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21 IntrodutionIn reent years there has been onsiderable researh into the use of adjoint ow equa-tions for design optimisation (e.g. [Jam95,AV99,GP00℄) and error analysis (e.g. [JRB95,MS98, PG00,BR01℄). In almost every ase, the adjoint equations have been formulatedunder the assumption that the original nonlinear ow solution is smooth. Sine mostappliations have been for inompressible or subsoni ow, this has been valid, how-ever there is now inreasing use of suh tehniques in transoni design appliations forwhih there are shoks. It is therefore of interest to investigate the formulation anddisretisation of adjoint equations when in the presene of shoks.The reason that shoks present a problem is that the adjoint equations are de�nedto be adjoint to the equations obtained by linearising the original nonlinear ow equa-tions. Therefore, this raises the whole issue of linearised perturbations to the shok.The analysis will show how the analyti treatment must orretly linearise the shokjump equations whih arise from onservation properties at the shok. However, for thenumerial approximation it is not lear whether the linearised shok apturing will yieldthe orret results.The validity of linearised shok apturing for harmonially osillating shoks in utteranalysis was investigated by Lindquist and Giles [LG94℄ who showed that the shokapturing produes the orret predition of integral quantities suh as unsteady lift andmoment provided the shok is smeared over a number of grid points. One interpretationof this is that it ensures the \visous" shok pro�le remains invariant, to a very goodapproximation, as the shok osillates, and therefore the integral e�et of the linearisedshok motion is orret. As a result, linearised shok apturing is now the standardmethod of turbomahinery aeroelasti analysis [HCL94, SW98℄, bene�tting from theomputational advantages of the linearised approah, without the many drawbaks ofshok �tting.There has been very little prior researh into adjoint equations for ows with shoks.Giles and Piere [GP01℄ have shown that the analyti derivation of the adjoint equationsfor the steady quasi-one-dimensional Euler equations requires the spei�ation of aninternal adjoint boundary ondition at the shok. However, the numerial evidene[GP98℄ is that the orret adjoint solution is obtained using either the \fully disrete"approah (in whih one linearises the disrete equations and uses the transpose) or the\ontinuous" approah (in whih one disretises the analyti adjoint equations). In thease of the fully disrete approah, this is due to the seond order auray of onservativequasi-one-dimensional shok apturing [Gil96℄, whereas with the ontinuous approahit is thought to be beause the use of numerial smoothing automatially selets theorret numerial solution whih is smooth at the shok [GP98℄. It is not lear thoughthat either approah will produe the orret results in two dimensions, for whih thereis a similar adjoint boundary ondition along a shok.In this paper, whih is an expanded version of [Gil02℄, we onsider unsteady one-dimensional hyperboli equations with a onvex salar ux, and in partiular obtainnumerial results for Burgers equation. Tadmor [Tad91℄ developed a Lip' topology forthe formulation of adjoint equations for this problem, with appliation to linear post-



3proessing funtionals. Building on this and the work of Bouhut and James [BJ98℄, Ul-brih has very reently introdued the onept of shift-di�erentiability [Ulb02a,Ulb02b℄to handle nonlinear funtionals of the type onsidered in this paper. However, in thispaper we will provide an alternative derivation of the analyti adjoint solution againstwhih the numerial solutions will be ompared.We start by deriving the analyti adjoint equations for the ase when the underlyingsolution is smooth, and then present the extension to handle the presene of a shok. Itis shown that the latter requires the imposition of an interior boundary ondition alongany shok. The numerial disretisation is formulated by following the 'fully disrete'approah, requiring the adjoint equations to give exatly the same value for the linearisedfuntional as a linearisation of the original nonlinear disretisation. It is demonstratedthat using onsistent, onservative numerial Riemann ux funtion yields inorretvalues for the adjoint solution when there is a shok. However, a simpler Lax-Friedrihsux formulation with numerial smoothing yields onvergent values if the shok is spreadover an inreasing number of points.2 Analyti formulation in the absene of shoksLet u(x; t) be the solution of the salar equation�u�t + �f(u)�x = 0; 0<x<1; 0<t<Tsubjet to initial onditions u(x; 0) = u0(x). Numerial results will be presented laterfor the Burgers equation for whih f(u) � 12u2, but here we onsider a general onvexfuntion f(u). If the solution u(x; t) is di�erentiable, then�u�t + dfdu �u�x = 0:It follows from this that u(x; t) is onstant along straight harateristis de�ned bydxdt = dfdu:We will assume that df=du>0 at x=0 and df=du<0 at x=1, and therefore the valueof u(x; t) is spei�ed on the two side boundaries.We now onsider a linear perturbation ~u. The linearised p.d.e. with the addition ofa perturbation soure term s is �~u�t + ��x �dfdu ~u� = s: (2.1)If the boundary onditions are not perturbed, then ~u=0 on t=0, x=0 and x=1.If one is interested in an output funtionalJ(u) = Z 10 G(u(x; T )) dx;



