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Pre
onditioned Iterative Solution of the 2DHelmholtz Equation.A. L. Laird M. B. Giles
Using a �nite element method to solve the Helmholtz equation leads toa sparse system of equations whi
h in three dimensions is too large to solvedire
tly. It is also non-Hermitian and highly inde�nite and 
onsequently dif-�
ult to solve iteratively. The approa
h taken in this paper is to pre
onditionthis linear system with a new pre
onditioner and then solve it iteratively us-ing a Krylov subspa
e method. Numeri
al analysis shows the pre
onditionerto be e�e
tive on a simple 1D test problem, and results are presented show-ing 
onsiderable 
onvergen
e a

eleration for a number of di�erent Krylovmethods for more 
omplex problems in 2D, as well as for the more generalproblem of harmoni
 disturban
es to a non-stagnant steady 
ow.
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31 Introdu
tionGiven an invis
id, irrotational steady 
ow �eld des
ribed by the potential �eld � andthe asso
iated density � and speed of sound 
, linear unsteady theory 
onsiders theaddition of a small unsteady perturbation. Considering a single frequen
y !, the un-steady potential may be expressed as the real part of �� exp(i!t), resulting in the linearequation,�r:�r�� +r: h �
2 (r�:r�� + i!��)r�i+ �
2 �i!r�:r�� � !2��� = 0; (1.1)whi
h will be referred to as the harmoni
 potential equation. This may be used to modelthe propagation of a
ousti
 waves emanating from aeroengine inlets.If the mean 
ow is stagnant, then r� = 0 and (1.1) redu
es to the Helmholtzequation �r2�� � k2 �� = 0; (1.2)where k = !
 is the redu
ed frequen
y. This equation has appli
ations in many other�elds su
h as ele
tromagneti
s and seismology.The work in this paper is motivated by the desire to perform 3D aeroengine 
al
ula-tions. Adequate resolution of the high redu
ed frequen
y waves will require extremelylarge grids, so dire
t solution by Gaussian elimination would be prohibitively expensive,even using minimum degree or nested disse
tion reordering to take maximum advantageof the sparseness of the matrix.The alternative is to use an iterative solution method, with pre
onditioning to a

el-erate the iterative 
onvergen
e. The problems asso
iated with the iterative solution ofthe Helmholtz equation are well do
umented. As k in
reases, the dis
retisation matrixbe
omes highly inde�nite and ill-
onditioned. In addition, radiating boundary 
ondi-tions 
ause the system to lose its self-adjointness.There has been 
onsiderable work over the last 20 or so years to address these prob-lems. In order to 
ut down the system's size, the idea of domain de
omposition, pavingthe way for parallel 
omputation, has been used by Fahrat et al [9℄, whilst Chadwi
k andBettess found that by expressing the potential in terms of a wave envelope the problembe
ame less os
illatory, thus allowing 
oarser grids and a smaller resultant system [5℄.The fa
t that the system is 
omplex symmetri
 was used by Freund [10℄. By 
hoosing a
ertain residual, he halved the work required by the QMR Krylov subspa
e s
heme.Most work though has been done on pre
onditioning the dis
rete system for the useof Krylov subspa
e iterative solvers. Bayliss et al established a ben
hmark by using aLapla
ian pre
onditioner, approximately inverted with one sweep of SSOR, in 
onjun
-tion with a CGNR iterative solver [3℄. This work was 
omplemented the next year byGozani et al who used multigrid for the approximate inversion of the pre
onditioner [11℄.Baumeister and Kreider added time-dependen
y into the Helmholtz equation and by set-ting 
ertain parameters of this dependen
y, a

elerated 
onvergen
e towards the steadystate in what they 
alled a paraboli
 pre
onditioner [1℄. Two years later, they gener-alised the idea to produ
e a so-
alled hyperboli
 pre
onditioner [2℄. Made has re
ently



