
Report no. 01/18
Adjoint Error Corretionfor Integral OutputsMihael B. GilesOxford University Computing Laboratory, Oxford, UK.giles�omlab.ox.a.ukNiles A. PiereApplied & Computational Mathematis, California Institute of Tehnology,Pasadena, CA 91125, USA.niles�alteh.edu

These leture notes begin by observing that in many ases the most im-portant engineering outputs of CFD alulations are one or two integralquantities, suh as the lift and drag. It is then explained that the solutionto an appropriate adjoint problem gives the e�et of numerial approxima-tions on the output funtional of interest, failitating the alulation of moreaurate funtional estimates. The theory is presented for both linear andnonlinear di�erential equations, inorporating a range of numerial examplesillustrating the ability to obtain answers with twie the order of auray ofthe underlying numerial solution.
Oxford University Computing LaboratoryNumerial Analysis GroupWolfson BuildingParks RoadOxford, England OX1 3QD September, 2001



2



31 Introdution1.1 Output funtionalsWhy do engineers perform CFD alulations? In the ase of a transport airraft atruise onditions, a alulation might be performed to investigate whether there is anadverse pressure gradient near the leading edge of the wing, ausing boundary layerseparation and premature transition. Alternatively, one might be onerned aboutwing/pylon/naelle integration, in whih ase one might be looking to see if there areany shoks on the pylon, leading to unaeptable integration losses. In both of theseexamples, qualitative information is being obtained from the omputed ow �eld to un-derstand and interpret the impat of the phenomena on the quantitative outputs of mostonern to the aeronautial engineer, the lift and drag on the airraft. The quality ofthe CFD alulation is judged, �rst and foremost, by the auray of the lift and dragpreditions. The details of the ow �eld are muh less important, and are used in a morequalitative manner to suggest ways in whih the design may be modi�ed to improve thelift or drag. This fous on a few output quantities is even learer in design optimisation,when one is trying to optimise a single objetive funtion, possibly subjet to a numberof onstraints.This interest in integral outputs, also referred to as funtionals, arises in many ap-pliations of CFD. Oasionally, volume integrals are of importane. For example, theinfra-red signature of a military airraft will depend in part on a volume integral of somefuntion of the temperature in the thermal wake behind the airraft. However, usuallyit is surfae integrals that are of most onern, as with lift and drag. Other aeronautialexamples inlude: the roll moment produed by aileron deetion; the mass ow througha ompressor blade row; the outow ux of nitrous oxides from a ombustor; the totalheat ux into a high pressure turbine blade from the surrounding ow; average noiselevels on the ground due to an airraft landing or taking o�.The idea of output funtionals is entral to these leture notes; they are onernedspei�ally with the analysis of the numerial error in these funtionals, and a partiularmethod of orretion that very greatly redues the error, typially doubling the order ofauray for the funtional relative to the underlying ow solution. This distinguishesthis kind of error analysis from other approahes that fous on the maximum, root-mean-square or some other measure of the error in the whole ow �eld. The problem withsuh measures is that they an have little relation to the errors in the integral outputsof primary onern to the engineer.As an example, onsider the wake behind a wing. To adequately resolve the wakerequires a �ne grid loally, but it is often the ase that the omputed wake a hord or twodownstream of the wing passes into a region in whih the grid resolution is rather oarse.Grid adaptation based on error estimates that look at the whole solution, possibly bylooking at the loal trunation error, would ause the grid to be further re�ned in thisregion. However, the inuene of errors in this region on the omputed lift and dragwould be very small, and a muh greater redution in the lift and drag errors ouldprobably be ahieved by adding the grid re�nement loser to the wing, possibly near the



4leading and trailing edge where very small errors an have an enormous impat on thelift and drag.1.2 A priori and a posteriori error analysisThe adjoint error orretion tehnique to be desribed later is applied as a post-proessingstep, and so it �ts into the framework of a posteriori error analysis. This is error analysisbased on the omputed ow solution, as opposed to a priori error analysis that is basedon some (usually limited) knowledge of the analyti solution without the bene�t of anynumerial solution.A priori error analysis leads to an error bound of the formError < hpwhere h is the representative grid spaing, and ; p are positive onstants that do notdepend on h.The main point of a priori error analysis is �nding the value of p, whih determineshow rapidly the error redues as the omputational grid is re�ned, uniformly. For most�nite di�erene and �nite volume methods, the error in output funtionals is of the sameorder as the error in the ow solution, so it does not matter whih error is onsidered.On strutured grids with smooth ow solutions, the solution error is proportional to thetrunation error and its order an be relatively easily determined.The value of the other onstant  depends on the details of the analyti problembeing solved, the geometry of the omputational domain, the boundary onditions, et.It is extremely diÆult to get a good value for  for anything but the simplest problems.Ridiulously large values suh as 1010 are not unommon in the literature. This makesthe error bound useless in any pratial sense, and as a onsequene there is often noattempt made to evaluate .One area in whih a priori error analysis is very helpful is appliations with singu-larities in the solution. For suh problems, areful analysis an reveal the degree of loalgrid re�nement that is required to reover the order of auray (expressed as a funtionof the total number of grid points) that would be obtained for non-singular solutions.With a posteriori error analysis, ideally one would like a guaranteed error bound ofthe form Error < e(uh)where e(uh) is a omputable funtion of the numerial solution uh. If the error beingonsidered is the error in the lift from a CFD alulation, this would enable an engineerto perform a alulation and know, with omplete ertainty, that the true value for thelift lay within ertain limits.For suh a bound to be of use, it needs to be tight. The eÆieny or tightness of thebound is measured by the ratio e(uh)=Error. A value of 1 is perfet. In the range 2{10,it is useful, but if it were more than 1000 then it would be fairly useless for pratialpurposes.



5Although guaranteed error bounds are the ideal, in pratie they are extremely diÆ-ult to obtain for anything but the simplest of problems. Nonlinearity auses partiulardiÆulties. Therefore, most a posteriori bounds are asymptoti, so thatError < e(uh) for all h < h0The problem is that the value of h0 is not known. All that is known is that a positive h0does exist, below whih the asymptoti error bound will be valid. However, above thisvalue the error may exeed the error bound.As an example, if Error = 1:36 h2 + 0:77 h4;then 1:37 h2 is an asymptoti bound that is valid for h2 < 0:01=0:77, but exeeded whenh = 1.The distintion between guaranteed and asymptoti bounds is important. Withasymptoti bounds, a user must exerise their judgement to deide whether the gridis suÆiently �ne that the bound is likely to be valid. With omplex geometries andomplex ow �elds, this is not easy, partiularly for a novie user. On the other hand,with a guaranteed bound one ould start with an extremely oarse grid, and then use theguaranteed error bounds to drive grid adaptation until it produes a numerial solutionwithin a user-spei�ed tolerane. This would require no user judgement other than thehoie of the error tolerane.We onlude this disussion of error bounds with a omment on the issue of errorbounds versus error orretion. Error bounds based on adjoint solutions require a similarlevel of omputational e�ort to the adjoint error orretion to be disussed in these notes.If one has a preise estimate of the error, this ould be used to form a near-perfetasymptoti error bound, or it ould be used to orret the leading order terms in theerror and thereby obtain a solution with a higher order of auray. The latter approahis the one that we follow.1.3 An introdution to adjointsThe use of adjoints lies at the heart of error analysis for output funtionals. The maintheory will use adjoint di�erential equations, but here we introdue the ideas at analgebrai level.Suppose we want to alulate the value of a vetor salar produtgTu;where the vetor u is the solution of the system of linear equationsAu = f:An equivalent dual treatment is to evaluate the produtvTf;



