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31 IntrodutionConsider the drag on an airraft at transoni ruise, the radar ross-setion of a glider,the eletrostati free energy of a biomoleule in water, or the ux of fossil fuels througha porous medium. These and many other problems of engineering and sienti� interestmay be studied quantitatively by omputing integral funtionals of PDE solutions.In attempting to improve the auray of funtional estimates, the numerial pra-titioner is onfronted with an array of possibilities. Reasonable alternatives inludere�ning the omputational mesh (mandating larger faster omputers), inreasing theorder of auray of the disretization (when pratial for the geometry under on-sideration), iterative re�nement of the numerial solution via defet orretion (againrequiring a higher order disretization), or Rihardson extrapolation of the solution orthe funtional (when the asymptoti onvergene rate is reliably known). All of theseapproahes an be used to improve global solution auray, yielding orresponding in-reases in funtional auray. However, for problems in whih the value of a funtionalis the most interesting quantitative output of a simulation, there is signi�ant motiva-tion to devise reliable and eÆient numerial tehniques that spei�ally enhane theauray of the funtional estimates without seeking to improve the auray of theunderlying solution.The purpose of this paper is to analyze a method for obtaining superonvergentfuntional estimates for arbitrary underlying numerial disretizations. The key is theuse of the solution of the adjoint PDE (the dual of the linearized form of the originalprimal PDE) whih reveals the inuene of loal solution errors on the funtional valueof interest. Reent work has demonstrated that the leading order error term in thefuntional an be estimated and removed by smoothly reonstruting the primal solution,di�erentiating to approximate the primal residual error, and evaluating the inner produtwith the reonstruted adjoint solution [24, 10℄. Alternatively, the loal ontributionsto this inner produt an be employed as an optimal adaptivity riterion for improvingfuntional auray [28, 29, 21℄.The signi�ane of the adjoint PDE for error analysis and adaptivity has long beenrealized within the �nite element ommunity [1, 2, 3, 4, 7, 15, 19, 22, 23, 27, 26℄, where itis well known that many �nite element methods enjoy natural superonvergene forfuntional estimates. The adjoint error orretion tehnique extends these results toapproximate solutions obtained by any disretization method (or other means of ap-proximation) as well as illustrating the potential for further improvement of the inherent�nite element superonvergene.Our earlier work in adjoint error orretion emphasized the a posteriori error analysisneessary to motivate the approah for linear and nonlinear problems, with bulk fun-tionals and homogeneous boundary onditions [24, 9℄. The present work extends theseresults in two ways, �rstly, by inreasing the sope of the analysis to enompass bound-ary funtionals and inhomogeneous boundary onditions, and seondly, by performing apriori error analysis to predit the rate of superonvergene of the remaining error termsafter orretion.We begin the paper by formulating the approah for general linear PDEs and fun-



4tionals. Numerial demonstrations are provided for a one-dimensional (1D) Poissonproblem and a two-dimensional (2D) Laplae problem with urved boundaries and ageometri singularity in the domain. In the 1D setting, an a priori analysis is thenperformed to evaluate the primal, dual, and ubi spline reonstrution errors, orretlyprediting a doubling in the onvergene rate of the funtional value over that of thebaseline sheme.Next, the approah is formulated for general nonlinear PDEs and funtionals. Nu-merial demonstrations are provided for the system of quasi-1D Euler equations and fora 2D nonlinear thermal di�usion problem. An a priori analysis then follows for the 1Dase, eluidating the relationships between errors in the nonlinear primal problem, thelinear dual problem and the reonstrution errors in both. This analysis demonstratesthat the same order doubling phenomenon is also predited for the nonlinear ase. For a�rst order di�erential operator in 1D, the somewhat surprising point is made that a del-iate anellation e�et allows linear reonstrution to yield the same order of aurayas the smoother ubi splines.To demonstrate the generality of adjoint error orretion, di�erent numerial exper-iments are performed with �nite di�erene, �nite volume, and �nite element methods.The latter examples serve to illustrate the improvement that is ahievable over the nat-ural �nite element superonvergene.2 Linear adjoint error orretionLet u be the solution of the linear di�erential equationLu = f;in the domain 
, subjet to the linear boundary onditionsBu = e;on the boundary �
. In general, the dimension of the operator B may be di�erent ondi�erent setions of the boundary (e.g. inow and outow setions for the onvetionp.d.e.).The output funtional of interest is taken to beJ = (g; u) + (h; Cu)�
;where the notation (:; :) denotes an integral inner produt over the domain 
, and (:; :)�
represents an integral inner produt over the boundary �
. The boundary operator Cmay be algebrai (e.g. Cu � u) or di�erential (e.g. Cu � �u�n), but must have the samedimension as the adjoint boundary ondition operator B� to be de�ned shortly. Notethat either g or h may be set to zero if the funtional does not have an interior orboundary integral ontribution, respetively.The orresponding linear adjoint problem isL�v = g;