4attempted to perturb the real part of the matrix to make it positive de�nite, or atleast `less inde�nite', before using an in
omplete LU pre
onditioner and a GMRES(m)solver [15℄. Otto and Larson used a blo
k pre
onditioner 
ompatible with Fast FourierTransform inversion [16℄, a method also favoured by Elman and O'Leary [8℄. Elman hasalso investigated the use of multigrid on the problem, �nding it more eÆ
ient to use aGMRES solver on the 
oarser grids and point Ja
obi on the �ner [7℄.In this paper, we introdu
e a new ellipti
 positive de�nite pre
onditioner, 
loselyrelated to the original problem. When used on a simple 1D test problem, numeri
alanalysis shows it to lower the 
ondition number to a level independent of the gridresolution. This is validated by numeri
al 
omputations and also 
losely mirrored bya 2D model problem on a unit square with a 1D radiating boundary 
ondition on oneside. To avoid the expense of applying the pre
onditioner exa
tly, the pre
onditioner isapplied approximately via multigrid in the same manner as Gozani et al. [11℄. Numeri
altrials lead to the observation that one single V-
y
le with minimal smoothing seems mosteÆ
ient. This is in agreement with the experien
es in [11℄, and redu
es the inversion
ost to a level proportional to a residual evaluation.When 
oupled with a variety of Krylov subspa
e s
hemes, the pre
onditioner gives
onsiderable 
onvergen
e a

eleration. The favoured s
hemes are GMRES for the smallersystems, and the CGNR algorithm for the larger ones when GMRES uses too mu
h mem-ory. The attra
tion of these two s
hemes is their (theoreti
al) guaranteed 
onvergen
e,whereas other methods su
h as BiCG may, and often do, fail to 
onverge. When a�xed number of points per wavelength is employed on the 2D problem, the number ofiterations approa
hes a linear s
aling with the redu
ed frequen
y, making the method
ompetitive with other su
h s
hemes, whilst at the same time being mu
h more easilygeneralised to the more 
ompli
ated harmoni
 potential equation.Se
tion 2 introdu
es the two model problems being investigated. In Se
tion 3 thepre
onditioner itself is introdu
ed and its eÆ
ient approximation dis
ussed in Se
tion4. The iterative solvers 
onsidered are introdu
ed in Se
tion 5. Se
tion 6 looks at somenumeri
al results, 
omparing both the di�erent iterative methods and the e�e
tivityof the pre
onditioner. Finally some initial results are presented using the equivalentpre
onditioner on the linear harmoni
 potential equation in Se
tion 7, with 
on
lusionsbeing drawn in Se
tion 8.2 The Model ProblemsThe pre
onditioner will be �rst introdu
ed in 1D in a simple problem de�ned on theunit interval with a sour
e on the left, and a Bayliss-Turkel 1D non-re
e
ting boundary
ondition on the right, as shown in Figure 1.The 2D model problem is de�ned over the unit square with solid wall boundary
onditions on the top and bottom, and on
e again a sour
e on the left and the 1Dnon-re
e
ting boundary 
onditions on the right. See Figure 2.For both problems, applying a Galerkin �nite element dis
retisation yields an indef-
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x = 0 x = 1 d��dx = �ik���d��dx = �1 �d2��dx2 � k2�� = 0Figure 1: 1D model problem
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6inite system of equations of the formA�� � �K � !2M +B��� = f ; (2.1)whereK is the positive semi-de�nite, symmetri
 sti�ness matrix,M is the positive de�nite, symmetri
 mass matrix,B arises from the radiation boundary 
ondition and is very sparse and non-Hermitian,�� is the ve
tor of unknown nodal approximants to ��.3 The Pre
onditionerTo improve the rate of 
onvergen
e when solving (2.1) iteratively, it is often preferableto solve the pre
onditioned equationP�1A�� = P�1f ; (3.1)where the pre
onditioner P is 
hosen so that the 
ondition number of the pre
onditionedmatrix P�1A is less than that of the original matrix A.The new pre
onditioner introdu
ed in this work is obtained from the Galerkin dis-
retisation by simply omitting B and 
hanging the sign of the mass matrix term, givingthe positive de�nite symmetri
 pre
onditionerP = K + !2M: (3.2)When using N points per wavelength for the 1D model problem,The asymptoti
 analysis in [14℄ shows that applying the pre
onditioner (3.2) to the1D model problem with N grid points per wavelength has the following e�e
t on the l2
ondition number: �2(A) s N2!�2(P�1A) s !: (3.3)A value for N between 8 and 16 gives reasonable a

ura
y at an a

eptable 
ost, so thepotential bene�ts of the pre
onditioning be
ome obvious.Figure (3) shows the numeri
al values of �2 for the 1D and 2D problems. The 1Dresults agree well with the theory, with �2 de
reasing to a value nearly independentof grid resolution. The 2D results show a similar behaviour, giving 
on�den
e in thepre
onditioner.