6where the v is the solution of the adjoint (or dual) equationsATv = g;The equivalene of the two alulations omes from the simple identityvT (Au) = (ATv)Tu; (1.1)from whih it follows that vTf = gTu:So, to obtain a linear output funtional from the solution of a linear system ofequations, we an either solve the original equations (sometimes referred to as the primalequations) or solve the adjoint (dual) equations.This simple result is the basis for all that follows later. With di�erential equations,the vetor produt beomes an integral inner produt, the transposed matrixAT beomesthe adjoint di�erential operator, and the adjoint identity inludes ertain boundaryintegral terms, but in essene the equivalene is the same.When the output is desired for a single f and g, there is no bene�t in using theadjoint approah. Either method requires the solution of a linear system of equationsof the same dimension, with the same omputational ost. The bene�t arises when thevalue of the output is wanted for a single g but several di�erent vetors f . The diretapproah would require the solution of the primal equations for eah value of f , greatlyinreasing the omputational ost, whereas the dual approah would still require justone adjoint alulation, to be followed by an inexpensive vetor produt vTf , for eahf . We are now going to look at how this result an be used in two di�erent ontexts:design optimisation and error analysis. The motivation for beginning with design opti-misation is that this is the primary reason why many researh groups within aademiaand industry are developing adjoint Euler and Navier-Stokes odes. Design optimisationhas a lear industrial \pay-o�", whereas the bene�ts of good error analysis are yet tobe appreiated. For the same reason, design optimisation is also the most widely knownappliation for the use of adjoints.1.3.1 Design optimisationConsider design optimisation using the `disrete' algebrai approah [18, 17, 45, 1, 43, 20℄,as opposed to the `ontinuous' di�erential approah [34, 39, 59, 5, 35, 37℄; see [22, 31℄ for adisussion of their relative merits and [46℄ for an exellent review of researh on adjointdesign methods.The starting point of the disrete approah is that U , the ow variables at a disreteset of points with oordinates X, is the solution of a system of nonlinear equationsN(U;X) = 0;that ome from the disretisation of the Euler or Navier-Stokes equations, together withappropriate boundary onditions.



7Through the grid generation proess, the grid oordinates depend on � whih repre-sents one or more geometri design variables. In wing design, for example, perturbationsto � might hange the thikness distribution and the amber of the wing. If there is onlyone design variable �, we an linearise about a ow solution for the baseline geometryto obtain Au = fwhere u is the sensitivity of the ow �eld to hanges in �,u � dUd� ;and A = �N�U ; f = ��N�X dXd� :The aim of design optimisation is to minimise some objetive funtion J(U;X) whih,for example, might be a disrete approximation to the drag. Linearising this funtiongives dJd� = gTu+ �J�X dXd� ;where gT = �J�U :In the adjoint approah, this sensitivity of the objetive funtion to hanges in � isobtained from dJd� = vTf + �J�X dXd� ;where v satis�es the adjoint equations ATv = g:If there are several design variables, eah has a di�erent f , but the same g, so the adjointapproah is muh heaper, requiring the solution of just one adjoint set of equations.1.3.2 Error analysisWe now return to the original problem of evaluating gTu with u being the solution ofthe linear equations Au = f:The orresponding dual problem whih is to evaluate vTf where v is the solution of theadjoint equations ATv = g:



8 Suppose we have approximate solutions ~u; ~v to eah of these equations. We an thenobtain the following result.gTu = gT ~u+ gT (u�~u)= gT ~u+ vTA (u�~u)= gT ~u+ ~vTA (u�~u) + (v�~v)TA (u�~u)= gT ~u� ~vT (A~u�f) + (v�~v)TA (u�~u): (1.2)The �rst of the three terms in the �nal result is the value of the funtional using theapproximate solution ~u. The seond term is also omputable sine it involves the knownapproximate solutions ~u and ~v.The third term is not omputable if the exat solutions u and v are not known.However, if ~u and ~v are lose approximations to u and v, respetively, then the third termwill be very small. Thus, the sum of the �rst two terms gives a very good approximationto the true value of gTu { a muh better approximation in general than gT ~u.Note the form of the seond term, whih we refer to as the adjoint error orretionterm. A~u�f is the residual error in solving the equations Au = f . The approximateadjoint solution ~v provides the appropriate weighting for the residual error, giving thee�et of the residual error on the output funtional of interest. This inner produt of aresidual error and an adjoint weighting will be repeated throughout these notes.To take it a step further, suppose now that we want to evaluate a nonlinear funtionJ(U), where U is the solution of the nonlinear equationsN(U) = 0:Given an approximate solution eU , we de�ne u to be the solution error,u = eU � U;and then linearise both the nonlinear equations and the funtional to obtainAu � f;where A = �N�U ; f = �N(eU ):and J(U) � J(eU) + gTu;where gT = �J�U :If v is de�ned to satisfy the adjoint equationATv = g;



9then we obtain J(U) � J(eU) + vTf � J(eU)� vTN(eU ):Hene, the quantity J(eU)� vTN(eU)is a more aurate estimate for J(U) than J(eU) alone. Again note that the adjoint errororretion term is a produt of an approximate adjoint solution and the residual errorfrom the original nonlinear equations.1.3.3 Automati di�erentiationAn introdution to adjoints would not be omplete without a mention of AutomatiDi�erentiation (AD). This is a tehnique, implemented in a number of software pakages,that starts with a ode to ompute a nonlinear vetor funtion F (U), and automatiallygenerates odes to ompute either �F�U ~ufor any ~u (forward mode), or ��F�U�T�vfor any �v (reverse mode).The forward mode is relatively easy to understand. A omputer ode an be deom-posed into a sequene of binary operations = op(a; b);where the operation is addition, subtration, multipliation or division, plus a few uni-tary operations  = fn(a);where the funtion may be, for example, an exponential or a logarithm. If we treat uni-tary operations as a speial ase of binary operations, then linearising a binary operationgives ~ = ��a ~a + ��b ~b = ���a ��b�� ~a~b � :The forward mode AD software inserts the instrutions to ompute ��a and ��b andevaluate the output sensitivity ~ given the sensitivities of the two inputs. Carrying thisout throughout the ode gives the linear sensitivity of the output of the whole ode toa spei�ed ombination of linear perturbations to the inputs.The reverse mode AD software performs a task that seems muh harder than theforward mode, but in fat it is only slightly harder. Looking again at the single binaryinstrution, suppose for simpliity that the variables a; b;  are used only one during