5in 
, subjet to the boundary onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and the boundaryoperator C� is (L�w; z) + (B�w;Cz)�
 = (w;Lz) + (C�w;Bz)�
;for all suÆiently di�erentiable funtions w; z. This identity is obtained by integrationby parts, and in a previous paper we desribe the onstrution of the appropriate adjointoperators for the linearized Euler and Navier-Stokes equations [8℄.Using the adjoint identity, one immediately obtains the equivalent dual form of theoutput funtional, J = (v; f) + (C�v; e)�
:Suppose that uh and vh are approximations to u and v. The subsript h indiatesthat the approximate solutions are derived from a numerial omputation using a gridwith average spaing h. When using �nite di�erene or �nite volume methods, uh andvh might be reated by interpolation through omputed values at grid nodes. With �niteelement solutions, one might more naturally use the �nite element solutions themselves,or one ould again use interpolation through nodal values. A last omment is that uhand vh do not have to ome from a numerial omputation; they ould, for example,ome from an asymptoti analysis yielding a uniformly valid asymptoti approximationto the solution.Given approximate solutions uh; vh we de�ne eh; fh; gh; hh byLuh = fh; L�vh = gh; Buh = eh; B�vh = hh:It is assumed that uh and vh are suÆiently smooth that fh and gh lie in L2(
). If uhand vh were equal to u and v, then eh; fh; gh; hh would be equal to e; f; g; h, respetively.Thus, the residual errors eh�e; fh�f; gh�g; hh�h are a omputable indiation of theextent to whih uh and vh are not the true solutions.Now, using the de�nitions and identities given above, we obtain the following ex-pression for the funtional:(g; u) + (h; Cu)�
 = (g; uh) + (h; Cuh)�
�(gh; uh � u)� (hh; C(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(L�vh; uh � u)� (B�vh; C(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(vh; L(uh � u))� (C�vh; B(uh � u))�




6 +(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(vh; fh � f)� (C�vh; eh � e)�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
:
In the �nal result, the �rst line is the funtional based on the approximate solutionuh. The seond line ontains two omputable terms. The �rst is an inner produt ofthe residual error fh�f and the approximate adjoint solution vh; the adjoint solutiongives the weighting of the ontribution of the loal residual error to the overall error inthe omputed funtional. The seond term performs a similar task for the error eh�ein satisfying the boundary onditions. Together, these two terms form what we labelthe adjoint error orretion, giving the leading order e�et of the residual errors on thefuntional of interest. Adding this orretion to the quantity in the �rst line gives amore aurate approximation to the value of the funtional.The third line is the remaining error after making the adjoint orretion. Eah ofthe terms is an inner produt of two quantities, the �rst being a funtion of vh�v andthe seond being a funtion of uh�u. If eah quantity is O(hp) so that halving the gridspaing results in a 2p redution, then the remaining error for the funtional is O(h2p).Furthermore, if we assume that the approximate solutions uh; vh exatly satisfy theboundary onditions, so that eh�e = hh�h = 0, then the seond term is zero. The �rstterm an be expressed as (gh�g; L�1(fh�f)), where the operator L�1 is de�ned subjetto homogeneous boundary onditions. There is therefore a omputable a posteriori errorbound kL�1k kfh�fk kgh�gk.In Galerkin �nite element methods (or any �nite element method in whih the testand trial spaes are interhanged for the primal and dual problems) the adjoint orretionterm is always zero due to the inherent orthogonality of the disretization. This desir-able property yields automati superonvergene for all integral funtionals. However, ifp is the order of auray of the �nite element solution uh, and the operator L involvesderivatives of up to degree m, then usually the residual error satis�es fh�f = O(hp�m)and hene the error in any smoothly weighted funtional is O(h2p�m). Replaing the�nite element solution with a smoother reonstruted solution allows adjoint error or-retion to reover an improved funtional estimate with an error that is O(h2p). Thisproedure will be demonstrated in the seond of the two linear examples to follow. Inthis, in whih a pieewise linear �nite element solution of the Poisson equation (for whihthe funtional auray is O(h2)) is replaed by a ubi spline interpolation leading toan improved auray of O(h4).



