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Preonditioned Iterative Solution of the 2DHelmholtz Equation.A. L. Laird M. B. Giles
Using a �nite element method to solve the Helmholtz equation leads toa sparse system of equations whih in three dimensions is too large to solvediretly. It is also non-Hermitian and highly inde�nite and onsequently dif-�ult to solve iteratively. The approah taken in this paper is to preonditionthis linear system with a new preonditioner and then solve it iteratively us-ing a Krylov subspae method. Numerial analysis shows the preonditionerto be e�etive on a simple 1D test problem, and results are presented show-ing onsiderable onvergene aeleration for a number of di�erent Krylovmethods for more omplex problems in 2D, as well as for the more generalproblem of harmoni disturbanes to a non-stagnant steady ow.
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31 IntrodutionGiven an invisid, irrotational steady ow �eld desribed by the potential �eld � andthe assoiated density � and speed of sound , linear unsteady theory onsiders theaddition of a small unsteady perturbation. Considering a single frequeny !, the un-steady potential may be expressed as the real part of �� exp(i!t), resulting in the linearequation,�r:�r�� +r: h �2 (r�:r�� + i!��)r�i+ �2 �i!r�:r�� � !2��� = 0; (1.1)whih will be referred to as the harmoni potential equation. This may be used to modelthe propagation of aousti waves emanating from aeroengine inlets.If the mean ow is stagnant, then r� = 0 and (1.1) redues to the Helmholtzequation �r2�� � k2 �� = 0; (1.2)where k = ! is the redued frequeny. This equation has appliations in many other�elds suh as eletromagnetis and seismology.The work in this paper is motivated by the desire to perform 3D aeroengine alula-tions. Adequate resolution of the high redued frequeny waves will require extremelylarge grids, so diret solution by Gaussian elimination would be prohibitively expensive,even using minimum degree or nested dissetion reordering to take maximum advantageof the sparseness of the matrix.The alternative is to use an iterative solution method, with preonditioning to ael-erate the iterative onvergene. The problems assoiated with the iterative solution ofthe Helmholtz equation are well doumented. As k inreases, the disretisation matrixbeomes highly inde�nite and ill-onditioned. In addition, radiating boundary ondi-tions ause the system to lose its self-adjointness.There has been onsiderable work over the last 20 or so years to address these prob-lems. In order to ut down the system's size, the idea of domain deomposition, pavingthe way for parallel omputation, has been used by Fahrat et al [9℄, whilst Chadwik andBettess found that by expressing the potential in terms of a wave envelope the problembeame less osillatory, thus allowing oarser grids and a smaller resultant system [5℄.The fat that the system is omplex symmetri was used by Freund [10℄. By hoosing aertain residual, he halved the work required by the QMR Krylov subspae sheme.Most work though has been done on preonditioning the disrete system for the useof Krylov subspae iterative solvers. Bayliss et al established a benhmark by using aLaplaian preonditioner, approximately inverted with one sweep of SSOR, in onjun-tion with a CGNR iterative solver [3℄. This work was omplemented the next year byGozani et al who used multigrid for the approximate inversion of the preonditioner [11℄.Baumeister and Kreider added time-dependeny into the Helmholtz equation and by set-ting ertain parameters of this dependeny, aelerated onvergene towards the steadystate in what they alled a paraboli preonditioner [1℄. Two years later, they gener-alised the idea to produe a so-alled hyperboli preonditioner [2℄. Made has reently



