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31 IntrodutionThere is a long history of the use of adjoint equations in optimal ontrol theory [26℄.In uid dynamis, the �rst use of adjoint equations for design was by Pironneau [33℄,but within the �eld of aeronautial omputational uid dynamis, the use of adjointequations for design optimisation has been pioneered by Jameson [19, 20, 22℄ for thepotential ow, Euler and Navier-Stokes equations. The omplexity of the appliationswithin these papers has also progressed from 2D airfoil optimisation, to 3D wing designand �nally to omplete airraft on�gurations [21, 34, 35℄. A number of other researhgroups have also developed adjoint CFD odes [24, 39, 4, 3, 8℄ using the same `ontinuous'approah in whih the �rst step is to linearise the original partial di�erential equations.The adjoint p.d.e. and appropriate boundary onditions are then formulated, and �nallythe equations are disretised. While this minimises the memory requirements and theCPU ost per iteration, it requires one to develop an appropriate iterative solutionproedure, and this may not give as good a onvergene rate as the original nonlinearode. In addition, the debugging and validation of the adjoint ode is ompliated bythe lak of a suite of benhmark testases.The alternative `disrete' approah, whih we use, takes a disretisation of the Navier-Stokes equations, linearises the disrete equations and then uses the transpose of thelinear operator to form the adjoint problem. This approah has been developed by Elliott[11, 10℄, Anderson [32, 1℄, Mohammadi [29℄ and Kim [23℄. The main advantage of thisapproah, in our opinion, is that the ode development beomes a more straightforwardproess. The linearisation of the nonlinear disrete equations an either be performedmanually or by automati di�erentiation software and the linear ode an be validated bydiret omparison with the nonlinear ode. Similarly, sine the adjoint ode is obtainedby transposing the linear operator, it must yield exatly the same values for the linearisedobjetive funtion, and so an be validated against the linear ode.For an exellent review of researh on both ontinuous and disrete adjoint designmethods, see the paper by Newman et al [31℄.In this paper we ontribute to the development and understanding of disrete adjointmethods in �ve respets:� Disussion of the implementation of the adjoint ode in a way whih minimises thememory and CPU requirements, and an be automated using automati di�eren-tiation tools;� Development of an adjoint multigrid iteration proedure with preonditioned timestep-ping whih maintains exat equivalene between the linear and adjoint odes atall times during the evolution of their respetive solutions;� A detailed disussion of the imposition of strong boundary onditions and theinlusion of visous stresses in objetive funtions and the onsequene for theformulation of the adjoint ode;� Development of a harmoni adjoint ode whih is the ounterpart of a linear un-steady ode for a single frequeny of unsteadiness, and whih has appliations in



4 turbomahinery blade design for redued vibration due to fored response;� A numerial investigation indiating the potential for problems with strong shoks.This researh forms part of the development of the HYDRA suite of odes. Thefoundation is a nonlinear ode whih approximates the Reynolds-averaged Navier-Stokesequations on unstrutured hybrid grids, using an edge-based disretisation. The solutionproedure uses Runge-Kutta time-marhing aelerated by Jaobi preonditioning andmultigrid [30℄, with dual-timestepping for unsteady ows.The seond ode in the suite is for the linear analysis of unsteady ows. This isbased on a linearisation of the unsteady ow equations around the steady-state owonditions alulated by the nonlinear ode. Due to linearity, unsteady periodi owsan be deomposed into a sum of harmoni terms, eah of whih an be omputedindependently. Thus, the linear harmoni ode onsiders just one partiular frequenyof unsteadiness, resulting in a formulation in whih the purpose is to ompute a omplexow solution whih represents the amplitude and phase of the unsteady ow. This isexplained in greater detail later in this paper.The third ode is the steady adjoint ode, whih again is based on a linearisation ofthe ow equations around the nonlinear steady-state ow onditions. The fourth ode,whih is an extension of the third, is the adjoint ounterpart of the linear harmoni ode.It is the development of these odes that is the