 1)‖l∞ ≤ h2‖e‖l∞ + ‖r‖l∞ ,

h2‖e‖l1 − ‖r‖l1 ≤ ‖Un − u(·, 1)‖l1 ≤ h2‖e‖l1 + ‖r‖l1 .

The proof is completed by noting that ‖r‖l1 and ‖r‖l∞ are both o(h2), and ‖e‖l∞ = ‖e‖L∞
+

O(h), and ‖e‖l1 = ‖e‖L1
+O(h), since e(x) has a bounded derivative and has bounded variation.

�

3.4 Extension to arbitrary viscosity and time

Suppose now that one is interested in the error at time t = T , arising from the discreti-
sation

Un+1
j = Un

j − r

2
(Un

j+1 − Un
j−1) + d (Un

j+1 − 2Un
j + Un

j−1)
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with

d =
εk

h2
, r =

ak

h
,

and initial data

U0
j = h−1δj,0 ≡

{
h−1, j = 0

0, otherwise

Making the substitutions

t̄ =
t

T
, x̄ =

x√
εT

, ā = a

√
T

ε
,

k̄ =
k

T
, h̄ =

h√
εT

, Ūn
j =

√
εT Un

j ,

leads to the finite difference equation

Ūn+1
j = Ūn

j − r̄

2
(Ūn

j+1 − Ūn
j−1) + d̄ (Ūn

j+1 − 2Ūn
j + Ūn

j−1)

with

d̄ =
k̄

h̄2
= d, r̄ =

āk̄

h̄
= r,

and initial data

Ū0
j = h̄−1δj,0 ≡

{
h̄−1, j = 0

0, otherwise

with the error being considered at time t̄ = 1, as analysed previously.
Hence, the l∞ and l1 error estimates for the general problem at fixed time t = nk, n≥

1, are given by the following corollary.

Corollary 2A For the discretisation of the general problem described above, with fixed
d< 1

2
,

∥∥Un − u(·, t)
∥∥

l∞
' 1√

εt

h2

εt
‖e(·, t)‖L∞

, (3.4)

and ∥∥Un − u(·, t)
∥∥

l1
' h2

εt
‖e(·, t)‖L1

, (3.5)

where

e(x, t) = − d

4
√

2

a2t

ε
N ′′

(
x√
2

)

−
(

1

24
− d

4

) √
a2t

ε
N ′′′

(
x√
2

)

+

(
1

48
√

2
− d

8
√

2

)
N ′′′′

(
x√
2

)
,

except for the specific case a=0, d= 1
6

for which e(x, t) is identically zero.
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4 Numerical results

Here we show numerical results on the domain −10 < x < 10 and the time interval
0<t<1. All of the results use ε=1 and timestep k=dh2 with d=1/8.

The first two figures present results over the whole time interval, using a fixed grid
with spacing h = 0.02. Figure 1 presents results for the diffusion equation with a = 0.
Figure 1a shows the numerical solution at t = 0.2, 0.4, 0.6, 0.8, 1.0. Figure 1b presents the
l∞ and l1 solution errors versus time t, and Figure 1c presents the same errors normalised
by the asymptotic estimates given in Equations (3.4) and (3.5). It is apparent that the
asymptotic estimates very accurately approximate the actual error, once t is sufficiently
large so that h2/t � 1.

It is worth commenting on the lack of smoothness in the error/estimate curves. In
the case of the l∞ error, this is due to changes in the location of the node for which the
error is maximum. Similarly, for the l1 error it is due to sign changes in the error at
specific nodes as time increases.

Figure 2 presents the corresponding results for the convection/diffusion equation
with a = 2. Again the asymptotic estimates very accurately approximate the actual
error. Note also that the errors are much larger than in the case of pure diffusion, with
the l1 error approaching a constant value equal to

da2h2

4 ε2
‖N ′′‖L1

=
d√
2πe

(
ah

ε

)2

.

Figures 3 and 4 present convergence results showing how the error at the final time
t=1.0 varies with grid spacing h. Figure 3 has the results for the diffusion equation with
a=0. Figure 3a shows the numerical solution on the finest grid with h=0.02. Figure 3b
presents the l∞ and l1 errors, and Figure 3c presents the same errors normalised by the
asymptotic estimates given in Equations (3.4) and (3.5). Figure 4 has the corresponding
results for the convection/diffusion equation with a=2.

5 Conclusions

In this paper we have derived sharp estimates for the error arising from a particular ex-
plicit discretisation of the constant coefficient 1D convection/diffusion equation subject
to Dirac initial data. Extending the analysis to other linear explicit and implicit dis-
cretisations would be straightforward. The extension of the Fourier analysis to multiple
dimensions would also pose no difficulties.

To extend the analysis to varying coefficients would not be so easy, but could be
performed using a matched inner and outer asymptotic analysis, with the inner analysis
in the neighbourhood of the Dirac initial data being performed using the analysis in
this paper, treating the coefficients as being locally approximately constant. The inner
solution would then have to be matched to an outer solution describing the subsequent
evolution of the solution and the discretisation error in the outer region in which the
solution is well resolved, at least asymptotically.
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Figure 1: Numerical results for the diffusion equation
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Figure 2: Numerical results for the convection/diffusion equation
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Figure 3: Convergence results for the diffusion equation
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Figure 4: Convergence results for the convection/diffusion equation
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The results in this paper can also be used in circumstances where ε depends on the
mesh spacing h, provided h̄ = h/

√
εt → 0. This is important in proving the pointwise

convergence of adjoint Burgers equation solutions along characteristics leading into a
discontinuity in the underlying nonlinear solution [7].
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Appendix A Some integral bounds

Lemma 3 For any integers p>0 and n≥0,

∫ ∞

V

vn exp(−v2) dv = o(V −p), as V → ∞.

Proof The proof is by induction on n. If the proposition is true for n≥ 0, then integration
by parts gives

∫ ∞

V

vn+2 exp(−v2) dv =
1

2
V n+1 exp(−V 2) +

n + 1

2

∫ ∞

V

vn exp(−v2) dv,

and hence it is also true for n+2.
The proof is completed by noting that for n = 0, and V > 0,

∫ ∞

V

exp(−v2) dv ≤
∫ ∞

V

exp(−vV ) =
1

V
exp(−V 2) = o(V −p),

while for n = 1, ∫ ∞

V

v exp(−v2) dv =
1

2
exp(−V 2) = o(V −p).

�
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