4with G(u) being a funtion with a ontinuous derivative, then the linearised funtionalperturbation is ~J = Z 10 g(x) ~u(x; T ) dx:where g(x) = dG=du(x; T ). Using integration by parts, this an be re-expressed usingany di�erentiable funtion v(x; t) as~J = Z 10 g(x) ~u(x; T ) dx� Z Z
 v��~u�t + ��x �dfdu ~u�� s� dx dt= Z 10 (g(x)� v(x; T )) ~u(x; T ) dx + Z Z
��v�t + dfdu �v�x� ~u dx dt+ Z Z
 vs dx dtIf v is de�ned to satisfy the adjoint equation�v�t + dfdu �v�x = 0; (2.2)subjet to the �nal ondition v(x; T ) = g(x), then this redues to~J = Z Z
 vs dx dt; (2.3)whih an be evaluated without knowing ~u. This is the basis of the use of adjointsolutions in both design optimisation and error analysis for spei� output funtionals.In the spei� ase when s(x; t) is a Dira delta funtions(x; t) = Æ(x�x0) Æ(t�t0)then we obtain ~J = v(x0; t0):Thus, one interpretation of the adjoint solution v(x0; t0) is that it is the linearised fun-tional obtained when the linearised equation are subjet to a unit strength point soureat (x0; t0). For suh a soure term, the linear perturbation ~u is zero exept on the har-ateristi passing through (x0; t0). To determine the value along this harateristi, weintegrate equation (2.1) over 
 and use the initial and boundary onditions to obtainZ 10 ~u(x; T ) dx = 1;and hene ~u(x; T ) = Æ(x�x1);where x1 is the intersetion point of the harateristi with the �nal boundary t = T .The orresponding perturbed funtional isv(x0; t0) � ~J = g(x1);so this provides on�rmation by this alternative derivation that the value of the adjointsolution is propagated unhanged along the bakward travelling harateristi.
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Figure 1: Charateristis with a shok forming along x=0:5.3 Analyti formulation with a shokWhat happens when there is a shok along a urve � = (t; xs(t)) from t=0 to t=T , asillustrated in Figure 1?Firstly, the veloity of the shok is given bydxsdt [u℄ = [f(u)℄ ;where [:℄ denotes the jump in the quantity aross the shok [LeV92℄.The linearised equation remains the same in the region 
 n � omitting the shokitself. In addition to this, one must linearise the shok veloity equation with respet tohanges in xs(t) as well as u(x; t), givingd~xsdt [u℄ + dxsdt [~u℄ + dxsdt ~xs ��u�x� = �dfdu ~u�+ ~xs �dfdu �u�x� :The linearised funtional also needs to be modi�ed to take into aount the e�et ofthe displaed shok. Writing the nonlinear funtional asJ = Z xs(T )0 G(u(x; T )) dx + Z 1xs(T ) G(u(x; T )) dx;it follows that~J = Z xs(T )0 g(x) ~u(x; T ) dx + Z 1xs(T ) g(x) ~u(x; T ) dx � �~xs [G℄ ���t=T :