73 Linear examples3.1 1D Poisson equation with �nite di�erenesThe �rst example is the one-dimensional equation,d2udx2 = f;on the unit interval [0; 1℄ subjet to homogeneous boundary onditions u(0)=u(1)=0.This example has appeared previously [24℄, and is inluded here to serve as the basisfor a detailed a priori error analysis. The problem is approximated numerially on auniform grid, with spaing h, using a seond order �nite di�erene disretization,h�2Æ2xuj = f(xj):The approximate solution uh(x) is then de�ned by ubi spline interpolation throughthe nodal values uj.The dual problem is the equation, d2vdx2 = g;subjet to the same homogeneous boundary onditions, and the approximate adjointsolution vh is obtained in exatly the same manner.Numerial results have been obtained for the asef = x3(1�x)3; g = sin(�x):Figure 1 shows the residual error fh�f when h = 132 , as well as the three Gaussianquadrature points on eah sub-interval that are used in the numerial integration ofthe inner produt (vh; fh�f). Figure 2 is a log-log plot of three quantities versus thenumber of ells: the error in the base value of the funtional (g; uh); the remaining errorafter subtrating the adjoint orretion term (vh; fh�f); the a posteriori error boundkL�1k kfh�fk kgh�gk. The superimposed lines have slopes of �2 and �4, on�rmingthat the base solution is seond order aurate while the error in the orreted funtionaland the error bound are both fourth order.3.2 2D Laplae equation with �nite elementsThe seond example is a muh more testing 2D problem, with a boundary funtionalover a urved boundary with a usp at one point. The domain and funtional mimithe hallenges that arise in omputational uid dynamis in onsidering the ow aroundtwo-dimensional airfoils.The test ase is onstruted with the aid of a onformal mapping. Starting with theregion in the omplex Z-plane between two irles entered at (X; Y ) = (�0:1; 0) withradii of R1 = 1:1 and R2 = 3:0, appliation of the Joukowski mappingz = Z + 1Z ;
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Figure 1: Residual error for a 1D Poisson problem.
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9then produes a omputational domain 
 lying between a usped airfoil (�
z1) and asmooth outer boundary (�
z2).Using ylindrial oordinates R; � de�ned byX + 0:1 = R os �; Y = R sin �;the funtion U(X; Y ) = R2 � R21R sin �;is a solution of the Laplae equation subjet to the boundary onditions U =0 on theinner irle, and U = [(R22 � R21)=R2℄ sin � on the outer ylinder.In the z-plane, the funtion u(x; y) = U(X; Y ) is the solution of the Laplae equation�2u�x2 + �2u�y2 = 0;subjet to u=0 on the airfoil, and the appropriate Dirihlet boundary onditions on thefar-�eld boundary. As illustrated in Figure 3, this solution orresponds to the streamfuntion for inompressible invisid ow around the airfoil, with zero irulation.The boundary funtional in the Z-plane is de�ned to beZ 2�0 sin � �U�n ����R=R1 d�;so the analyti value is �2�. When mapped into the z-plane, the orresponding expres-sion for the funtional is �sin �R1 ; �u�n��
z1 ;and hene the dual problem is the Laplae equation subjet to the inhomogeneous Dirih-let ondition v=sin �=R1 on the airfoil surfae and v = 0 on the far-�eld boundary.The problem in the z-plane is solved numerially using a bi-linear Galerkin �niteelement method on a strutured grid with quadrilateral elements. The approximatereonstruted solutions uh and vh are then obtained from the nodal values by bi-ubispline interpolation. The omputational oordinates at the grid points are also splined,so that x; y; uh and vh are all expressed parametrially as a funtion of spline oordinates�; �. By di�erentiating these funtions one an then obtain the neessary derived quan-tities suh as fh. The inner produts are evaluated using 3-point Gaussian quadraturefor the boundary integrals and 3�3 Gaussian quadrature for interior integrals.Figure 4 shows the numerial values obtained for the funtional, with and withoutthe adjoint error orretion, plotted versus the square root of the number of ells, whihis a measure of 1=h, an average inverse grid spaing. Again the superimposed linesof slope �2 and �4 show that the base solution is seond order aurate whereas theorreted value for the funtional is fourth order aurate. Note that on a 128�32 mesh(the third data points), the inrease in auray is greater than a fator of 6�104. Thisimprovement is ahieved despite the usped trailing edge and the added ompliation ofurved boundaries. The omputable error bound does not appear to be useful for thisase due to a singularity in the adjoint residual near the trailing edge.
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Figure 3: The primal and dual solutions for a 2D Laplae problem around a Joukowskiairfoil with a usped trailing edge.

1 1.5 2 2.5 3
−14

−12

−10

−8

−6

−4

−2

0
Error Convergence

lo
g 10

(E
rr

or
)

log
10

(Elements1/2)

Base Error     
Remaining ErrorFigure 4: Error onvergene of a boundary funtional for a 2D Laplae problem arounda Joukowski airfoil.