10the whole ode. Let �a;�b; � denote the sensitivity of the output of the whole ode toperturbations in a; b; . These are then related by the equation� �a�b � = ���a ��b�T �;whih is the transpose of the linear sensitivity equation. The triky thing with thereverse mode is that the adjoint steps have to be performed in the reverse order to theoriginal nonlinear ode. Therefore the AD software has to generate temporary storagefor eah operation in whih to keep the linearisation oeÆients suh as ��a and ��b . Otherthan this, the omputational ost of reverse mode AD is similar to forward mode AD,typially no more than a fator 4 greater than the original nonlinear ode.The main AD pakages are ADIFOR [3℄, Odyss�ee [19℄ and TAMC [25℄. For furtherinformation, the reader is referred to the doumentation for eah of these, and theexellent book by Griewank [32℄, one of the original developers of ADIFOR.The signi�ane of these pakages is that they an greatly simplify the task of writingan adjoint CFD ode. For examples of the use of AD to generate suh odes see [43, 42,16℄. However, there are limitations to their ability to arry out automati di�erentiationof odes that use iterative solvers [24℄, so it is best to view them as aides rather than ablak-box solution.1.4 A brief overview of the literatureHere we give a very brief overview of some of the main developments in the literatureonerning the use of adjoints for error analysis.The subjet begins in 1967 with the work of Aubin and Nitshe (see [55℄), who used asuitably de�ned adjoint problem to derive a priori optimal order proofs of L2 onvergeneof �nite element approximations of ellipti p.d.e.'s. In 1978, Babu�ska and Rheinboldt[11, 10℄ built on this to develop an a posteriori error analysis that they applied to �niteelement approximations of the Poisson and Cauhy-Riemann equations.In 1984, Babu�ska and Miller [7, 8℄ were perhaps the �rst to fous attention on integralfuntional outputs. Beause their primary interest was in point funtionals suh as themaximum stress in strutural analysis appliations, they used \extration funtions" toonvert the point quantities into integrals. A key feature of these papers is the a priorianalysis of the superonvergene of the �nite element approximations of the integralfuntionals. This will be disussed later in these leture notes, but the essene is thatthe adjoint error orretion term outlined previously is zero beause of a partiularfeature of Galerkin �nite element methods known as \Galerkin orthogonality". As aresult, the order of auray of the values for integral funtionals is roughly double thatof the underlying �nite element solution.In extending this work to the onvetion-di�usion equation, Barrett and Elliott [4℄were the �rst to analyse a problem that is not self-adjoint, (i.e. one for whih the adjointdi�erential operator is not the same as the original di�erential operator). This step wasvital for CFD appliations, none of whih are self-adjoint.



11The late 1990's saw an explosion of interest and researh into a posteriori analysisof errors in integral funtionals and related methods for optimal grid adaptation. S�uli[26, 44, 58, 33℄, Johnson [36, 38℄ and Rannaher and Beker [12, 13, 14, 54, 6, 15℄ have used�nite element methods that exhibit natural superonvergene and have foussed theirattention on using a posteriori error bounds to derive good grid adaptation indiators.In outline, their approahes are similar, but with signi�ant di�erenes in the details.Patera and Peraire [51, 53, 52℄ also fous on �nite element methods, but they usea ompletely di�erent a posteriori approah to derive error bounds for the funtionalomputed on a \truth mesh" that is de�ned to be suÆiently �ne that the disretisationerrors may be negleted. Yet another approah for bounding the errors in funtionaloutputs from �nite element methods is that of Oden and Prudhomme [47, 48℄.These leture notes over the adjoint error orretion ideas developed by Giles andPiere [28, 29, 50, 23℄. One way in whih they may be viewed is that they extend to �nitevolume methods the superonvergene that is natural for many �nite element methods.This is ahieved through the expliit evaluation of the adjoint orretion term whih isnon-zero beause of the lak of \orthogonality". However, as will be shown later, it isalso possible to apply the tehnique with �nite element solutions to obtain funtionalvalues that are even more aurate than the superonvergent values that arise naturallyfrom the �nite element omputation.Venditti & Darmofal [60, 61℄ have used an algebrai version of the adjoint errororretion to orret the funtional errors omputed on a \truth mesh" using a solutioninterpolated from the original mesh. They have also used the approah to derive gridadaptation riteria. This will be disussed later in these notes, and sample results willbe shown.



122 Linear adjoint error orretionIn this setion we develop the adjoint orretion theory for linear di�erential equations.We begin with a restrited version without boundary terms beause it has the greatestsimilarity to the algebrai error orretion presented in the previous setion.2.1 Theory without boundary termsLet u be the solution of the linear di�erential equationLu = f;on some domain 
, subjet to homogeneous boundary onditions for whih the problemis well-posed when f 2 L2(
) (meaning that f is a square-integrable funtion).The adjoint di�erential operator L� and assoiated homogeneous boundary ondi-tions are de�ned by the identity (v; Lu) = (L�v; u); (2.1)that must hold for all u, v satisfying the respetive boundary onditions. Here thenotation (:; :) denotes an integral inner produt over the domain 
, i.e.(v; Lu) � Z
 vTLu dV;allowing for the possibility that u, and hene v, may be a vetor funtion rather thanjust a salar.The appropriate de�nition for L� an be onstruted by integration by parts, startingfrom (v; Lu), until all of the derivatives are ating on v rather than u. In the proess,the adjoint boundary onditions ome from the requirement that the boundary termsthat arise from the integration by parts must be zero. Examples of this will be givenlater.Suppose now that we are onerned with the value of the funtional J=(g; u), for agiven funtion g 2 L2(
). An equivalent dual formulation of the problem is to evaluatethe funtional J=(v; f), where v satis�es the adjoint equationL�v = g;subjet to the homogeneous adjoint boundary onditions. The equivalene of the twoforms of the problem follows immediately from the de�nition of the adjoint operator.(v; f) = (v; Lu) = (L�v; u) = (g; u):Suppose that uh and vh are approximations to u and v, respetively, and satisfythe homogeneous boundary onditions. The subsript h indiates that the approximatesolutions are derived from a numerial omputation using a grid with average spaingh. When using �nite di�erene or �nite volume methods, uh and vh might be reated



13by interpolation through omputed values at grid nodes. With �nite element solutions,one might simply use the �nite element solutions themselves, or one ould again useinterpolation through nodal values and thereby obtain approximate solutions that aresmoother than the �nite element solutions.It is assumed that uh and vh are suÆiently smooth that Luh and L�vh lie in L2(
).If uh and vh were equal to u and v, then the residual errors Luh�f and L�vh�g wouldbe zero. Thus, the magnitude of the residual errors is a omputable indiation of theextent to whih uh and vh are not the true solutions.Now, using the de�nitions and identities given above, we obtain the following ex-pression for the funtional:(g; u) = (g; uh)� (L�vh; uh�u) + (L�vh�g; uh�u)= (g; uh)� (vh; L(uh�u)) + (L�(vh�v); uh�u)= (g; uh)� (vh; Luh�f) + (vh�v; L(uh�u)): (2.2)The �rst term in the �nal expression is the value of the funtional obtained fromthe approximate solution uh. The seond term is an inner produt of the residual errorLuh�f and the approximate adjoint solution vh. The adjoint solution gives the weight-ing of the ontribution of the loal residual error to the overall error in the omputedfuntional. Therefore, by evaluating and subtrating this adjoint error term we obtaina more aurate value for the funtional.The third term is the remaining error after making the adjoint orretion. If Luh�f =L(uh�u) is of the same order of magnitude as uh�u then the remaining error has abound that is proportional to the produt kuh�uk kvh�vk (using L2 norms), and thusthe orreted funtional value is superonvergent. For example, if the solution errorsuh�u and vh�v are both O(hp) then the error in the funtional is O(h2p).Furthermore, the remaining error term an be expressed as(vh�v; L(uh�u)) = �vh�v; LL�1(Luh�f)�= �L�(vh�v); L�1(Luh�f)�= �L�vh�g; L�1(Luh�f)� :This has the omputable a posteriori bound kL�1k kLuh�fk kL�vh�gk. The problemwith this bound is obtaining a value for the operator norm kL�1k. This an be alulatedanalytially in the simplest ases, but for harder problems it may be neessary to estimateit numerially.Note the similarity between this analysis and the algebrai version in the �rst setion.The adjoint identities (1.1) and (2.1) look almost idential, as do the expressions for thefuntional, (1.2) and (2.2).