6 Now, introduing a new variable vs for the linearised shok equation, and againintegrating by parts over 
 n �, gives~J = Z xs(T )0 g(x) ~u(x; T ) dx+ Z 1xs(T ) g(x) ~u(x; T ) dx � �~xs [G℄ ���t=T� Z Z
n� v��~u�t + ��x �dfdu ~u�� s� dx dt+ Z� vs�d~xsdt [u℄ + dxsdt [~u℄ + dxsdt ~xs ��u�x�� �dfdu ~u�� ~xs �dfdu �u�x�� dt= Z xs(T )0 (g(x)�v(x; T )) ~u(x; T ) dx+ Z 1xs(T ) (g(x)�v(x; T )) ~u(x; T ) dx� �~xs [G℄ ���t=T + Z Z
n���v�t + dfdu �v�x� ~u + vs dx dt� Z� [v~u℄ dx� �v dfdu ~u� dt+ Z T0 vs�d~xsdt [u℄ + dxsdt [~u℄ + dxsdt ~xs ��u�x�� �dfdu ~u�� ~xs �dfdu �u�x�� dtNoting that dx = dxs=dt dt along �, all of the terms involving ~u are either zeroor anel out if v(x; t) is again de�ned to satisfy the adjoint equation (2.2) in 
 n �,together with the same �nal onditions on t=T , plus the additional onstraint that on�, v=vs on either side of the shok.Applying integration by parts to the terms involving ~xs yields� �~xs [G℄ ���t=T + Z� vs�d~xsdt [u℄ + dxsdt ~xs ��u�x�� ~xs �dfdu �u�x�� dt= � �~xs [G℄� vs [u℄ ���t=T + Z��~xs ddt (vs [u℄) + dxsdt ~xsvs ��u�x�� ~xsvs �dfdu �u�x� dtSine ddt [u℄ = ��u�t �+ dxds ��u�x� = � �dfdu �u�x�+ dxds ��u�x�it follows that these terms anel if vs satis�es the equationdvsdt = 0;subjet to the end ondition vs = [G℄ = [u℄ on t=T .Under all of these onditions, the linearised funtional redues �nally to~J = Z Z
n� vs dx dt:Sine v=vs on either side of the shok, the fat that vs is onstant along the shokmeans that the adjoint solution has a uniform value along all harateristis leading



7bakwards from the shok, as well as a onstant value along eah individual harateristioming bakwards in time from t=T .This result, and the value of the adjoint variables along the shok, an also be re-derived by onsidering a unit strength point soure term in the linearised equation. If asoure term S(x; t) is added to the original nonlinear equation, then integrating over 
yields Z 10 u(x; T )� u(x; 0) dx+ Z T0 f(u(1; t))� f(u(0; t)) dt = Z
 S(x; t) dx dt:Linearising this, taking aount of the linearised shok displaement, givesZ xs0 ~u(x; T ) dx + Z 1xs ~u(x; T ) dx� �xs [u℄���t=T = Z
 s(x; t) dx dt:Now, for a unit point soure on a harateristi whih leads to the shok, then theresulting �nal linear perturbation ~u(x; T ) is zero on both sides of the shok. Hene,~xs(T ) = � [u℄�1��t=Tand the orresponding funtional perturbation is~J = � �~xs [G℄ ���t=T = [G℄[u℄ ������t=T :Although the adjoint solution v(x; t) is ontinuous aross the shok for t < T , withvalue equal to the shok adjoint variable vs(t), in general there is not ontinuity at the�nal time T . De�ning u� and u+ to be the values of u(x; T ) on either side of the shok,then [G℄ = Z u+u� dGdu du;and therefore vs(T ) = [G℄=[u℄ is the average value of g(x) � dG=du over the range ofu spanned by the shok. Given the assumed ontinuity of dG=du, this means that thevalue of vs(T ) will approah the values of g(x) on either side of the shok in the limitas the shok strength approahes zero.