4attempted to perturb the real part of the matrix to make it positive de�nite, or atleast `less inde�nite', before using an inomplete LU preonditioner and a GMRES(m)solver [15℄. Otto and Larson used a blok preonditioner ompatible with Fast FourierTransform inversion [16℄, a method also favoured by Elman and O'Leary [8℄. Elman hasalso investigated the use of multigrid on the problem, �nding it more eÆient to use aGMRES solver on the oarser grids and point Jaobi on the �ner [7℄.In this paper, we introdue a new ellipti positive de�nite preonditioner, loselyrelated to the original problem. When used on a simple 1D test problem, numerialanalysis shows it to lower the ondition number to a level independent of the gridresolution. This is validated by numerial omputations and also losely mirrored bya 2D model problem on a unit square with a 1D radiating boundary ondition on oneside. To avoid the expense of applying the preonditioner exatly, the preonditioner isapplied approximately via multigrid in the same manner as Gozani et al. [11℄. Numerialtrials lead to the observation that one single V-yle with minimal smoothing seems mosteÆient. This is in agreement with the experienes in [11℄, and redues the inversionost to a level proportional to a residual evaluation.When oupled with a variety of Krylov subspae shemes, the preonditioner givesonsiderable onvergene aeleration. The favoured shemes are GMRES for the smallersystems, and the CGNR algorithm for the larger ones when GMRES uses too muh mem-ory. The attration of these two shemes is their (theoretial) guaranteed onvergene,whereas other methods suh as BiCG may, and often do, fail to onverge. When a�xed number of points per wavelength is employed on the 2D problem, the number ofiterations approahes a linear saling with the redued frequeny, making the methodompetitive with other suh shemes, whilst at the same time being muh more easilygeneralised to the more ompliated harmoni potential equation.Setion 2 introdues the two model problems being investigated. In Setion 3 thepreonditioner itself is introdued and its eÆient approximation disussed in Setion4. The iterative solvers onsidered are introdued in Setion 5. Setion 6 looks at somenumerial results, omparing both the di�erent iterative methods and the e�etivityof the preonditioner. Finally some initial results are presented using the equivalentpreonditioner on the linear harmoni potential equation in Setion 7, with onlusionsbeing drawn in Setion 8.2 The Model ProblemsThe preonditioner will be �rst introdued in 1D in a simple problem de�ned on theunit interval with a soure on the left, and a Bayliss-Turkel 1D non-reeting boundaryondition on the right, as shown in Figure 1.The 2D model problem is de�ned over the unit square with solid wall boundaryonditions on the top and bottom, and one again a soure on the left and the 1Dnon-reeting boundary onditions on the right. See Figure 2.For both problems, applying a Galerkin �nite element disretisation yields an indef-
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x = 0 x = 1 d��dx = �ik���d��dx = �1 �d2��dx2 � k2�� = 0Figure 1: 1D model problem
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Figure 2: 2D model problem



6inite system of equations of the formA�� � �K � !2M +B��� = f ; (2.1)whereK is the positive semi-de�nite, symmetri sti�ness matrix,M is the positive de�nite, symmetri mass matrix,B arises from the radiation boundary ondition and is very sparse and non-Hermitian,�� is the vetor of unknown nodal approximants to ��.3 The PreonditionerTo improve the rate of onvergene when solving (2.1) iteratively, it is often preferableto solve the preonditioned equationP�1A�� = P�1f ; (3.1)where the preonditioner P is hosen so that the ondition number of the preonditionedmatrix P�1A is less than that of the original matrix A.The new preonditioner introdued in this work is obtained from the Galerkin dis-retisation by simply omitting B and hanging the sign of the mass matrix term, givingthe positive de�nite symmetri preonditionerP = K + !2M: (3.2)When using N points per wavelength for the 1D model problem,The asymptoti analysis in [14℄ shows that applying the preonditioner (3.2) to the1D model problem with N grid points per wavelength has the following e�et on the l2ondition number: �2(A) s N2!�2(P�1A) s !: (3.3)A value for N between 8 and 16 gives reasonable auray at an aeptable ost, so thepotential bene�ts of the preonditioning beome obvious.Figure (3) shows the numerial values of �2 for the 1D and 2D problems. The 1Dresults agree well with the theory, with �2 dereasing to a value nearly independentof grid resolution. The 2D results show a similar behaviour, giving on�dene in thepreonditioner.