142.2 Galerkin �nite element methodsIf the approximate solutions uh and vh are the �nite element solutions from a Galerkin�nite element disretisation, then the orretion term(vh; Luh � f)is automatially zero, due to the requirement that the �nite element residual is orthog-onal to all members of the �nite element spae [55℄. Thus, the Galerkin �nite elementmethod gives naturally superonvergent estimates for integral outputs, in the sense thata single order of auray improvement in the solution, through inreasing the degree ofthe polynomials in the �nite element spae, leads to two orders of auray improvementin the value of the funtional.However, there is usually a loss of auray beause of a lak of smoothness in the�nite element solution. Typially, if the solution errors are O(hp), then the residualerror Luh�f is O(hp�m) where m is the degree of the di�erential operator, the degreeof the highest derivative in the operator. Hene, the remaining error in the funtionalis O(h2p�m).If one takes the �nite element solution and reonstruts smoother solutions uh andvh, then there is the possibility of reovering O(h2p) auray for the funtional, at theost of arrying out an adjoint alulation to evaluate the adjoint error orretion. Thiswill be demonstrated in the seond of the two examples to follow.2.3 First example: 1D Poisson equationThe �rst example is the one-dimensional Poisson equation,d2udx2 = f;on the unit interval [0; 1℄ subjet to the homogeneous boundary onditions u(0)=u(1)=0. The dual problem is the Poisson equation,d2vdx2 = g;subjet to the same homogeneous boundary onditions. The adjoint identity is easilyveri�ed, taking into aount that u and v are zero at eah end.Z 10 v d2udx2 dx = � Z 10 dvdx dudx dx = Z 10 d2vd2x u dx:The Poisson equation is approximated numerially on a uniform grid, with spaingh, using a seond order �nite di�erene disretisation,h�2Æ2xuj = f(xj):
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Figure 1: Residual error for 1D Poisson equation.
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Figure 3: Funtional error onvergene for 1D Poisson equation.
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Figure 4: Funtional error onvergene for 2D Poisson equation.



17The approximate solution uh(x) is then de�ned by ubi spline interpolation throughthe nodal values uj. The adjoint solution vh is obtained in exatly the same manner.Numerial results have been obtained for the asef = x3(1�x)3; g = sin(�x):Figure 1 shows the residual error Luh�f when h = 132 , as well as the three Gaussianquadrature points on eah sub-interval that are used in the numerial integration ofthe inner produt (vh; Luh�f). Sine uh is a ubi spline, fh� d2uhdx2 is ontinuous andpieewise linear. The best pieewise linear approximation to f has an approximationerror whose dominant term is quadrati on eah sub-interval; this explains the sallopedshape of the residual error. Figure 2 shows the approximate adjoint solution vh, whihsimply illustrates that the residual error in the enter of the domain ontributes mostto the overall error in the funtional.Figure 3 is a log-log plot of three quantities versus the number of ells: the error inthe base value of the funtional (g; uh); the remaining error after subtrating the adjointorretion term (vh; Luh�f); the a posteriori error bound kL�1k kLuh�fk kL�vh�gk.The superimposed lines have slopes of �2 and �4, on�rming that the base solution isseond order aurate while the error in the orreted funtional and the error boundare both fourth order. It is also worth noting that on a grid with 16 ells, whih mightbe a reasonable hoie for pratial omputations, the error in the orreted value of thefuntional is over 200 times smaller than the unorreted error.2.4 Seond example: 2D Poisson equationThe seond example is the two-dimensional Poisson equation,r2u = f;on the unit square [0; 1℄� [0; 1℄ subjet to homogeneous Dirihlet boundary onditions.The dual problem is r2v = g;with the same boundary onditions, and the adjoint identity is again easily veri�ed,Z
 v r2u dA = � Z
rv �ru dA = Z
r2v u dA:For this example, the equations are approximated using a Galerkin �nite elementmethod with pieewise bilinear elements on a uniform Cartesian grid. Finite elementerror analysis reveals that the solution error for the primal problem, and the error in theomputed funtional using the �nite element solution are both O(h2). However, usingbi-ubi spline interpolation through the omputed nodal values, one an reonstrutan improved approximate solution uh(x; y) with an error that is still O(h2), but muhsmoother, so that the residual error is also O(h2). Using a similarly reonstrutedapproximate adjoint solution vh(x; y), one an then ompute the adjoint error orretion



18term resulting in a orreted funtional whose auray is O(h4). All inner produtintegrals are approximated by 3�3 Gaussian quadrature on eah square ell to ensurethat the numerial quadrature errors are of a higher order.Figure 4 shows the numerial results obtained for the funtionsf(x; y) = x(1�x)y(1�y); g(x; y) = sin(�x) sin(�y):The ordinate is the log of the number of ells in eah dimension, and lines of slope�2 and �4 are again superimposed. As predited by the analysis, the base error inthe funtional is learly seond order whereas the error in the orreted value of thefuntional as well as the error bound are again fourth order.2.5 Theory with boundary termsWe now extend the theory to inlude inhomogeneous boundary onditions for the primaland dual problems, and boundary integrals in their output funtionals.Let u be the solution of the linear di�erential equationLu = f;in the domain 
, subjet to the linear boundary onditionsBu = e;on the boundary �
. In general, the dimension of the operator B may be di�erenton di�erent parts of the boundary (e.g. inow and outow setions for the onvetionp.d.e.).The output funtional of interest is taken to beJ = (g; u) + (h; Cu)�
;where (:; :)�
 represents an integral inner produt over the boundary �
. The boundaryoperator C may be algebrai (e.g. Cu � u) or di�erential (e.g. Cu � �u�n), but musthave the same dimension as the adjoint boundary ondition operator B� to be de�nedshortly. Note that the omponents of h may be set to zero if the funtional does nothave a boundary integral ontribution.The orresponding linear adjoint problem isL�v = g;in 
, subjet to the boundary onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and the boundaryoperator C� is (v; Lu) + (C�v; Bu)�
 = (L�v; u) + (B�v; Cu)�
; (2.3)



19for all u; v. This identity is obtained by integration by parts. Examples will be givenlater, but see also [27℄ for the onstrution of the appropriate adjoint operators for thelinearised Euler and Navier-Stokes equations.Using the adjoint identity, one immediately obtains the equivalent dual form of theoutput funtional, J = (v; f) + (C�v; e)�
:Given approximate solutions uh; vh, we obtain the following result for the funtional.(g; u) + (h; Cu)�
 = (g; uh) + (h; Cuh)�
�(L�vh; uh�u)� (B�vh; C(uh�u))�
+(L�vh�g; uh�u) + (B�vh�h; C(uh�u))�
= (g; uh) + (h; Cuh)�
�(vh; L(uh�u))� (C�vh; B(uh�u))�
+(L�(vh�v); uh�u) + (B�(vh�v); C(uh�u))�
= (g; uh) + (h; Cuh)�
�(vh; Luh�f)� (C�vh; Buh�e)�
+(vh�v; L(uh�u)) + (C�(vh�v); B(uh�u))�
:In the �nal result, the �rst line is the funtional based on the approximate solutionuh. The seond line is the omputable adjoint error orretion that now inludes a termrelated to the residual error in satisfying the primal boundary onditions. The third lineis the remaining error. In priniple, an a posteriori error bound for this an again befound, but the main point is that eah of the terms involves an inner produt of two smallquantities, so we again have the result that the orreted funtional is superonvergentrelative to the underlying solutions to the primal and adjoint problems.2.6 Example: 2D Laplae equationFor the 2D Laplae equation r2u = 0;with Dirihlet boundary onditions u = e, and funtionalJ = Z�
 h�u�n ds;we have the operators Lu = r2u; Bu = u; Cu = �u�n:Integrating by parts givesZ
 v Lu dA = � Z
rv � ru dA+ Z�
 v �u�n ds= Z
r2v u dA+ Z�
�v �u�n � �u�n v� ds;