114 Linear a priori error analysisIn this setion we analyze the auray of the approximate primal and adjoint solutionsfor the �rst of the linear examples, and derive an a priori error estimate proving that theerror in the funtional after applying the adjoint error orretion is fourth order. Theproof is intended to serve as a template for the a priori analysis of other appliations,and so it is written in a more general form than is neessary for the partiular problembeing onsidered.We begin with a few omments on notation. Bold type (e.g. u) denotes a vetor ofdisrete quantities at the nodes of a omputational grid, and disrete operators atingon suh data. Regular type is used for ontinuous funtions and di�erential operators.u(xh) denotes the disrete data obtained by evaluating the funtion u(x) at the gridnodes whose oordinates are xh.All norms, both disrete and ontinuous, are L1 norms. In addition, the notationO(hp) when used in a ontext suh asuh = u(xh) +O(hp);means that there exists a onstant  suh thatkuh�u(xh)k �  hp; (4.1)or, equivalently, uh 2 B(u(xh); hp), where the ball B(u; �) is de�ned asB(u; �) = fw : kw�uk � �g :Turning now to the analysis of numerial example 3.1, the di�erential equationLu = f;subjet to homogeneous boundary onditions, is approximated on a uniform grid withspaing h by the �nite di�erene equation,Lhuh = fh:The purpose of the �rst part of the analysis is to bound the disrete solution error,kuh�u(xh)k.The �rst two lemmas onern the auray and stability of the disretization.Lemma 1 For f 2 C4[0; 1℄, there exists a funtion � 2 C2[0; 1℄ and onstant 1, bothindependent of h, suh thatLhu(xh)� fh = h2�(xh) + r(1)h ; kr(1)h k � 1h4;and Lh �u(xh)� h2w(xh)�� fh = r(2)h ; kr(2)h k � 1h4;where w2C4[0; 1℄ is the solution of Lw = �;subjet to the given homogeneous boundary onditions.



12Proof The funtion � is easily found through a Taylor series expansion of the solution u aboutthe entral node in the disrete operator. The bounds on r(1)h and r(2)h are then found usingappropriate trunated Taylor series expansions.This results in � = 112 d2fdx2 ;and 1 = 7720 d4fdx4  :�Lemma 2 There exists a onstant 2, independent of h suh thatkL�1h k � 2:Proof Standard onvergene analysis for ellipti operators based on a maximum prinipleand a omparison funtion gives 2 = 18 (e.g. see page 165 in [20℄). �From these two results we an prove the following lemma regarding the error in thenumerial solution.Lemma 3 The disrete solution uh an be written asuh = u(xh)� h2w(xh) + r(3)h ; (4.2)where the funtion w(x) is as de�ned in Lemma 1 and the remainder term r(3)h is boundedby kr(3)h k � 12h4; (4.3)with the onstants 1; 2 as de�ned in Lemmas 1 and 2.Proof Lemma 1 gives Lhr(3)h = �r(2)h ;and the result then follows from the bounds in Lemmas 1 and 2. �The seond part of the analysis onsiders the errors introdued by the ubi splineinterpolation of the disrete solution uh and the orresponding disrete adjoint solutionvh. A ubi spline interpolates the data with a C2 pieewise ubi polynomial. Oneboundary ondition is required at eah end, and here we disuss the ase of ompletesplines for whih the seond derivative is spei�ed.As with the disretization of the di�erential equation, we need results onerning theauray and stability of ubi spline reonstrution.



13Lemma 4 For a given funtion u(x) 2 C4[0; 1℄, the ubi spline de�ned by the knotonditions s(xj) = u(xj) and the end onditions s00(0) = u00(0); s00(1) = u00(1) satis�esthe bounds ks� uk � 5384h4 ku0000k ;ks00 � u00k � 12h2 ku0000k :(Proof: see page 68 in [5℄).Lemma 5 The ubi spline s(x) de�ned by the knot onditions s(xj) = h4uj and theend onditions s00(0) = h2U0; s00(1) = h2U1; satis�es the following bounds:ksk � h4max �52 kuk ; 524 jU0j; 524 jU1j� ;ks00k � h2max (12 kuk ; jU0j; jU1j) :Proof In the interior of the domain, the equation used to determine the seond derivativesof the spline at the mesh points s00(xj) iss00(xj) = 32h2 (uj+1 � 2uj + uj�1))� 14 (s00(xj+1) + s00(xj�1));so therefore js00(xj)j � 6h2kuk+ 12ks00k:Inluding the end onditions, and the fat that within eah mesh interval the seond derivativeis a linear interpolation of the two values at either end, givesks00k � max �6h2kuk+ 12ks00k; h2jU0j; h2jU1j�and hene ks00k � h2max (12kuk; jU0j; jU1j) :The bound for ksk follows from the reonstrution formula within eah interval.ksk � h4kuk+ 18h2ks00k � h4max �52kuk; 524 jU0j; 524 jU1j� :�Lemma 6 If f; g 2 C4[0; 1℄, then the approximate solutions uh(x) and vh(x) obtainedby ubi spline interpolation of uh and vh, with end onditions u00h(0) = f(0); u00h(1) =f(1); v00h(0) = g(0); v00h(1) = g(1), are seond order approximations to u(x) and v(x),respetively. Furthermore, the residual errors fh�f and gh�g are both O(h2) and(gg�g; uh�u) = O(h4):