7Equation form Algebrai formStandard equations A�� = bPreonditioned standard equations P�1A�� = P�1bNormal equations AHA�� = AHbPreonditioned normal equations (P�1A)HP�1A�� = (P�1A)HP�1bTable 1: The four possible linear systems to solve, with P being the preonditioningmatrix.4 Multigrid PreonditioningIn pratie, one never expliitly onstruts the inverse matrix P�1. Instead, when pre-onditioning is oupled with a Krylov subspae iterative method, at eah iteration thereis required at least one solution of a system of equations of the formP p = d: (4.1)If this is solved exatly by Gaussian elimination, the omputational ost would be asgreat as the diret solution of the original unpreonditioned equation, and so nothingwould have been gained. Instead, the key is to redue the omputational ost of thepreonditioner through the use of an approximate solution.In 1983 Bayliss et al. [3℄ used the Symmetri Suessive Over-Relaxation algorithm toapproximately invert a Laplaian preonditioner. In a follow-up paper, Gozani et al. [11℄took advantage of the fat that the preonditioner is both symmetri and positive de�niteto approximately solve (4.1) using multigrid (MG). The advantage of this is that theinversion now has omputational omplexity per iteration proportional to the numberof grid points, see [4℄. Using one V-yle and experimenting with various grid numbers,he found the preonditioner to still be e�etive but at this vastly redued ost.The new preonditioner in this paper is also symmetri positive de�nite, and sowe use the same approah, hopefully retaining most, if not all, of the bene�ts of theexat preonditioning. To minimise the ost, only one pre- and post-smoothing Jaobiiteration is used within the multigrid yle, giving a ost whih is approximately twiethat of evaluating the residual error from the Galerkin equation.5 Krylov Subspae MethodsKrylov Subspae methods, based on the original Conjugate Gradient (CG) algorithm [13℄are a large family of iterative shemes for solving sparse matrix systems in one of the fourforms shown in Table 1. The hoie of whih algorithm to use depends on the propertiesof the system matrix, whih in turn depends on the underlying problem itself.The non-normal equations arising from this problem are neither positive de�nite norHermitian, two properties vital for CG. Hene, a more general tehnique is required.



8 k GMRES GMRES(20) GMRES(50) BiCGSTAB(4) QMR CGNR4 10 10 10 2 12 168 20 20 20 5 27 3816 48 227 48 16 80 9732 207 - - 289 - 395Table 2: The number of iterations required for eah method to onverge for N=12.5.The Generalised Minimum Residual method (GMRES) an solve the problem for non-hermitian, inde�nite matries [19℄. Like CG, it is robust, guaranteeing onvergenein a number of iterations equal to the dimension of the system, but unlike CG thememory requirements inrease with the number of iterations. One remedy for this is toperiodially restart the algorithm after m iterations, giving the GMRES(m) algorithm.However, this results in the loss of the guaranteed onvergene, and often the onvergenestagnates, giving an inorret solution.The other Krylov methods onsidered here are the BiCGSTAB(4) and QMR algo-rithms, both popular bi-orthogonal methods but again without any guaranteed on-vergene properties. Also used is the CGNR algorithm, applying CG iteration to thenormal equations. Like full GMRES this method is guaranteed to onverge, albeit nor-mally slower than GMRES when that is an option. Unlike GMRES however, a robustbound an be plaed on CGNR's onvergene rate, linking the number of iterations re-quired to the ondition number [6℄. Hene, if the ondition number an be ontrolledthen so is CGNR's onvergene rate.6 Numerial ResultsThe results in this setion are obtained using MATLAB. The solutions are onvergedto a tolerane of 10�6 in the relative residual. If the iteration fails to onverge it isindiated by a '-' in the tables.Table 2 shows the number of iterations for the various methods on the 2D problemwhen the preonditioner is applied exatly using LU fatorisation. As an be seen, boththe restarted GMRES and QMR algorithms fail to onverge whilst BiCGSTAB(4) seemsto also be struggling at the higher k values. It should be noted here that an iterationof BiCGSTAB(4) is approximately twie as expensive as one of the CGNR algorithmand four times more so than an iteration of GMRES. GMRES is by far the fastestalgorithm but its memory problems are also apparent as a larger omputer was requiredfor k = 32. This leaves the CGNR algorithm. Although not the quikest algorithm, itsguaranteed and preditable onvergene means it is the only reliable algorithm for thelarger k values.The issue of approximating the onditioner is addressed in Table 3. The preon-ditioning is implemented approximately via 1 yle of MG on 4 grids using a relaxedJaobi smoother with parameter � = 0:6. To minimise the preonditioning ost as muh