20so the adjoint identity is satis�ed for all u; v if we de�neL�v = r2v; B�v = v; C�v = �v�n:To onstrut an analyti testase with urved boundaries and a singularity in thesolution, we use a onformal mapping. We start by de�ning the domain in a omplexZ-plane to be the region between two irles entered at (X; Y ) = (�0:1; 0) with radiiof R1 = 1:1 and R2 = 3:0. Appliation of the Joukowski mappingz = Z + 1Z ;then produes a omputational domain between a usped airfoil (�
z1) and a smoothouter boundary (�
z2). Using ylindrial oordinates R; � de�ned byX + 0:1 = R os �; Y = R sin �;the funtion U(X; Y ) = R2 � R21R sin �;is a solution of the Laplae equation in the Z-plane. Furthermore, by a well-knownfeature of onformal mappings, the funtion u(x; y) = U(X; Y ) is also a solution of theLaplae equation in the z-plane.Evaluating u(x; y) on the inner and outer boundaries gives the Dirihlet boundaryondition for the test problem. As illustrated in Figure 5, the solution orresponds to thestream funtion for inompressible invisid ow around the airfoil, with zero irulation.The funtional, expressed in the Z-plane, is hosen to beZ 2�0 sin � �U�n ����R=R1 d�:Its analyti value is �2�. When mapped into the z-plane, the orresponding expressionfor the funtional is �h; �u�n��
 ;where h = R�11 sin �; on the inner boundary �
z1, and h = 0 on the outer boundary.Hene the dual problem is the Laplae equation subjet to the Dirihlet boundary on-ditions v=h. As seen in Figure 5, the gradient of the adjoint solution is singular at theusped trailing edge of the airfoil.The numerial results for both the primal and dual problems are alulated using thebilinear Galerkin �nite element method. The grid points in the z-plane are generated bythe onformal mapping of a regular polar grid in the Z-plane, but the use of isoparametrielements in the z-plane means the ells in the z-plane are quadrilaterals, and do not haveurved edges.
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233 Linear defet error orretionAdjoint error orretion is not the only means of improving the auray of numerialalulations. In this setion, based on Referene [23℄, we look at the use of defetorretion [9, 40, 56, 57℄, and show that it an be extremely e�etive in reduing theerrors in a model 1D Helmholtz problem; the ombination of defet and adjoint errororretion is even better.The primary motivation for this investigation is the need for high order aurayfor aeroaousti and eletromagnetis alulations. In steady CFD alulations, gridadaptation an be used to provide high grid resolution in the limited areas that requireit. However, using standard seond order aurate methods, the wave-like nature ofaeroaousti and eletromagneti solutions would lead to grid re�nement throughoutthe omputational domain in order to redue the wave dispersion and dissipation toaeptable levels. The preferable alternative is to use higher order methods, allowingone to use fewer points per wavelength, whih an lead to a very substantial redutionin the total number of grid points for 3D alulations. The diÆulty with this is thatone often wants to use unstrutured grids beause of their geometri exibility, and theonstrution of higher order approximations on unstrutured grids is ompliated andomputationally expensive.3.1 Problem desription and Galerkin methodThe model problem to be solved is the 1D Helmholtz equationu00 + �2u = 0; 0 < x < 10;subjet to the Dirihlet boundary ondition u=1 at x=0 and the radiation boundaryondition u0�i�u=0 at x=10. The analyti solution is u= exp(i�x) and the domainontains preisely �ve wavelengths. The output funtional of interest is the value u(10)at the right hand boundary. This an be viewed as a model of a far-�eld boundaryintegral giving the radiated aousti energy in aeroaoustis, or the radar ross-setionin eletromagnetis [44℄.Integrating by parts, the weak form of the inhomogeneous equationu00 + �2u = f; 0 < x < 10;subjet to the same boundary onditions is�(w0; u0) + �2(w; u) + i�w�(10) u(10) = (w; f);for any di�erentiable w(x) with w(0) = 0. One important feature of this Helmholtzproblem is that the solution is omplex. Therefore the inner produt (w; u) is de�ned as(w; u) � Z 100 w�u dx;



24with w� denoting the omplex onjugate of w.The Galerkin solution on the irregular grid xj; j = 0; 1; 2; : : : ; N , is de�ned asU(x) = NXj=0 Uj�j(x)where the �j(x) are the usual pieewise linear `hat' funtions for whih �j(xi) = Æij.The value U0 is given by the Dirihlet boundary ondition. The values of the otheroeÆients Uj for j>0 are obtained from the equations�(�0i; U 0) + �2(�i; U) + i��i(10)U(10) = 0; i = 1; 2; : : : ; N:It is well established that this disretisation is seond order aurate, produing disper-sion but no dissipation on a uniform grid.3.2 Defet orretionThe �rst step in the defet orretion is to de�ne a new approximate solution uh(x) byubi spline interpolation of the nodal values Uj. The hoie of end onditions for theubi spline is very important. A natural ubi spline would have u00h=0 at both ends,but this would introdue small errors at eah end sine u00 6=0 for the analyti solution.Instead, at x = 10 we require the splined solution to satisfy the analyti boundaryondition by imposing u0h � i�uh = 0. At x = 0, the analyti boundary ondition isalready imposed through having the orret value for the end point U(0). Therefore,here we require that u00h + �2uh = 0 so the splined solution satis�es the o.d.e. at theboundary.The solution error, e = u(x)�uh(x) satis�es the inhomogeneous Helmholtz equatione00 + �2e = �(u00h+�2uh); 0 < x < 10;the right-hand-side of whih is the residual error of the approximation uh(x). Given thehomogeneous Dirihlet boundary ondition at x=0, and the same radiation boundaryondition at x=10, the Galerkin approximation to the error is given by the equations�(�0i; E 0) + �2(�i; E) + i��i(10)E(10) = �(�i; u00h+�2uh); i = 1; 2; : : : ; N:Adding the nodal orretions Ej to the original nodal values Uj gives a orreted solution.The whole proedure an then be repeated to improve the auray. This follows theproedure desribed by Barrett et al who also showed that it onverges to a solution ofan appropriately de�ned Petrov-Galerkin disretisation, with the trial spae being thespae of ubi splines, while the test spae is the spae of pieewise linear funtions [9℄.3.3 Adjoint error orretionTo apply the linear theory to the Helmholtz problem, the �rst step is to onstrut theappropriate adjoint problem. Integration by parts reveals that the Helmholtz equationis self-adjoint, so L�v � v00 + �2v;



25and (v; Lu)� (L�v; u) = h~vH ~A~ui100 ;where ~u = � ududx � ; ~v = � vdvdx � ;and ~A = � 0 1�1 0 � :At x = 10 we have Bu � u0 � i�u � ~B~u; ~B = (�i� 1) ;and Cu � u � ~C~u; ~C = (1 0) :To satisfy the adjoint identity (2.3) we require ~B� and ~C� suh that~A =  � ~C�~B� !H  ~B~C ! :Solving this gives  � ~C�~B� ! =  ~B~C !�H~AH = � 1 0�i� �1 �and hene B�v � �v0 � i�v and C�v � �v. Similarly, at x=0, we obtain B�v = v andC�v = v0.Now, noting that in our appliation f = g=0, and h has value 0 at x=0 and 1 atx=10, then the full spei�ation of the adjoint problem isv00 + �2v = 0; 0 < x < 10;with v=0 at x=0 and �v0 � i�v = 1 at x=10.Let vh be an approximate solution of this problem, obtained by the same Galerkin andubi spline reonstrution approah as uh, with or without defet orretion. Notingthat the ubi spline reonstrution ensures that the boundary onditions are satis�edexatly, the orreted approximation to the value u(10) isuh(10)� (vh; u00h+�2uh):The theory gives the error in this orreted funtional as being(vh � v; u00h+�2uh):In the absene of defet orretion, both terms in this inner produt are seond orderin the average grid spaing and so the error is fourth order. With defet orretion, the�rst term is fourth order while the seond term remains seond order. Therefore, theerror remaining after the adjoint error orretion is sixth order.