14Proof The ubi spline reonstrution uh(x) an be written as the sum of 3 parts:i) s1(x) de�ned by s1(xj) = u(xj) with end onditions s001(0) = f(0); s001(1) = f(1);ii) h2s2(x) where s2(xj) = �w(xj) and s002(0) = �w00(0); s002(1) = �w00(1);iii) s3(x) satisfying s3(xj) = r(3)j and s003(0) = h2w00(0); s003(1) = h2w00(1).If f 2 C4[0; 1℄, then u 2 C6[0; 1℄ and w 2 C4[0; 1℄. Hene, using the triangle inequality andapplying Lemma 4 to i) and ii), and Lemma 5 to iii), giveskuh�uk = ks1 + h2s2 + s3 � uk� ks1 � uk+ h2ks2 + wk+ h2kwk+ ks3k� 5384h4 �ku0000k+ h2kw0000k�+ h2kwk+max�52kr(3)h k; 524h4jw00(0)j; 524h4jw00(1)j� ;and likewise ku00h�u00k � 12h2 �ku0000k+ h2kw0000k�+ h2kw00k+max�12h�2kr(3)h k; h2jw00(0)j; h2jw00(1)j� :Introduing the bounds on kr(3)h k from Lemma 3 gives the onlusion that uh�u and fh�fare both O(h2). The same argument applies to the adjoint solution, and the �nal result that(gg�g; uh�u) = O(h4) follows immediately. �As well as proving the fourth order auray of the orreted funtional in thispartiular ase, this proof provides guidelines for proving superonvergene in otherappliations with linear p.d.e.'s. Proving a property orresponding to Lemma 1 with theappropriate powers of h will usually be relatively easy; note that this will require f (and gin the adjoint problem) to satisfy ertain smoothness onstraints. Establishing a uniformbound on the inverse operator, as in Lemma 2, will usually be a muh harder task,similar to proving oerivity in �nite element analyses. The �nal step of interpolationerror analysis may also be troublesome in some ases; in the a priori error analysis forthe quasi-1D Euler equations using pieewise linear interpolation, presented later in thispaper, we will see the diÆulties that an arise.5 Nonlinear adjoint error orretionLet u be the solution of the nonlinear di�erential equationN(u) = 0;in the domain 
, subjet to the nonlinear boundary onditionsD(u) = 0;on the boundary �
.



15The linear di�erential operators Lu and Bu are de�ned to be the Fr�ehet derivativesof N and D, respetively, Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :It is assumed that the nonlinear funtional of interest, J(u), has a Fr�ehet derivativeof the following form,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h; Cu~u)�
:Here the dimension of the operator Cu (whih may be di�erential) is required to equalthe dimension of the adjoint boundary operator B�u, to be de�ned shortly.The orresponding linear adjoint problem isL�uv = g(u)in 
, subjet to the boundary onditionsB�uv = hon the boundary �
. The identity de�ning L�u, B�u and the boundary operator C�u is(L�uw; ~u) + (B�uw;Cu~u)�
 = (w;Lu~u) + (C�uw;Bu~u)�
;for all ~u; w.We now onsider approximate solutions uh; vh and de�ne gh; hh byL�uhvh = gh; B�uhvh = hh:Note the use of the Fr�ehet derivatives based on uh whih is known, instead of u whihis not.The analysis also requires averaged Fr�ehet derivatives de�ned byL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;



16so that N(uh)�N(u) = Z 10 ���N(u+ �(uh�u)) d�= L(u;uh) (uh�u);and similarly D(uh)�D(u) = B(u;uh) (uh�u);J(uh)�J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
:We now obtain the following:J(uh)� J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
= (gh; uh�u) + (hh; Cuh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
: (5.1)In the �nal result, the �rst line is the adjoint orretion term taking into aountresidual errors in approximating both the p.d.e. and the boundary onditions. The otherlines are the remaining errors, whih inlude the onsequenes of nonlinearity in L;B;Cand g as well as residual errors in approximating the adjoint problem.If the solution errors for the nonlinear primal problem and the linear adjoint problemare of the same order, and they are both suÆiently smooth that the orrespondingresidual errors are also of the same order, then the order of auray of the funtional