9preonditioning n k 12 24unonditioned 149 4921 MG 42 108LU 38 97Table 3: The number of iterations required for the CGNR algorithm to onverge forN=12.5, using both exat (LU) and approximate (1 MG) preonditioning.as possible pre- and post-smoothing was arried out only one on eah grid level. Boththe approximate and the exat preonditioning are tested in onjuntion with the pre-ferred CGNR algorithm. As an be seen, the di�erenes in the number of iterationsrequired for both methods are very small in omparison to the savings made, so most ofthe theoretial bene�ts of the preonditioning as disussed in Setion 3 are still ahieved.Finally, Figure 4 shows the performane of the CGNR algorithm for three di�erentvalues of N , the number of grid points per wavelength. As antiipated, beause of therelationship between the onvergene rate of CGNR and the ondition number of thepreonditioned matrix, the graph shows a similar behaviour to the right-hand graph inFigure 3. The loseness of the three preonditioned lines indiates that the onvergenerate is almost independent of grid resolution.7 The General ProblemUsing similar nomenlature to (2.1), the disrete form of the more general linear har-moni potential equation an be written as�K � !2M + i!W +B��� = f : (7.1)AgainK is real, symmetri, positive semi-de�nite,M is real, symmetri, positive de�nite,and B is an extremely sparse matrix oming from the radiation boundary onditions.Following the same approah as for the Helmholtz equation, it seems appropriate topreondition (7.1) with P = K + !2M: (7.2)Figure 5 shows a domain attempting to model a 2D setion of an engine inlet. Itis obtained via a onformal mapping of a retangular domain. Given a mass ow atthe fan fae (the right-hand boundary of the domain) and freestream onditions onthe urved trunated far-�eld boundary, a FE disretisation of the non-linear Batemanfuntional [18℄ yields the steady base ow (�; �; ). (See [12℄ or [17℄ for details). Thisow is then perturbed, and the general equation (1.1) solved over the domain with anappropriate harmoni soure at the fan, and the radiating Bayliss-Turkel ondition����n = �ik�� (7.3)
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Figure 3: The e�ets of preonditioning on the ondition number in 1D (left) and 2D(right).
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Figure 4: The e�ets of preonditioning on the onvergene of the CGNR algorithm.
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Figure 5: The grid for the general problem.at the far-�eld boundary.The results in Table 4 show the redution in CGNR iterations when using the pre-onditioner (7.2) on this problem. The blanks in the three top right boxes are wherethere are too few grid points per wavelength for a meaningful numerial solution to theproblem. The grid size parameter is de�ned on the retangular grid, and 1 MG yleis used to implement the onditioner. One again, large savings an be seen, espeiallyfor the higher k values on the �ner grids. Note also that the onvergene dependene ongrid resolution is signi�antly redued.8 ConlusionsThis paper has presented a new and relatively simple way of preonditioning the HelmholtzEquation. Underpinned by sound 1D analysis, when used on a 2D model problem theondition number is drastially redued to a level almost independent of grid resolution.Krylov subspae methods are used to solve the disrete Galerkin system, with theGMRES algorithm for small systems and CGNR for larger systems giving the bestombination of reliability and omputational eÆieny. The preonditioner remainse�etive when implemented approximately, but far more eÆiently, through a singlemultigrid yle. The method then ompares favourably with previous work. Initial



12 �x n k 8 16 320.06 268 (729)0.03 334 (2288) 803 (2976)0.015 433 (8849) 1043 (8163) 2129 (10213)Table 4: The number of CGNR iterations for the preonditioned (unonditioned) prob-lem with base ow on the domain given in Figure 5.results for aousti disturbanes on a non-uniform mean ow are very promising, andprovide enouragement to proeed to 3D aeroengine omputations.AknowledgementsThis researh has been jointly sponsored by the Engineering and Physial Sienes Re-searh Counil and Rolls-Roye pl.
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