subjet of this paper.2 Disrete adjoint formulationWe start by onsidering the disrete nonlinear Euler equations with a weak imposition ofboundary onditions on solid walls through the spei�ation of zero mass ux throughfaes on the surfae. If the far-�eld boundary onditions are also imposed throughfar-�eld uxes then the disrete system of equations whih is solved is of the formR(U; �) = 0:Here U is the vetor of ow �eld variables, � represents one or more design variableswhih ontrol the geometry of the airfoil or wing (and hene the grid oordinates) andR(U) represents the disrete ux residuals whih are driven to zero by the iterativesolution proess.If there is just one design variable, then linearising the steady-state equations withrespet to a hange in that design variable yieldsLu = f;where L � �R�U ; u � dUd� ; f � ��R�� :The orresponding perturbation in a nonlinear objetive funtion J(U; �) iseJ = gTu+ �J��;



5where gT � �J�U :In the adjoint approah, this same quantity an be obtained by evaluatingeJ = vTf + �J��;where the adjoint solution v satis�es the equationLTv = g:The equivalene of this formulation omes from the following identity.vTf = vTLu = (LT v)Tu = gTu:If there are many design variables (eah giving rise to a di�erent vetor f) and onlyone objetive (yielding a single vetor g), then the bene�t of the adjoint approah is thatthe objetive sensitivity ~J an be obtained following a single evaluation of v instead ofseparate evaluations of u for eah f .3 Implementation of adjoint disretisationIn the implementation, the linear operator L is split into two parts,Lu = C u+Du: (3.1)The �rst part represents the onvetive uxes due to a Galerkin �nite element disreti-sation. The seond part represents the smoothing uxes (to whih the visous uxesare added later for the Navier-Stokes equations). The operator D an be further brokendown into the produt of two operators,Du = V Gu;where G omputes the gradient and a pseudo-Laplaian of u at eah node, in additionto u itself.The orresponding adjoint operator isLTv = CTv +DTv;with DTv = GT V T v;indiating that the adjoint gradient routine is applied after the adjoint smoothing rou-tine, whih at �rst seems ounter-intuitive.At an even more detailed level, the ation of eah of the operators C, V and G isomputed by a loop over all edges in the unstrutured grid. Therefore, taking Cu as



6an example, we an express it as a sum of elemental edge matries whose only non-zeroentries orresponds to the two nodes at either end of the edge,C u =Xe Ceu:The adjoint version of this is simplyCTv =Xe CTe v;orresponding to a similar loop over all edges.For the onvetive uxes, it is easy to ompute the edge produt CTe v diretly withoutexpliitly forming the matrix Ce. The transposed gradient operator GT is also easily for-mulated. The produt V T v presents greater diÆulties. Elliott [11, 10℄ preomputed andstored the non-zero entries in the elemental matries Ve, and then evaluated the matrix-vetor produts V Te v. However, the storage of these matries for eah edge requires asubstantial amount of memory. Anderson [1℄ avoided the memory ost by reomputingthe matries during eah iteration, but this greatly inreases the CPU ost.To minimise both the memory and CPU requirements, it is neessary to alulate theedge produt V Te v diretly, as with CTe v. The diÆulty is in working out how best to dothis. One approah is to use AD (Automati Di�erentiation) software suh as Odyss�ee[12℄, ADIFOR [5, 7℄ or TAMC [13℄. In forward mode, AD software takes the originalnonlinear ode and then uses the basi rules of linearisation to onstrut the ode toevaluate Veu. In reverse mode, it produes the ode to alulate V Te v; it may seemthat this is a muh harder task but in fat it is not. Furthermore, there are theoretialresults whih guarantee that the number of oating point operations is no more thanthree times that of the original nonlinear ode [16℄.Mohammadi used Odyss�ee to generate muh of his adjoint ode [29℄ but a lot of hand-oding was still required. In our work we have written the adjoint ode manually, butfollowingmany of the tehniques of automati di�erentiation. To simplify the expressionsfor the partial derivatives, we hose to use the primitive variables (density, veloity andpressure) as our working variables, rather than the usual onservative variables. Theequations are still in onservative form so this hoie of working variables has no e�eton the �nal solution.The memory requirements for the adjoint ode are 20-30% greater