7Equation form Algebrai
 formStandard equations A�� = bPre
onditioned standard equations P�1A�� = P�1bNormal equations AHA�� = AHbPre
onditioned normal equations (P�1A)HP�1A�� = (P�1A)HP�1bTable 1: The four possible linear systems to solve, with P being the pre
onditioningmatrix.4 Multigrid Pre
onditioningIn pra
ti
e, one never expli
itly 
onstru
ts the inverse matrix P�1. Instead, when pre-
onditioning is 
oupled with a Krylov subspa
e iterative method, at ea
h iteration thereis required at least one solution of a system of equations of the formP p = d: (4.1)If this is solved exa
tly by Gaussian elimination, the 
omputational 
ost would be asgreat as the dire
t solution of the original unpre
onditioned equation, and so nothingwould have been gained. Instead, the key is to redu
e the 
omputational 
ost of thepre
onditioner through the use of an approximate solution.In 1983 Bayliss et al. [3℄ used the Symmetri
 Su

essive Over-Relaxation algorithm toapproximately invert a Lapla
ian pre
onditioner. In a follow-up paper, Gozani et al. [11℄took advantage of the fa
t that the pre
onditioner is both symmetri
 and positive de�niteto approximately solve (4.1) using multigrid (MG). The advantage of this is that theinversion now has 
omputational 
omplexity per iteration proportional to the numberof grid points, see [4℄. Using one V-
y
le and experimenting with various grid numbers,he found the pre
onditioner to still be e�e
tive but at this vastly redu
ed 
ost.The new pre
onditioner in this paper is also symmetri
 positive de�nite, and sowe use the same approa
h, hopefully retaining most, if not all, of the bene�ts of theexa
t pre
onditioning. To minimise the 
ost, only one pre- and post-smoothing Ja
obiiteration is used within the multigrid 
y
le, giving a 
ost whi
h is approximately twi
ethat of evaluating the residual error from the Galerkin equation.5 Krylov Subspa
e MethodsKrylov Subspa
e methods, based on the original Conjugate Gradient (CG) algorithm [13℄are a large family of iterative s
hemes for solving sparse matrix systems in one of the fourforms shown in Table 1. The 
hoi
e of whi
h algorithm to use depends on the propertiesof the system matrix, whi
h in turn depends on the underlying problem itself.The non-normal equations arising from this problem are neither positive de�nite norHermitian, two properties vital for CG. Hen
e, a more general te
hnique is required.



8 k GMRES GMRES(20) GMRES(50) BiCGSTAB(4) QMR CGNR4 10 10 10 2 12 168 20 20 20 5 27 3816 48 227 48 16 80 9732 207 - - 289 - 395Table 2: The number of iterations required for ea
h method to 
onverge for N=12.5.The Generalised Minimum Residual method (GMRES) 
an solve the problem for non-hermitian, inde�nite matri
es [19℄. Like CG, it is robust, guaranteeing 
onvergen
ein a number of iterations equal to the dimension of the system, but unlike CG thememory requirements in
rease with the number of iterations. One remedy for this is toperiodi
ally restart the algorithm after m iterations, giving the GMRES(m) algorithm.However, this results in the loss of the guaranteed 
onvergen
e, and often the 
onvergen
estagnates, giving an in
orre
t solution.The other Krylov methods 
onsidered here are the BiCGSTAB(4) and QMR algo-rithms, both popular bi-orthogonal methods but again without any guaranteed 
on-vergen
e properties. Also used is the CGNR algorithm, applying CG iteration to thenormal equations. Like full GMRES this method is guaranteed to 
onverge, albeit nor-mally slower than GMRES when that is an option. Unlike GMRES however, a robustbound 
an be pla
ed on CGNR's 
onvergen
e rate, linking the number of iterations re-quired to the 
ondition number [6℄. Hen
e, if the 
ondition number 
an be 
ontrolledthen so is CGNR's 
onvergen
e rate.6 Numeri
al ResultsThe results in this se
tion are obtained using MATLAB. The solutions are 
onvergedto a toleran
e of 10�6 in the relative residual. If the iteration fails to 
onverge it isindi
ated by a '-' in the tables.Table 2 shows the number of iterations for the various methods on the 2D problemwhen the pre
onditioner is applied exa
tly using LU fa
torisation. As 
an be seen, boththe restarted GMRES and QMR algorithms fail to 
onverge whilst BiCGSTAB(4) seemsto also be struggling at the higher k values. It should be noted here that an iterationof BiCGSTAB(4) is approximately twi
e as expensive as one of the CGNR algorithmand four times more so than an iteration of GMRES. GMRES is by far the fastestalgorithm but its memory problems are also apparent as a larger 
omputer was requiredfor k = 32. This leaves the CGNR algorithm. Although not the qui
kest algorithm, itsguaranteed and predi
table 
onvergen
e means it is the only reliable algorithm for thelarger k values.The issue of approximating the 
onditioner is addressed in Table 3. The pre
on-ditioning is implemented approximately via 1 
y
le of MG on 4 grids using a relaxedJa
obi smoother with parameter � = 0:6. To minimise the pre
onditioning 
ost as mu
h