263.4 Numerial resultsNumerial results have been obtained for grids with 4, 8, 16, 32, 64 and 128 points perwavelength. To test the ability to ope with irregular grids, the oordinates for the gridwith N intervals are de�ned asx0 = 0; xN = 10; xj = 10N (j + �j) ; 0<j<N;where �j is a uniformly distributed random variable in the range [�0:3; 0:3℄.Figure 1 shows the L2 norm of the error in the reonstruted ubi spline solutionbefore and after defet orretion. Without defet orretion, the error is seond order,while with defet orretion it is fourth order. Note that a seond appliation of defetorretion makes a signi�ant redution in the error even though it remains fourth order.This is beause one appliation of the defet orretion proedure gives a orretion thatis seond order in magnitude, with a orresponding error that is seond order in relativemagnitude and therefore fourth order in absolute magnitude. It is this error that isorreted by a seond appliation of the defet orretion proedure.Figure 2 shows the error in the numerial value for the output funtional u(10).Without any orretion, the error is seond order. Using either defet orretion oradjoint error orretion on their own inreases the order of auray to fourth order, butusing them both inreases the auray to sixth order. Note that the alulation with 8points per wavelength plus both defet and adjoint error orretion gives an error whihis approximately 2� 10�3. This is more aurate than the alulation with 128 pointsper wavelength and no orretions, and omparable to the results using 14 points anddefet orretion, or 30 points with adjoint error orretion.In 3D, the omputational ost is proportional to the ube of the number of points perwavelength, so this indiates the potentially huge savings o�ered by the ombination ofdefet and adjoint error orretion. The ost of omputing the orretions is �ve timesthe ost of the original alulation, due to the additional two alulations for the defetorretion, and the one adjoint alulation plus its two defet orretions. In pratie, theseond defet orretion for the primal and adjoint alulations make negligible di�ereneto the value obtained after the adjoint error orretion, so these an be omitted, reduingthe ost of the orretions to just three times the ost of the original alulation.
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Figure 7: L2 error in the numerial approximation to u(x)
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284 Nonlinear adjoint error orretionThis setion looks at the extension from the linear theory to handle nonlinear problems.It begins with some preliminaries that address the key issues in linearising nonlinearfuntions and operators.4.1 PreliminariesIf u is a salar variable and f(u) is a nonlinear salar funtion then a standard Taylorseries expansion givesf(u2) = f(u1) + f 0(u1) (u2�u1) +O((u2�u1)2):However, one an obtain an exat expression without any remainder terms by startingfrom dd� f (u1+�(u2�u1)) = f 0 (u1+�(u2�u1)) (u2 � u1);and then integrating this from �=0 to �=1 to obtainf(u2)� f(u1) = f 0(u1;u2) (u2 � u1);where f 0(u1;u2) � Z 10 f 0 (u1+�(u2�u1)) d�:If u and f are vetors, we need to de�ne the Jaobian matrixAu = �f�u ����u ;with the subsript u denoting the fat that the value of the Jaobian matrix depends onthe value of u around whih f(u) is linearised. We then obtaindd� f (u1+�(u2�u1)) = Au1+�(u2�u1) (u2�u1)so integrating over � gives f(u2)� f(u1) = A(u1;u2) (u2�u1);where A(u1;u2) = Z 10 �f�u ����u1+�(u2�u1) d�:The next step is to onsider a nonlinear operator N(u). The linearised operator Luis alled a Fr�ehet derivative, and it is formally de�ned byLu~u � lim"!0 N(u+ "~u)�N(u)"



29Again the subsript u denotes the fat that the linear operator matrix depends on thevalue of u around whih N(u) is linearised. For example, ifN(u) = ��x �12u2�� � �2u�x2then Lu~u = ��x (u ~u)� � �2~u�x2The �nal step in these preliminaries is to start fromdd� N (u1+�(u2�u1)) = Lu1+�(u2�u1) (u2�u1)and then integrate over � to obtainN(u2)�N(u1) = L(u1;u2) (u2�u1);where L(u1;u2) = Z 10 Lju1+�(u2�u1) d�:Thus L(u1;u2) is the average value of the linear operator Lu over the \path" from u1 tou2.4.2 Nonlinear theoryLet u be the solution of the nonlinear di�erential equationN(u) = 0;in the domain 
, subjet to the nonlinear boundary onditionsD(u) = 0;on the boundary �
.The linear di�erential operators Lu and Bu are de�ned to be the Fr�ehet derivativesof N and D, respetively, Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :It is assumed that the nonlinear funtional of interest, J(u), has a Fr�ehet derivativeof the following form,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h; Cu~u)�
:



30Here the dimension of the operator Cu (whih may be di�erential) is required to equalthe dimension of the adjoint boundary operator B�u, to be de�ned shortly.The orresponding linear adjoint problem isL�uv = g(u)in 
, subjet to the boundary onditionsB�uv = hon the boundary �
. The adjoint identity de�ning L�u, B�u and the boundary operatorC�u is (v; Lu~u) + (C�uv; Bu~u)�
 = (L�uv; ~u) + (B�uv; Cu~u)�
; (4.1)for all ~u; v.We now onsider approximate solutions uh; vh of the primal and dual problems,respetively. The analysis will use the quantitiesL�uhvh; B�uhvh; C�uhvh:Note that these an be evaluated sine uh and vh are both known, whereas we wouldnot be able to evaluate the Fr�ehet derivatives based on the unknown analyti solutionu. The analysis also requires averaged Fr�ehet derivatives de�ned byL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;so that, as explained in the preliminaries,N(uh)�N(u) = L(u;uh) (uh�u);D(uh)�D(u) = B(u;uh) (uh�u);J(uh)�J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
:



31We now obtain the following:J(uh)� J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h; Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h; Cuh(uh�u))�
= (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h; Cuh(uh�u))�
+(vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
�(L�uhvh�g(u; uh); uh�u)�(h; (Cuh�C(u;uh))(uh�u))�
�(B�uhvh�h; Cuh(uh�u))�
+(vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
:In the �nal result, the �rst line is the adjoint orretion term taking into aountthe residual errors in satisfying both the p.d.e. and the boundary onditions. The otherlines are the remaining errors, whih inlude the onsequenes of nonlinearity in L;B;Cand g as well as residual errors in approximating the adjoint problem.If the solution errors for the nonlinear primal problem and the linear adjoint problemare of the same order, and they are both suÆiently smooth that the orrespondingresidual errors are also of the same order, then the order of auray of the funtionalapproximation after making the adjoint orretion is twie the order of the primal andadjoint solutions. However, rigorous a priori and a posteriori analysis of the remainingerrors is muh harder than in the linear ase [49℄ and pratial a posteriori error boundshave yet to be obtained for the quasi-1D and 2D Euler equations.