84 Numerial disretisationWe onsider a lass of expliit �nite volume disretisations of the form1�tM �Un+1 � Un�+�F n = 0:Here Un is the vetor of solution values Unj ; 0 � j � J at the nth timestep. M is adiagonal mass matrix whose entries areMjj = 8>><>>: 12(x1 � x0) j = 0;12(xj+1 � xj�1) 0 < j < J12(xJ � xJ�1) j = J;Given a numerial ux Fj+1=2 whih is a funtion of both Uj and Uj+1, the ux di�erene�F n is de�ned as �F nj = 8>><>>: F n1=2 � f(u(0; tn)) j = 0;F nj+1=2 � F nj�1=2 0 < j < Jf(u(1; tn))� F nJ�1=2 j = J:Note that this uses a weak implementation of the Dirihlet boundary onditions, asopposed to expliitly setting the values of Un0 and UnJ . This weak treatment is preferablebeause it leads to the attrative onservation propertyM �UN � U0� = �t N�1Xn=0 f(u(1; tn))� f(u(0; tn))and a leaner formulation of the adjoint disretisation.Having omputed the numerial solution, the disrete form of the nonlinear outputfuntional is evaluated as J =Xj MjjG(UNj ):The linearised equations with the inlusion of the soure term an be written as1�tM � ~Un+1 � ~Un� + An ~Un =M Sn: (4.1)In addition, the linearised output funtional is~J = gTM ~UN �Xj �dGdu�Nj Mjj ~UNj :In formulating the disrete adjoint equations, we follow what is often termed the\fully disrete" approah in whih the goal is to de�ne the adjoint equations in suh



9a way as to obtain exatly the same value for the disrete linearised funtional. Thisis in ontrast to the \ontinuous adjoint" approah whih diretly disretises the ad-joint di�erential equation, independently of the disretisation of the original nonlinearequation.Considering to begin with the ase in whih Sn = 0 for n > 0, the linear disreteequations, (4.1), may be solved to obtain~J = �t gTM �I ��tM�1AN�1� : : : �I ��tM�1A2� �I ��tM�1A1�S0:This may be re-arranged as~J = �t gT �I ��t AN�1M�1� : : : �I ��t A2M�1� �I ��t A1M�1�MS0= �t (V 1)TMS0;where V 1 is obtained by solving the disrete adjoint equation1�t M �V n+1 � V n�+ (An)T V n+1 = 0; (4.2)subjet to the �nal ondition V N = g.Extending to the general ase in whih Sn is non-zero at all time levels, the de�nitionof the adjoint variables is unhanged and the resulting expression for the funtional is~J = �t N�1Xn=0(V n+1)TMSn:Note that this is a disrete equivalent of equation (2.3).Looking in detail at the elements of the matrix An, one �nds that the disrete adjointequation for the jth node is1�t Mjj �V n+1j � V nj �+ ��F nj+1=2�Unj � (V n+1j+1 � V nj ) + ��F nj�1=2�Unj � (V n+1j � V nj�1) = 0:To prove that this is a onsistent approximation of the adjoint di�erential equation, (2.2),we need to note that for onsisteny the original nonlinear ux funtion is required tosatisfy the onditionF nj+1=2(Unj ; Unj+1) = f(u) when Unj = Unj+1 = u:Di�erentiating this yields�F nj+1=2�Unj + �F nj+1=2�Unj+1 = dfdu when Unj = Unj+1 = u;and hene �F nj+1=2�Unj + �F nj�1=2�Unj = dfdu when Unj�1 = Unj = Unj+1 = u:



10It therefore follows that the disrete adjoint equation is a onsistent approximation ofequation (2.2) when the underlying ow solution is smooth.We will ontinue to use the same adjoint disretisation when the ow solution on-tains a shok. The question to be investigated is whether this will automatially apturethe orret adjoint solution in the limit of inreasing grid resolution. As a prelude, wenote that only g � dG=du enters into the adjoint alulation as initial data, not [G℄ andso it is not lear that the adjoint alulation has the information neessary to orretlypredit the adjoint solution in the neighbourhood of the shok.5 Numerial testsThe numerial tests are all performed with the Burgers equation for whih f(u) � 12u2.Most of the tests use the initial onditionsu(x; 0) = 8><>: 1; x < 0:252� 4x; 0:25 � x � 0:75�1; x > 0:75and boundary onditions u(0; t) = 1; u(1; t) =�1. As shown in Figure 1, a stationaryshok forms at x=0:5 at time t=0:25. The analyti solution isu(x; 0) = 8>><>>: 1; x < min(0:25+t; 0:5)x� 0:5t� 0:25 ; min(0:25+t; 0:5) < x < max(0:75�t; 0:5)�1; x > max(0:75�t; 0:5)To assess the degree to whih the solutions are grid onverged, numerial results areobtained on two uniform grids with �x = 0:0025; 0:005. The orresponding timestepsare �t=0:4�x giving a maximum CFL number of 0:4.The output funtional uses G(u) = u5�u. This gives g(x)= 4 on either side of theshok. Furthermore, the jump [G℄ aross the shok is equal to zero, so the analytisolution has v=0 for all bakward travelling harateristis emanating from the shok.Hene the omplete adjoint solution isv(x; t) = 8><>: 4; x < t0; t < x < 1�t4; x > 1�tIn the results to be presented, one of the main points of interest will be the omputedvalues for v(x; t) on the harateristis oming from the shok.
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Figure 2: Charateristis with the formation of a slowly moving shok.To investigate whether a moving shok produes di�erent results, some additionalnumerial tests use the initial onditionsu(x; 0) = 8><>: 1; x < 0:252� 4x; 0:25 � x � 0:7�0:8; x > 0:7with boundary onditions u(0; t)=1; u(1; t)=�0:8,As illustrated in Figure 2, this results in a solution with a slowly moving shok.u(x; 0) = 8>><>>: 1; x < min(0:25+t; 0:475+0:1t)x� 0:5t� 0:25 ; min(0:25+t; 0:475+0:1t) < x < max(0:7�0:8t; 0:475+0:1t)�0:8; x > max(0:7�0:8t; 0:475+0:1t)Using the same funtional as before, the orresponding adjoint solution isv(x; t) = 8><>: 4; x < 0:025+t�0:2624; 0:025+t < x < 0:925�0:8t1:048� 0:84; x > 0:925�0:8t
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Figure 3: Nonlinear and adjoint solutions obtained with a Riemann ux, for t=0:1; 0:4in the upper plots, and t=0:5 in the lower plots.5.1 Riemann uxThe �rst results use a �rst order Riemann numerial ux funtion [LeV92℄,F (u1; u2) = 12 max �(max(0; u1))2 ; (min(0; u2))2� :The upper two plots in Figure 3 show the nonlinear and adjoint solution at timest = 0:1; 0:4. There is very little di�erene between the solutions for the two grids.However it is very lear that the adjoint solution is ompletely wrong in the regionemanating from the shok, where the omputed value is approximately equal to �1.The ause for this inorret value an be seen in the lower two plots whih show thenonlinear and adjoint solutions at the �nal time t = 0:5, plotted versus node numberrelative to the entral node at x = 0:5. It is seen that on both grids the nonlinearsolution has a single shok point at whih u = 0. For this point the orrespondingadjoint value is g = dG=du(0) = �1, and a detailed examination of the matrix A revealsthat this value is propagated bakward in time along the length of the shok, and alongany harateristi whih propagates out of the shok.



13Furthermore, a detailed examination of the matrix A shows that the entral portionis 0BBBBBBBB�
: : : : : : : : :�r r 0�r r 0�r 0 �r0 r �r0 r �r: : : : : : : : :

1CCCCCCCCA ;
with the transpose being0BBBBBBBB�

: : : : : : : : :0 r �r0 r �r0 0 0�r r 0�r r 0: : : : : : : : :
1CCCCCCCCA :