9pre
onditioning n k 12 24un
onditioned 149 4921 MG 42 108LU 38 97Table 3: The number of iterations required for the CGNR algorithm to 
onverge forN=12.5, using both exa
t (LU) and approximate (1 MG) pre
onditioning.as possible pre- and post-smoothing was 
arried out only on
e on ea
h grid level. Boththe approximate and the exa
t pre
onditioning are tested in 
onjun
tion with the pre-ferred CGNR algorithm. As 
an be seen, the di�eren
es in the number of iterationsrequired for both methods are very small in 
omparison to the savings made, so most ofthe theoreti
al bene�ts of the pre
onditioning as dis
ussed in Se
tion 3 are still a
hieved.Finally, Figure 4 shows the performan
e of the CGNR algorithm for three di�erentvalues of N , the number of grid points per wavelength. As anti
ipated, be
ause of therelationship between the 
onvergen
e rate of CGNR and the 
ondition number of thepre
onditioned matrix, the graph shows a similar behaviour to the right-hand graph inFigure 3. The 
loseness of the three pre
onditioned lines indi
ates that the 
onvergen
erate is almost independent of grid resolution.7 The General ProblemUsing similar nomen
lature to (2.1), the dis
rete form of the more general linear har-moni
 potential equation 
an be written as�K � !2M + i!W +B��� = f : (7.1)AgainK is real, symmetri
, positive semi-de�nite,M is real, symmetri
, positive de�nite,and B is an extremely sparse matrix 
oming from the radiation boundary 
onditions.Following the same approa
h as for the Helmholtz equation, it seems appropriate topre
ondition (7.1) with P = K + !2M: (7.2)Figure 5 shows a domain attempting to model a 2D se
tion of an engine inlet. Itis obtained via a 
onformal mapping of a re
tangular domain. Given a mass 
ow atthe fan fa
e (the right-hand boundary of the domain) and freestream 
onditions onthe 
urved trun
ated far-�eld boundary, a FE dis
retisation of the non-linear Batemanfun
tional [18℄ yields the steady base 
ow (�; �; 
). (See [12℄ or [17℄ for details). This
ow is then perturbed, and the general equation (1.1) solved over the domain with anappropriate harmoni
 sour
e at the fan, and the radiating Bayliss-Turkel 
ondition����n = �ik�� (7.3)
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Figure 3: The e�e
ts of pre
onditioning on the 
ondition number in 1D (left) and 2D(right).
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Figure 5: The grid for the general problem.at the far-�eld boundary.The results in Table 4 show the redu
tion in CGNR iterations when using the pre-
onditioner (7.2) on this problem. The blanks in the three top right boxes are wherethere are too few grid points per wavelength for a meaningful numeri
al solution to theproblem. The grid size parameter is de�ned on the re
tangular grid, and 1 MG 
y
leis used to implement the 
onditioner. On
e again, large savings 
an be seen, espe
iallyfor the higher k values on the �ner grids. Note also that the 
onvergen
e dependen
e ongrid resolution is signi�
antly redu
ed.8 Con
lusionsThis paper has presented a new and relatively simple way of pre
onditioning the HelmholtzEquation. Underpinned by sound 1D analysis, when used on a 2D model problem the
ondition number is drasti
ally redu
ed to a level almost independent of grid resolution.Krylov subspa
e methods are used to solve the dis
rete Galerkin system, with theGMRES algorithm for small systems and CGNR for larger systems giving the best
ombination of reliability and 
omputational eÆ
ien
y. The pre
onditioner remainse�e
tive when implemented approximately, but far more eÆ
iently, through a singlemultigrid 
y
le. The method then 
ompares favourably with previous work. Initial



12 �x n k 8 16 320.06 268 (729)0.03 334 (2288) 803 (2976)0.015 433 (8849) 1043 (8163) 2129 (10213)Table 4: The number of CGNR iterations for the pre
onditioned (un
onditioned) prob-lem with base 
ow on the domain given in Figure 5.results for a
ousti
 disturban
es on a non-uniform mean 
ow are very promising, andprovide en
ouragement to pro
eed to 3D aeroengine 
omputations.A
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