324.3 Quasi-1D Euler equationsThe steady quasi-1D Euler equations for the ow of an ideal ompressible uid in avariable area dut are ddx(AF )� dAdx P = 0;where A(x) is the ross-setional area of the dut and U , F and P are de�ned asU = 0� ��q�E 1A ; F = 0� �q�q2 + p�qH 1A ; P = 0� 0p0 1A :Here � is the density, q is the veloity, p is the pressure, E is the total energy and H isthe stagnation enthalpy. The system is losed by the equation of state for an ideal gas.The funtional of interest is the `lift'J = Z p dx:The Fr�ehet derivative operator isLu~u � ddx �A �F�u ~u�� dAdx �P�u ~u;and therefore the orresponding adjoint equations areL�uv � �A��F�u�T dvdx � dAdx ��P�u�Tv = ��p�u�T :The equations are approximated using a standard seond order �nite volume methodwith harateristi smoothing on a uniform omputational grid. The linear adjointproblem is approximated by the so-alled `ontinuous' method, in whih one disretisesthe analyti adjoint equations on the same uniform grid as the ow solution [2, 35℄. In thealternative `disrete' approah, one starts with the disretised nonlinear ow equations,linearises them and then uses the transpose of the linear matrix as the disrete adjointoperator [18℄. Previous researh has shown that both approahes produe approximatesolutions whih onverge to the analyti adjoint solution, whih has been determined inlosed form for the quasi-1D Euler equations [30℄.The approximate solution uh(x) is onstruted from the disrete ow solution byubi spline interpolation of the nodal values of the three omponents of the state vetorU . Similarly, the approximate adjoint solution vh(x) is obtained by ubi spline inter-polation of the nodal values of the three omponents of the disrete adjoint solution.The integrals that form the base value for the funtional and the adjoint orretion areapproximated by 3-point Gaussian quadrature.
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354.4 Nonlinear thermal di�usionThe omputational domain for this problem is the irular annulus 1 � r � 3, and thep.d.e. is the nonlinear di�usion equationr � (uru) = 0;subjet to the requirement that u is positive. Dirihlet boundary onditions are spei�edat the inner and outer boundaries so as to agree with the analyti solutionu(r; �) = �1 + �r4 � 1r� os ��1=2 :The funtional of interest is J(u) = Z 2�0 �u�n ����r=1 d�;and the orresponding dual problem isL�uv � ur2v = 0;with Dirihlet boundary onditions of 1=u and 0 on the inner and outer boundaries,respetively.The primal and dual solutions shown in Figure 12 are obtained by a bi-linear Galerkin�nite element formulation using 3�3 Gaussian quadrature to evaluate the mass andsti�ness matries. The nonlinear equations are solved using a full approximation shememultigrid method. Bi-ubi spline interpolation and 3�3 Gaussian quadrature are thenused to alulate the funtional with and without the adjoint orretion.The error in the funtional is shown in Figure 13 on a log-log plot versus the squareroot of the total number of ells; this is a measure of h�1, the inverse of the averagemesh spaing. The superimposed lines of slopes �2 and �4 show seond order aurayfor the basi �nite element solution and fourth order auray after the inlusion of theadjoint error orretion. For a 128�32 mesh, the error dereases by a fator of morethan 105.
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385 Optimal grid adaptationIn this setion we very briey outline a number of possible strategies for grid adaptationbased on a posteriori error estimates for output funtionals. In eah ase we expressreservations about the justi�ation of using the strategy, while reognising that in theend an aeptable justi�ation may be that it provides a robust re�nement riterion inpratie.5.1 Option 1: magnitude of orretion termFor nonlinear adjoint error orretion, the dominant orretion term is the interior inte-gral inner produt (vh; N(uh)), whih an be expressed as a sum of ontributions fromeah ell in the domain (vh; N(uh)) �X� (vh; N(uh))�:One adaptive strategy is to subdivide those ells for whih(vh; N(uh))�is bigger than some tolerane.M�uller and Giles have tried this approah for subsoni and transoni airfoil alula-tions [41℄, but the results are little better than using an ad ho method based on pressuredi�erenes aross eah ell.One questionable aspet of this strategy is that the purpose of the adjoint errororretion is to evaluate and orret for this term, so what is the justi�ation for tryingto make it small? Is it not better to try to make the remaining error small?5.2 Option 2: estimated remaining error termAfter making the adjoint error orretion, the main remaining error term an be ex-pressed as (v�vh; N(uh)) :The diÆulty with this expression is that the analyti adjoint solution v is not known.One option therefore is to estimate it and then adapt those ells in whih(v�vh; N(uh))�is greater than some tolerane.The problem is how to estimate v. Rannaher et al [12, 15℄ use a quadrati re-onstrution to estimate v, having used a pieewise linear �nite element solution forvh. However, if the quadrati reonstrution is a better approximation to v than thepieewise linear one, might it not be better to use the quadrati reonstrution as theapproximate solution vh and thereby get a more aurate adjoint error orretion?It might appear that another possible ritiism of this approah is that it assumesthat the solution error v�vh is primarily a loal interpolation error, whereas it may be



39due to trunation errors in an entirely di�erent part of the grid. However, for a Galerkin�nite element method, beause of orthogonality the quantity(v�vh; N(uh))has the same value for any vh in the appropriate �nite element spae. Therefore, it ispermissible to onsider a di�erent vh whih is an interpolant of v, so v�vh is then aninterpolation error whih an be estimated using the omputed adjoint solution.The approah used by Venditti & Darmofal [61℄ is an extension of that used byRannaher et al. An alternative, approximately equivalent form for the dominant partof the remaining error is (Rh; u�uh);where Rh � L�uhvh�g(uh) is the residual error in satisfying the adjoint p.d.e. Therefore,they adapt any ell in whih the sumj(v�vh; N(uh))j� + j(Rh; u�uh)j�is greater than some threshold. The analyti solutions u and v are again approximatedby a higher order reonstrution. Beause they use a �nite volume method to alulateuh and vh, the replaement of v�vh by a loal interpolation error does not have thesame theoretial justi�ation as with the Galerkin method. On the other hand, it doesseem an exellent idea to take into aount the residual errors of the adjoint problem,and they do use the more aurate reonstrution of the approximate solution to obtainthe orretion to the value of the funtional. The numerial results they obtain are verygood; Figure 14, taken from [61℄, illustrates the results they obtain for a three-elementairfoil alulation. It shows the adapted grid obtained using their re�nement riterion, aswell as the improved auray of the lift predition with and without adjoint orretion,ompared to a sequene of uniformly-re�ned grids.5.3 Option 3: oarse grid error estimatesUsing the residual errors from both the original and adjoint problems, the dominantremaining error an be expressed as�L�uh�1Rh; N(uh)� � �Rh; L�1uhN(uh)�The problem with using this in an adaptive approah is that L�1uh is a global operator.However, it might be possible to use a oarse grid to approximately evaluate L�1uhN(uh)and L�uh�1Rh, and then adapt in any ell � for whih�� �L�uh�1Rh; N(uh)����+ �� �Rh; L�1uhN(uh)����is bigger than some tolerane. This approah may also give a useful a posteriori boundon the total remaining error.The ritiism that an be levelled at this idea is that it requires the alulation of thequantity L�1uhN(uh) whih is essentially a defet orretion. In that ase, is it not better



40

-1 -0.5 0 0.5 1 1.5 2

-0.4

-0.2

0

0.2

0.4
Streamlines

0.26

0.14

0.50

0.28

-1 -0.5 0 0.5 1 1.5 2

-0.4

-0.2

0

0.2

0.4
Mach Number - Advanced EET 3-Element airfoil

Min Level: 0.02
Max Level: 0.78
Increment: 0.02

Final Grid
8844 nodes

Distant view

Number of Nodes

C
L

104 105

3.60

3.70

3.80

3.90

4.00

4.10

4.20

Uniformly Refined Grids
Adapted Grids
Adapted with Correction
Extrapolated

Lift Convergence - Advanced EET - M∞ = 0.26 - α = 8o

Adaptive indicator: Adjoint-based - eo=0.05

Slat blow-up Flap blow-up

Figure 14: Venditti / Darmofal test ase (Figures 2 and 3 from [61℄).