than for the non-linear ode, depending on the grid that is used. The CPU ost per iteration is only10-20% greater than for the nonlinear ode, with the inreased ost of evaluating theadjoint residuals partially o�set by the fat that the Jaobian for the preonditioningremains �xed.Another important point onerns the evaluation of the term f , whih is the soureterm for the linear perturbation equations, and also appears in the linearised objetivefuntion in the adjoint approah. Again, forward mode AD software ould be used, buta very muh simpler alternative is to use the omplex Taylor series expansion method[37℄ used by Anderson and o-workers [2℄. The essene of the idea is thatlim�!0 I fR(U; �+i�)g� = �R�� :



7In this equation, R(U; �) has been taken to be a omplex analyti funtion, and thenotation If: : :g denotes the imaginary part of a omplex quantity. The equation itselfis an immediate onsequene of a Taylor series expansion. The onvergene to thelimiting value is seond order in � so numerial evaluation with � < 10�8 yields doublepreision auray. In pratie, we use � = 10�20. Unlike the usual �nite di�ereneapproximation of a linear sensitivity, there is no anellation e�et from the subtrationof two quantities of similarmagnitude, and therefore no unaeptable loss of auray dueto mahine rounding error. Applying this tehnique to a FORTRAN ode requires littlemore than replaing all REAL*8 delarations by COMPLEX*16, and de�ning appropriateomplex analyti versions of the intrinsi funtions min,max,abs.We have also found this omplex variable method to be extremely helpful duringprogram development. Beause we have also written a linear perturbation ode, wehave used it verify that eah of the linear ux subroutines is onsistent with the originalnonlinear ux subroutines, by heking the identityLu = lim�!0 I fR(U+i�u; �)g� ;for arbitrary hoies of u. The l.h.s. is omputed by the linear ux routines, and ther.h.s. is omputed by applying the omplex variable method to the nonlinear ux rou-tines. Having performed these heks, we then veri�ed that the adjoint ux routineswere onsistent with the linear routines by heking that the identity uT (LT v) = vT (Lu)holds for any u; v.If one were developing an adjoint ode without �rst writing a linear perturbationode, then these two steps ould be ombined into one to ompare the adjoint routinesto the nonlinear ux routines to hek for onsisteny.
4 Adjoint Solution ProedureAn important issue is how best to solve the adjoint equations. The eigenvalues of theadjoint matrix LT are the same as those of the linear matrix L, and therefore oneis guaranteed to get the same onvergene rate when using Krylov subspae iterationmethods suh as GMRES, as used by Anderson [32, 1℄. On the other hand, if one usesstandard time-marhing methods with multigrid, as are ommonly used to solve thenonlinear equations, it is not neessarily the ase that the iterative onvergene rate forthe adjoint solver will math that of the linear solver.We have analysed this for our time-marhing method whih uses Jaobi preondi-tioning with partial updates of the numerial smoothing uxes (and the visous uxesfor the Navier-Stokes equations) at seleted stages in the Runge-Kutta iteration [19℄.



8One full step of the M -stage proedure for the linear equations an be expressed asu(0) = und(m) = �mDu(m�1) + (1��m) d(m�1)u(m) = u(0) + �mP �f � C u(m�1) � d(m)�un+1 = u(M)where �1=�5=1, P is the Jaobi preonditioning matrix and C and D are again theonvetive and di�usive matries whose sum is the linear matrix L, as in Equation (3.1).The outome of this analysis [14℄ is that if the adjoint equations are solved using thefollowing M -stage iterative proedure,~v(M) = PH �g � LH vn�~d(M) = ��M ~v(M)~v(m) = PH ���m+1CH~v(m+1) + �m+1DH ~d(m+1)�~d(m) = ��m~v(m) + (1��m+1) ~d(m+1)vn+1 = vn + MXm=1�m~v(m)then the value of the linearised objetive funtion from the linear and adjoint odes isnot only idential one they have eah onverged to the �nal steady state, but it is alsoidential after eah Runge-Kutta timestep. Note that this iteration uses the transposeof the Jaobi preonditioning matrix, and works \bakwards" from m =M to m = 1.If partial updating of the dissipative uxes is not used, then it an be shown that thisredues to the standard Runge-Kutta method, but with the transposed preonditioner.However, with the use of partial updating, whih is ommonly employed to lower theCPU ost, it requires quite a lengthy analysis to determine this form for the adjointiteration.Furthermore, the