Thus the value �1 at the shok entre propagates bakward in time along the length ofthe shok, and along any harateristi whih propagates out of the shok.An even more dramati example of inorret behaviour would be obtained by usingan odd number of ells instead of an even number, so that the shok entre lies half-waybetween two nodes. In that ase, the �nal solution would have no interior shok point,and so all of the elements of g would have the value 4, leading to the entire disreteadjoint solution having value 4.5.2 Lax-Friedrihs uxThe rest of the results all use a simple Lax-Friedrihs ux, ombining a entral averageux with additional �rst order smoothing,F (u1; u2) = 12 (f(u2)+f(u1))� � (u2�u1) :Figure 4 shows results for �=0:25. The values omputed on the two grids are almostidential. In the viinity of the shok, the nonlinear solution is very lose to a self-similarsteady-state solution whih depends solely on � and the grid ratio �t=�x, and with thislevel of smoothing there is again only one grid point in the middle of the shok. Theadjoint solution appears grid onverged, but to a value whih is inorret.Figure 5 shows results for �=1:0. There are now many grid points aross the shok,and therefore fairly good resolution of the di�ering values of g = dG=du for u rangingfrom 1 on the left of the shok to �1 on the right of the shok. The numerial adjointsolution now has a value very lose to the analyti value of zero in the entral part ofthe domain.
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Figure 4: Nonlinear and adjoint solutions obtained with a Lax-Friedrihs ux withsmoothing �=0:25, for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
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Figure 5: Nonlinear and adjoint solutions obtained with a Lax-Friedrihs ux withsmoothing �=1:0, for t=0:1; 0:4 in the upper plots, and t=0:5 in the lower plots.
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Figure 6: Error in the omputed value for v(0:5; 0) as a funtion of the numerial smooth-ing oeÆient �.
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Figure 8: Nonlinear and adjoint solutions for the moving shok testase, using the Lax-Friedrihs ux with smoothing �=1:0, for t=0:1; 0:4 in the upper plots, and t=0:5 inthe lower plots.Figure 6 plots the error in the omputed value for v(0:5; 0) versus the value of thesmoothing oeÆient �. It appears from these results that the error dereases exponen-tially with the value of � and hene the number of grid points aross the shok.Figure 7 presents results obtained by using di�erent values for � in the nonlinearand adjoint alulations. The upper results use �=0:25 for the nonlinear alulations,and �=1:0 for the adjoint alulation. The higher value for � in the adjoint alulationleads to rapid di�usion bringing into the shok region the larger values for the adjointsolution v(x; t) on either side of the shok, leading to inorret values in the shok region.The lower results use �=1:0 for the nonlinear alulations, and �=0:25 for the adjointalulation. The lower value for � in the adjoint alulation leads to very little di�usion,and so the adjoint solution value g = �1 at the entre of the smeared shok is onvetedbakwards in time leading to v(x; t) � �1 throughout the shok region. These resultsshow the importane of using the same value of � in both alulations, so that the adjointdisretisation orresponds orretly to the linearisation of the nonlinear disretisation.The �nal results in Figures 8 and 9 are for the moving shok testase. The index j inthe lower plots in Figure 8 is relative to the node at the entre of the shok at the �naltime. Figure 9 shows that there is again exponential onvergene in the adjoint solutionv(0; 5; 0) as the smoothing is inreased. Thus, this phenomenon does not depend on theshok being stationary.
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Figure 9: Error in the omputed value for v(0:5; 0) for the moving shok testase, as afuntion of the numerial smoothing oeÆient �.6 DisussionOne lear onlusion from these numerial results is that there must be onsisteny be-tween the nonlinear and adjoint alulations regarding the level of numerial smoothing.Also, for onvergene it is neessary that as the grid resolution improves, the numerialsmoothing varies in a way whih inreases the number of points aross the shok, whileat the same time the overall width of the shok dereases.To understand why this latter point is fundamental, and not just a feature of the par-tiular numerial experiments onduted, we need to onsider the information suppliedto the adjoint ode. The analyti solution has a value along the shok whih depends onthe jump [G(u)℄ aross the shok at the �nal time t=T . However, the end onditions forthe numerial adjoint solution are given by the values of dG=du for the �nal values of uobtained from the nonlinear alulation. These means that the numerial solution mustimpliitly evaluate [G(u)℄ by some proess whih e�etively integrates dG=du arossthe smeared shok. For this to be done aurately requires adequate resolution of thevariation in dG=du.This point is illustrated in Figure 10. The smoother of the two urves is G(u)=u5�u,the objetive funtion in the numerial experiments. The symbols orrespond to thevalues of u at the �nal time t = T in Figure 5. The seond urve is G(u) = u5�u +tanh 20(u�0:2). This funtion has almost idential gradient values at the indiatedsampling points, and therefore produes a numerial adjoint solution whih is visuallyindistinguishable from Figure 5. However, the analyti solution has a di�erent jump inG(u) aross the shok, and so the analyti solution is quite di�erent. This shows thatfor any numerial disretisation with a �xed number of points aross the shok, it iseasy to onstrut an objetive funtion for whih the numerial adjoint solution will notonverge.
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