17approximation after making the adjoint orretion is twie the order of the primal andadjoint solutions.An a posteriori error bound is harder to onstrut than in the linear ase. If we againassume that the boundary integral terms are zero, or at least negligible, then the twointerior inner produts an be split into the following three piees:Error � (gh�g(uh); uh�u) + (g(uh)�g(u; uh); uh�u)� ((L�uh�L�(u;uh))vh; uh�u):We an obtain asymptoti error bounds by onverting eah inner produt into an al-ternative representation that is asymptotially equivalent and has a omputable bound.With the �rst inner produt we have(gh�g(uh); uh�u) � (gh�g(uh); L�1u N(uh)):For the seond, we de�ne Gu to be the Fr�ehet derivative of g(u),Gu~u = lim�!0 g(u+ �~u)� g(u)� ;and then obtain(g(uh)�g(u; uh); uh�u) � 12(Gu(uh�u); uh�u)� 12(L� �1u GuL�1u N(uh); N(uh)):For the third inner produt, we de�ne the operator Hu;v asHu;v~u = lim�!0 L�u+�~uv � L�uv� ;so that ((L�uh�L�(u;uh))vh; uh�u) � 12(Hu;v(uh�u); uh�u)� 12(L� �1u Hu;vL�1u N(uh); N(uh)):Together, these give the approximate asymptoti boundj Error j < 1kN(uh)k kgh�g(uh)k+ 2kN(uh)k2;where 1 = kL�1u k; 2 = 12 L� �1u (Gu�Hu;v)L�1u  :The problem in evaluating this a posteriori error bound is that 1 and 2 will not beknown in general, and may be hard to bound analytially. A more pratial option maybe to estimate them omputationally based on the orresponding disrete operators.