analysis also extends to the use of multigrid, and shows that thekey here is that the restrition operator for the adjoint ode must be the transposeof the prolongation operator for the linear ode, and vie versa, and the number ofpre-smoothing iterations for the adjoint ode must equal the number of post-smoothingiterations for the linear ode, and vie versa. Provided these two onditions are satis�ed,the linear and adjoint odes produe idential values for the funtional after the samenumber of multigrid yles.This result is important for two reasons. The �rst is that it guarantees that theadjoint ode onverges, and that it does so with the same rate of onvergene as thelinear ode, whih is itself equal to the asymptoti rate of onvergene of the nonlinearode. Thus the adjoint ode bene�ts from the wealth of experiene and �ne tuning ofiterative proedures for nonlinear odes. The seond reason is that it provides anothervalidation hek on the orret implementation of the adjoint ode. If the linear and



9adjoint odes do not produe idential values for the funtional after one timestep, itindiates a programming error.5 Strong boundary onditionsAlthough it is possible to solve the Euler equations with solid wall boundary onditionsimposed weakly by speifying zero mass ux through the wall faes, it is more ommonwhen there are grid nodes on the wall to use strong boundary onditions and forethe normal omponent of the veloity at surfae nodes to be zero. In doing so, thenormal omponent of the momentum equation ux residual is disarded. Similarly, indisretising the Navier-Stokes equations, the entire veloity at the surfae nodes is set tozero, and all omponents of the momentum residual are disarded. Thus in both asesthe equations whih are solved are atually of the form(I�B)R(U) = 0;B U = 0:Here I is the identity matrix and B is a projetion matrix whih in the ase of the Eulerequations extrats the normal omponent of the boundary veloity, and in the ase ofthe Navier-Stokes equations extrats the entire boundary veloity. The presene of theterm (I � B) reets the disarding of the appropriate ux residual omponents, to bereplaed by the strong boundary onditions BU = 0.When onsidering linear perturbations to these equations, we obtain(I�B) (Lu� f) = 0;B u = b;where b is a boundary veloity whih is zero for the Navier-Stokes equations but non-zerofor the Euler equations due to a rotation in the surfae normal.These two equations an be ombined to form((I�B)L +B) u = (I�B)f + b; (5.1)and the appropriate adjoint equation is then found by transposing the linear operator,noting that B is symmetri, to obtain�LT (I�B) +B� v = g: (5.2)At this point it is onvenient to deompose both v and g into orthogonal omponentsas v = (I�B)v +Bv = vk + v?;g = (I�B)g +Bg = gk + g?:



10Pre-multiplying Equation (5.2) by (I�B) shows that vk satis�es the adjoint equations(I�B)LTvk = gk;B vk = 0:These are the equations whih are solved iteratively by the adjoint ode. Then, one vkhas been omputed, v? is alulated in a post-proessing step using an equation obtainedby pre-multiplying Equation (5.2) by B:v? = g? �BLT vk: (5.3)Having omputed vk and v?, the linearised funtional is given byeJ = vT ((I�B)f + b) + �J��= vTk f + vT?b + �J��:This shows that v? gives the sensitivity of the funtional to the boundary ondition bwhih arises from the rotation of the boundary normal in the ase of invisid ows.Note that v? does not orrespond to the normal momentum omponent of the ana-lyti adjoint solution at the boundary. Hene for visualisation purposes, it is desirableto replae v? by the analyti boundary ondition,vanalyti? = hwhih would normally be employed using a \ontinuous" formulation. Here h is zeroeverywhere exept on the solid wall, where it orresponds to the sensitivity of the fun-tional to the addition of momentum on the surfae. In the ase of a lift funtional, forexample, the element of h at a surfae node n ishn = 0� 0~�0 1A ;with ~� being the unit vetor in the lift diretion.6 Residual ontributions to the funtionalIf the funtional of interest is a fore, suh as lift or drag, we have to inlude the surfaemomentum residuals, whih are disarded in imposing the strong boundary onditions,in order to have a omplete fore balane. Indeed, for visous alulations, it is thetangential omponent of these residuals whih orresponds to the visous shear stress.i.e. one de�nes the surfae shear stress to have the value whih is neessary to make thetangential momentum residual equal to zero.