41to use this to further improve the auray of the solution and hene the funtional,rather than bound the remaining error?Yet again, it appears there is a hoie to be made between improved auray or atight bound. If we hoose the improved auray then we an still use the suggestedmeasure as a re�nement riterion, but we are re�ning based on the estimated magni-tude of one part of the orreted error, rather than on the estimated remaining error.It may still prove to be a useful adaptation riterion, but its rational basis has beenompromised.5.4 Multiple funtionalsA last omment onerns the situation in whih there are several di�erent funtionals ofonern, suh as lift, drag and pithing moment. How should all of these be inorporatedinto the adaptation riterion?One ould perform a separate adjoint alulation for eah. This would be neessaryif one wished to perform an adjoint error orretion to improve the auray of eah ofthe output funtionals. Alternatively, following options 1 and 2 above, one ould adaptwhenever V Z� jN(uh)j� dAexeeds some threshold, with V representing the magnitude of the typial adjoint so-lution (big near the airfoil, tending to zero far away) if following option 1, or a orre-sponding interpolation error estimate for option 2.



426 Future researh diretionsIn this onluding setion, we o�er some thoughts about diretions for future researh.Some of these are spei� to adjoint error orretion, but most apply more generally tothe subjet of a posteriori error analysis and grid adaptation for funtional outputs.6.1 Grid adaptationAs indiated in the previous setion, grid adaptation remains a topi for future researh.Being pratial, there is no need for a \perfet" adaptive strategy, even if one ouldde�ne what that would be. The important riterion for suess is that the strategyshould be robust and produe onsistently good results for a wide variety of problems.It is also important that for problems with singularities, for whih it is known that thestandard order of auray (expressed in terms of the number of nodes/ells used) anbe reovered with the appropriate degree of loal grid resolution, the adaptive strategyshould automatially aomplish this.Two other adaptation issues to be addressed are anisotropi re�nement and grid re-distribution. Currently, most adaptive strategies use grid re�nement, adding additionalnodes/ells through an isotropi re�nement proess that loally re�nes equally in eahdiretion, giving ells with a bounded aspet ratio. This is good for many appliations,but far from ideal for others.One example is the invisid ow around a wing. Here the grid resolution normal to theleading edge needs to be muh �ner than the spanwise resolution. In this ase, anisotropire�nement is probably the best solution. This means adding nodes in suh a way thatthe resolution normal to the leading edge is greater than in the spanwise resolution.The question this poses is how to deide whih diretion requires additional resolution?There are already ad ho re�nement methods that address this. The hallenge will be toextend the a posteriori adjoint-based re�nement indiators to give a more quantitativeanswer to this question.Another more extreme example of the need for anisotropi resolution is a boundarylayer on a wing, where there is learly a need for muh better resolution aross theboundary layer than in the other two diretions. In this ase, the best solution may wellbe grid redistribution, moving existing grid nodes to provide the resolution where it isneeded. Again there are good existing ad ho methods for doing this and the hallengeis how to develop new methods using a posteriori error estimates.



436.2 Asymptoti error boundsIdeally, we would like to have our ake and eat it too! We would like to use smoothreonstrution and adjoint error orretion to generate extremely aurate funtionalvalues, and at the same time still be able to bound the remaining error with boundsthat are at least asymptotially valid and fairly tight.As suggested in the previous setion, this may be unahievable. There may bea hoie to be made between using smooth reonstruted solutions for defet and/oradjoint error orretion, or for tight error bounds. If so, then our preferene would befor the inreased auray. However, this de�nitely merits further researh.6.3 Smooth reonstrution on unstrutured gridsOne key issue is going to be the smooth reonstrution of approximate solutions in mul-tiple dimensions on unstrutured grids. On a strutured grid, ubi spline interpolationan be used in eah diretion, but on an unstrutured grid there is a need for a suit-able generalisation of ubi spline interpolation to produe a reonstruted solution ofsuÆient smoothness.Venditti & Darmofal have ahieved some suess with a pieewise quadrati reon-strution using least squares minimization in the H1 Sobolev norm [61℄. In unpublishedresearh, this loal approximation has been suÆient for them to obtain results dou-bling the order of auray of funtional outputs from a Galerkin approximation of aonvetion-di�usion equation.However, there is reason to believe that in general the solution at the nodes of anunstrutured grid may not be very smooth. In partiular, the solution error,ei = ui � u(xi)may not be very smooth, and therefore even if ei = O(h2), any interpolation may leadto a reonstrution error e(x) = uh(x)� u(x)for whih re = O(h). This loss of auray beause of the loss of smoothness wouldompletely negate the ability of the adjoint error orretion to improve upon the aurayof �nite element solutions.To avoid this, it seems likely that it will be neessary to use some form of smoothedspline reonstrution, in whih the spline does not interpolate the nodal values, butinstead ompromises between the twin objetives of mathing the omputed data andmaintaining smoothness. For example, if Uh is a seond order aurate pieewise linear�nite element solution, then the reonstrution uh ould be de�ned by some suitableapproximation to the equationh2r2(r2uh) + uh � Uh = 0:The purpose of the bi-harmoni term is to ensure the smoothness of the solution. Theh2 weighting ensures that this is not ahieved at the expense of sari�ing the seondorder auray of the underlying solution.



446.4 ShoksOne last hallenge we wish to highlight is the problem of shoks and other disontinuities.With the quasi-1D Euler equations, it an be proved that with an appropriate on-servative formulation, and a numerial disretisation that is seond order aurate whenthe solution is smooth, the auray of output funtionals suh as the integrated pres-sure is also seond order [21℄. However, numerial evidene suggests this is not the asein multiple dimensions, and instead there is a error in quantities suh as the lift on atransoni airfoil that is proportional to the loal grid spaing at the shok. Thus, to geteven seond order auray would require anisotropi grid adaptation so that the gridspaing at the shok is O(h2), with h here being the average grid spaing in the rest ofthe grid.Appliation of adjoint error orretion ideas raises another problem. The reon-struted solution will be ontinuous, whereas the true solution is disontinuous. There-fore, it is unavoidable that there is an O(1) error in the approximate solution at theshok. This violates the whole basis for the adjoint error orretion sine it relies on alinearisation of the nonlinear equations that is valid only for small perturbations.We are urrently working on this problem. Our approah is to numerially ap-proximate a \visous" shok with the level of visosity being O(h2). The adjoint errororretion then has to orret for the numerial error in approximating the visous shok,plus the analyti error in using the visous shok problem to approximate the invisidshok problem. This latter part requires the use of mathed asymptoti expansions tounderstand that to leading order there is a linear dependene of integral funtionals onthe level of visosity. This error an be ompensated for by using the visous adjoint togive the sensitivity of the lift to a hange in the level of the visosity.AknowledgementsIn the ourse of the researh disussed in these notes, we have bene�ted from stimulatingdisussions with many people, inluding in partiular Endre S�uli, Paul Houston, DavidDarmofal and Rolf Rannaher.This researh was supported by EPSRC grants GR/K91149 and GR/L95700, and byNASA/Ames Cooperative Agreement No. NCC2-5431.
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