186 Nonlinear examples6.1 Quasi-1D Euler equationsThe steady quasi-1D Euler equations for the ow of an ideal ompressible uid in avariable area dut are ddx(AF )� dAdx P = 0;where A(x) is the ross-setional area of the dut and u, F (u) and P (u) are de�ned asu = 0� ��q�E 1A ; F = 0� �q�q2 + p�qH 1A ; P = 0� 0p0 1A :Here � is the density, q is the veloity, p is the pressure, E is the total energy and H isthe stagnation enthalpy. The system is losed by the equation of state for an ideal gas.The funtional of interest is the `lift'J = Z p dx;and the orresponding adjoint equations areL�uv � �A��F�u�T v0 � dAdx ��P�u�Tv = ��p�u�T :The nonlinear equations are approximated using a standard seond order �nite vol-ume method with harateristi smoothing on a uniform omputational grid. The linearadjoint problem is approximated by the so-alled `ontinuous' method, whih involvesdisretizing the analyti adjoint equations on the same uniform grid as the ow solution[14℄. This approah produes onsistent approximations to the analyti adjoint solution[9℄, whih has been determined in losed form for the quasi-1D Euler equations [11℄.Two di�erent reonstrution methods have been investigated: ubi splines and linearinterpolation. Eah omponent of the primal solution uh and the dual solution vh isindependently reonstruted from the nodal values. The integrals that form the basevalue for the funtional and the adjoint orretion are then approximated by 3-pointGaussian quadrature.6.1.1 Subsoni owThe �rst ase is smooth subsoni ow in a onverging-diverging dut orresponding to theMah number distribution depited in Figure 5. Figure 6 shows the error onvergenefor the omputed funtional. The superimposed lines of slope �2 and �4 show thatthe base error is seond order using either linear interpolation or ubi splines for thereonstrution, and the error in the orreted funtional is fourth order, again usingeither method of reonstrution.
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Figure 5: Mah number pro�les for quasi-1D Euler equation test ases.It is partiularly noteworthy that the linear interpolation gives fourth order aurayfor the orreted funtional. Linear interpolation gives a primal solution error that isseond order, and an adjoint residual error that is �rst order, so one might expet thatthe error remaining after adjoint error orretion would be third order. This point isanalyzed later in Setion 7, where it is proved that a anellation e�et zeroes thisleading order term in the inner produt of the primal residual error and the adjointsolution error.6.1.2 Isentropi transoni owFigure 7 shows the error onvergene for a transoni ow in a onverging-diverging dutorresponding to the Mah number distribution of Figure 5. The ow is subsoni atthe inow boundary and upstream of the throat (loated at x = 0), and supersonidownstream of the throat and at the outow boundary. Again the results show that thebase error is seond order while the remaining error after the adjoint orretion is fourthorder, regardless of the hoie of reonstrution method. This result is obtained despitethe fat that there is a logarithmi singularity in the adjoint solution at the throat [11℄.6.2 Nonlinear thermal di�usionThe omputational domain is the irular annulus 1 � r � 3 and the p.d.e. is thenonlinear di�usion equation r � (uru) = 0;subjet to the requirement that u is positive. Dirihlet boundary onditions are spei�edat the inner and outer boundaries so as to agree with the analyti solutionu(r; �) = �1 + �r4 � 1r� os ��1=2 :
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Figure 8: The primal and dual solutions for a 2D nonlinear thermal di�usion problem.The funtional of interest is J(u) = Z 2�0 �u�n ����r=1 d�;and the orresponding dual problem isL�uv � ur2v = 0;with Dirihlet boundary onditions of 1=u and 0 on the inner and outer boundaries,respetively.The primal and dual solutions shown in Figure 8 are obtained by a bi-linear Galerkin�nite element formulation using 3�3 Gaussian quadrature to evaluate the mass andsti�ness matries. The nonlinear equations are solved using a full approximation shememultigrid method. Bi-ubi spline interpolation and 3�3 Gaussian quadrature are thenused to alulate the funtional with and without the adjoint orretion. The resultsare plotted in Figure 9 with superimposed lines of slopes �2 and �4, showing seondorder auray for the basi �nite element solution and fourth order auray after theinlusion of the adjoint error orretion. For a 128�32 mesh, the error dereases bymore than a fator of 105.7 Nonlinear a priori error analysisIn this setion we onsider the subsoni quasi-1D Euler test ase and establish the fourthorder auray of the orreted funtional using both ubi spline and pieewise linearinterpolation. For subsoni ow, the analyti primal and dual solutions are both knownto be smooth for smooth dut geometries [11℄.The disussion is split into three parts. The �rst examines the onditions requiredto ensure seond order onvergene of the nonlinear solution and the seond analyzesthe error in the adjoint solution. The objetive of these �rst two parts is to desribe a
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Remaining Error   Figure 9: Error onvergene of a boundary funtional for a 2D nonlinear thermal di�usionproblem.minimal set of disretization properties that are suÆient to ensure the desired super-onvergene behavior. The third and �nal part onsiders the errors introdued by theinterpolation and proves that eah of the terms in the remaining error for the funtionalis fourth order in magnitude.Analysis of the primal solutionBuilding on the ideas of Keller [16℄, Sanz-Serna and Lopez-Maros [18, 25℄ have developeda powerful framework for analyzing disretizations of nonlinear PDEs. The thrust oftheir work is that, with appropriate de�nitions, onsisteny and stability are suÆientto ensure existene, loal uniqueness and onvergene. In partiular, it is possible toidentify the order of onvergene of the global solution error, whih is of paramountimportane to the present disussion.The nonlinear quasi-1D Euler equations,N(u) = 0;with appropriate boundary onditions, are approximated by the nonlinear �nite di�er-ene equations Nh(uh) = 0:We de�ne the di�erential operator Lw to be the Fr�ehet derivative of N evaluated at w,and the disrete operator Lw to be the Fr�ehet derivative of Nh evaluated at w. Wealso, for onveniene, use the shorthand Lu to represent Lu(xh).



23We will assume that the nonlinear disretization has the following properties:Property 1: there exists a onstant 1, independent of h, suh thatkNh(u(xh))k � 1h2:Property 2: There exists a onstant 2, independent of h, suh thatL�1u  � 2:Property 3: There exists a onstant 3, independent of h, suh that, for anyw 2 B(u(xh); 3h), kLw � Luk � 122 :Property 1 is a loal onsisteny ondition on the nonlinear operator. Property 2is equivalent to requiring stability of the linearized operator. These onditions mirrorLemmas 1 and 2 of the earlier linear analysis. Property 3 is a new smoothness ondi-tion on the nonlinear operator (e.g. Lipshitz or ontinuous Fr�ehet di�erentiability).Sanz-Serna and Lopez-Maros have shown that these onditions are suÆient to guar-antee that the numerial solution uh lies in the ball B(u(xh); 4h2) for some positive 4independent of h [18℄.If the dut area A(x) is suÆiently smooth (A 2 C2(
)), Properties 1 and 3 maybe veri�ed by Taylor series substitutions into the nonlinear and linearized disretizationoperators. Property 2 is more diÆult to establish, but it appears that a proof ouldbe onstruted following the approah of Kreiss [17℄. Essentially, the matrix L�1u is adisrete approximation to the Green's funtion for the ontinuous problem. The Green'sfuntion is bounded due to the well-posedness of the p.d.e., and a uniform bound for thedi�erene between the Green's funtion and L�1u follows from using a disretization thatis onsistent and stritly dissipative on the interior, with disrete boundary onditionsthat are stable in the sense of Godunov and Ryabenkii [12, 13℄.Analysis of the dual solutionIn this setion we will assume throughout that h�h0 so that the nonlinear solution uhis known to exist and satisfy the error bounds given in the last setion.Given an approximate solution uh of the nonlinear p.d.e. (i.e. an interpolation of thedisrete solution uh), our objetive in this setion is to analyze the di�erene vh�v(xh).Here v is the solution of the di�erential equationL�uv = g(u);subjet to homogeneous boundary onditions, where Lu and g(u) are the Fr�ehet deriva-tives based on u, as de�ned previously. vh is the solution of the orresponding linear�nite di�erene equations L�uhvh = gh;