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b) without residualsFigure 1: Variation in third adjoint omponent in y-diretion for a subsoni NACA0012test ase, with and without residual ontributions to the funtionalThe nonlinear funtional is thus of the formJ = Jp(U) + hTBR(U); (6.1)where Jp orresponds to the fore due to the pressure distribution on the body and his again the vetor whih takes the omponent of the disarded momentum residuals inthe seleted fore diretion (e.g. the diretion normal to the freestream in the ase oflift).The orresponding linearised funtional iseJ = gTp u+ hTBLu+ �J��; (6.2)where gTp � �Jp�U ; (6.3)and so we obtain g = gp + LTBh: (6.4)Fortunately, the seond term in this equation an be omputed in a pre-proessing stepusing the adjoint ux routines.The inlusion of the extra term makes a dramati improvement to the quality of theadjoint solution near the surfae, as illustrated in Figure 1 for a subsoni NACA0012test ase to be disussed later in more detail. To understand why it makes suh adi�erene, it is important to remember that the adjoint variables orrespond to thelinearised e�et of mass, momentum and energy soures on the funtional of interest.Therefore, it is helpful to onsider what happens in the linearised ow alulation whennormal momentum is added lose to a wall, as shown in Figure 2.The e�et of the momentum addition on the far �eld ow solution will be negligi-ble. Therefore, with a onservative treatment, through the inlusion of the disarded
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Figure 2: Diagram showing three possible loations of momentum injetion lose to awall.momentum residuals, the linear ode will orretly predit that the hange in the liftis equal and opposite to the addition of normal momentum, regardless of the loationof the momentum addition. On the other hand, without the inlusion of the disardedresiduals, the addition of momentum at point A, right next to the wall, will have zeroe�et on the funtional beause it will ontribute solely to the momentum residuals atsurfae nodes. Similarly, addition at point B will have some e�et on the residuals atnearby surfae points; if these are not inluded in the funtional then the inuene onthe funtional must be inorret. Only at point C, well away from the surfae, willthe e�et on the surfae residuals be very small and so the e�et on the funtional isorretly aptured without the inlusion of the disarded residuals.7 Harmoni adjointIn analysing unsteady ow in turbomahinery, it is now ommon to use linearised Eulerand Navier-Stokes methods whih treat the unsteadiness as a linear perturbation to anonlinear mean ow [17, 28, 27, 38, 18℄.For fored response problems, in whih the unsteadiness is due to periodi unsteadyinow or outow boundary onditions, the original nonlinear unsteady disrete equationsmay be written as MdUdt +R(U) = 0;where M is a blok-diagonal mass matrix. Expressing U(t) as the sum of a steady partplus a small amplitude perturbationU(t) = U + eu(t); keuk � kUkand linearising the equations gives Mdeudt + Leu = ef;where L � �R�U ;



13and ef is zero exept at the inow and outow boundary nodes where it gives the residualperturbations due to the inoming disturbanes.By the priniple of linear superposition, the periodi input ef(t) an be deomposedinto the sum of a number of harmoni terms eah of whih an be written as the realpart of a omplex quantity of the formef(t) = Rnei!t bfo :Making a similar deomposition for the response eu(t) yields the omplex harmoni equa-tions (i!M + L) bu = bf:In the ase of unsteadiness due to the periodi vibration of the blades, the grid nodesall osillate with the blades. Therefore, the nonlinear equations are best written asM(x) dUdt +R(U; x; _x) = 0;to emphasise that the mass matrix and residuals depend on the grid oordinates, andthe ell residual has additional ux terms due to the motion of the grid. Performing thesame steps of linearisation and harmoni substitution then yields the same equations asbefore, with M and L being based on the undisturbed grid oordinates and ow, butwith bf de�ned as bf = ��R�x bx� i! �R� _x bxdue to the linearised motion of the grid.One important engineering onern is the level of vibration aused by the inom-ing wakes. To determine this, one needs to ompute a surfae integral known as the\worksum". Following the theory of Lagrangian mehanis, this is the virtual work as-soiated with the displaement of a partiular natural mode of vibration of the blade.Numerially, it requires the omputation of an inner produt of the formbgHbu;where the supersript H denotes the omplex onjugate transpose. The vetor g is non-zero everywhere exept at the grid nodes on the surfae of the blade where it orrespondsto the vibration mode being onsidered.The adjoint alternative is to evaluate the inner produtbvH bf;where the adjoint variables bv satisfy the adjoint equation(i!M + L)Hbv = bg:The implementation of this harmoni adjoint analysis is extremely similar to theusual steady adjoint analysis. The main di�erenes are the oupled omputation of thereal and imaginary omponents of the omplex variables bv, and the use of phase-laggedperiodi boundary onditions [9℄.
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Figure 3: Cl vs. angle of attak for a NACA 0012 pro�le at M = 0:68.8 Validation ases8.1 Invisid ow over NACA 0012 airfoilThe �rst two test ases onsider steady invisid ow over a NACA 0012 airfoil. Theirles in Figure 3 show the lift oeÆient obtained from the nonlinear ode plottedagainst angle of attak at a freestream Mah number of 0:68. The angle of attakvariation is ahieved by rotating the airfoil as well as the points on and near the airfoilsurfae. Doing this in a linearised sense gives the geometri perturbations required forthe soure terms in the linear ode and the funtional in the adjoint ode. The lines inFigure 3 are the lift slope obtained from the linear and adjoint odes, with the base owin eah ase being the nonlinear ow onditions at the angle of attak at the mid-pointof the line. The agreement between the nonlinear and linear/adjoint results looks quitegood. To quantify this, Table 1 shows the nonlinear, linear and adjoint sensitivities at0Æ angle of attak. The di�erent nonlinear sensitivities are obtained by �nite di�ereneapproximation over di�erent intervals. There is perfet agreement between the linearand adjoint sensitivities, and the agreement with the nonlinear sensitivities is within therange one would expet give the errors inherent in �nite di�erene approximation of thenonlinear sensitivities.An interesting situation arises at higher Mah numbers at whih there are strongshoks. Figure 4 shows the Mah ontours for the NACA 0012 at an angle of attak of1Æ and an inreased Mah number of 0:85. There are now two shoks, with the maximumloal Mah number reahing approximately 1:45 on the supersoni side of the sutionsurfae shok. The irles in Figure 5 show the nonlinear lift oeÆients over a limitedrange of angles of attak. The line in this �gure is a linear regression least-square �t ofthe nonlinear data. The results indiate a peuliar lak of smoothness in the nonlineardata; this is shown more learly in Figure 6 whih plots the di�erene between the



15� �L=��nonlinear 0.0{0.1 0.177780.0{0.2 0.1761740.0{0.5 0.17609960.0{1.0 0.1764888linear 0.0 0.1756657adjoint 0.0 0.1756657Table 1: Sensitivity of the lift to angle of attak for a NACA 0012 pro�le at M = 0:68around 0Æ angle of attak.

Figure 4: Mah ontours for NACA 0012 at M = 0:85.nonlinear data and the linear regression.The key point is that there is no physial justi�ation for the loss of smoothness. Itappears to be a purely numerial artifat that is probably related to the displaementof the shok as the angle of attak hanges. Therefore, the slope of the linear regressionline is probably the best representation of the true lift slope. However, the linear/adjointodes give lift slopes that orrespond to the loal derivative of the nonlinear data. Fig-ure 7 plots the di�erene between the linear/adjoint slopes and the slope of the linearregression, showing a large disrepany around 1:17Æ where the loal derivative of thenonlinear data di�ers signi�antly from the linear regression value. Figure 8 plots thenumber of multigrid yles required to onverge the nonlinear ode to a very tight tol-erane. Interestingly, the number of yles inreases substantially around 1:17Æ. Thissuggests that the linearisation matrix may be almost singular, whih ould be relatedto the fat that small hanges in the angle of attak produe larger hanges in the liftthan one would otherwise expet.This observation of limitations with the appliation of linear methods to ows withstrong shoks may be primarily of aademi interest, and not of engineering onern.
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Figure 5: Cl vs. angle of attak for NACA 0012 at M = 0:85.
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Figure 7: dCl=d�(linear)� dCl=d�(regression) for NACA 0012 at M = 0:85.
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Figure 8: Number of multigrid yles for nonlinear alulations for NACA 0012 atM = 0:85.



18 � �L=��nonlinear 1.40{2.40 0.18150481.90{2.40 0.17721542.15{2.40 0.17426842.40{2.65 0.17136762.40{2.90 0.16449082.40{3.40 0.1398736linear 2.40 0.1680554adjoint 2.40 0.1680554Table 2: Sensitivity of the lift for a RAE 2822 pro�le at M = 0:725, Re = 6:5�106around 2:4Æ angle of attak.Most aeronautial appliations do not have suh strong normal shoks, and with weakershoks with a peak normal Mah number of less than 1.3 we have not observed a similarphenomenon. However, it may be neessary to look more losely at the issue of linearisedshok displaement, and to use more numerial smoothing at shoks to obtain the orretlinear sensitivity [25℄.8.2 Turbulent ow over RAE 2822 airfoilFigure 9 presents the Mah ontours for the Reynolds-averaged ow over the RAE 2822airfoil at angle of attak � = 2:4Æ, freestream Mah number M = 0:725 and Reynoldsnumber Re = 6:5�106. The turbulene is modeled using a Spalart-Allmaras singleequation model. The irles in Figure 10 show the sensitivity of the variation in the liftoeÆient with hanges in the angle of attak. The lines orrespond to the lift slopesomputed by the linear and adjoint odes, whih are again in perfet agreement with eahother. There is no evidene of any lak of smoothness in the nonlinear lift preditions,and the linear/adjoint odes give lift slopes whih are in very good agreement with thenonlinear results. This is quanti�ed in Table 2 using �nite di�erenes to estimate thenonlinear lift slope at � = 2:4Æ.Figure 11 shows the onvergene histories for the non-linear, linear and adjoint odesfor the RAE 2822 testase at � = 2:4Æ. As expeted, they all exhibit the same asymptotionvergene rate.8.3 Turbomahinery wake interationThe linear harmoni ode has been validated against a number of test ases. Figure 12shows results for unsteady wake interation with a 2D asade of at plate airfoils. Realand imaginary omponents of the omplex pressure jump aross one blade are omparedwith the results from the LINSUB [40℄ whih implements the analyti theory of Smith[36℄.
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Figure 9: Mah ontours for a RAE 2822 pro�le at M = 0:725, Re = 6:5�106.
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Figure 10: Lift vs. angle of attak for a RAE 2822 pro�le at M = 0:725, Re = 6:5�106.
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Figure 11: Convergene histories for the nonlinear, linear and adjoint odes for a RAE2822 pro�le at M = 0:725, Re = 6:5�106.Figure 13 demonstrates the variation in the bending mode worksum as the wakepith is hanged (representing modi�ations both the inter-blade phase angle and thefrequeny of the unsteadiness). The results show that the linear harmoni and adjointharmoni odes produe idential values for the worksum, and these are in good agree-ment with the analyti values produed by LINSUB.For further validation ases, and an example of the usefulness of the adjoint methodfor design of blades with redued fored response, see Duta et al [9, 6℄.9 ConlusionsIn this paper we have presented a number of algorithm developments onerned withthe formulation and solution of adjoint Euler and Navier-Stokes equations using thedisrete approah. These inlude the treatment of strong boundary onditions and theassoiated adjoint boundary onditions for lift and drag funtionals, as well as a Runge-Kutta time-marhing sheme that ensures exat equivalene with a linear perturbationode throughout the onvergene proess. This property guarantees the same asymptotionvergene rate for nonlinear, linear and adjoint solvers, as well as being very usefulduring ode validation.AknowledgementsThis researh has been supported by the Engineering and Physial Sienes ResearhCounil under grants GR/K91149 and GR/L95700, and by Rolls-Roye pl (tehnialmonitor: Leigh Lapworth) DERA (tehnial monitor: John Calvert), and BAESystems
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