24with L�uh and gh both based on the disrete solution uh. The analysis also involves thedisrete operator L�u, whih again is a shorthand for L�u(xh)We will assume that the adjoint disretization has the following three properties:Property 1: There exists a funtion � 2C0(
) suh thatL�uhv(xh)� gh = h2�(xh) +O(h3);and L�uh �v(xh)� h2w(xh)�� gh = O(h3);where w2C1(
) is the solution to the linear p.d.e.L�uw = �;subjet to homogeneous boundary onditions.Property 2: There exists a uniform bound 5, independent of h, suh thatkL� �1u k � 5:Property 3: There exists a onstant 6, independent of h, suh thatL�uh � L�u � 125 ;when uh 2 B(u(xh); 6h).Conditions orresponding to Properties 1 and 2 were previously proved for the 1Dlinear analysis, and Property 3 was already enountered in the disussion of the primaldisretization. For the present linear analysis, Properties 1 and 3 ould be veri�ed byTaylor series substitutions into the �nite volume sheme used to obtain the numerialresults (assuming A 2 C2(
)). Property 2 would again be the hardest to prove. Anestimate of the error in the adjoint solution now requires the following lemma.Lemma 7 There exists a onstant h1>0 suh that, for h<h1,kL� �1uh k � 25:Proof De�ne D = L�uh � L�u and let h1 = minfh0; 6=4g, so that provided h < h1, thenuh 2 B(u(xh); 4h2) � B(u(xh); 6h). Hene, using Properties 2 and 3,kL� �1u Dk � 12 :For any matrix A for whih kAk < 1 we have k(I + A)�1k � P1n=0 kAkn = 1=(1�kAk).Therefore, k(I+L� �1u D)�1k � 2:



25From this it follows that L�uh = L�u+D = L�u(I+L� �1u D) is non-singular, andkL� �1uh k � k(I+L� �1u D)�1k kL� �1u k � 25:� The main lemma then follows immediately from Property 1 and Lemma 7.Lemma 8 For h<h1, the adjoint solution satis�esvh = v(xh)� h2w(xh) +O(h3):Analysis of reonstrution and funtional errorsIf one uses ubi spline interpolation to onstrut the approximate solutions uh and vh,then the analysis from the previous setions together with standard interpolation erroranalysis for ubi spline interpolation lead to error bounds of the following form.kuh�uk � d1h2;kvh�vk � d2h2;kv0h�v0k � d3h2:From equation (5.1), the error in the funtional after the adjoint error orretion isthe sum of �ve terms:�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
:We will now onsider eah of these in turn. Noting that gh=L�uhvh and g(u)=L�uv, the�rst term an be expressed as the sum of three other terms:(gh�g(u; uh); uh�u)= �(L�uh�L�u) vh; uh�u�| {z }(1a) + (L�u(vh�v); uh�u)| {z }(1b) + (g(u)�g(u; uh); uh�u)| {z }(1) :By bounding the di�erenes in the oeÆient matries in the operators L�uh and L�u,we an obtain a bound of the form(L�uh�L�u) vh � d4kuh�uk;so therefore term (1a) has the fourth order bound���(L�uh�L�u) vh; uh�u��� � d4 d1 h4:



26 For the term (1b), we use the seond order bounds on vh�v and its derivative toobtain a bound of the form kL�u(vh�v)k � d5 (d2+d3) h2;and hene j(L�u(vh�v); uh�u)j � d5 (d2+d3) d1h4:For (1), the Fr�ehet derivative of g(u) is ontinuous and bounded, so there existsanother onstant d6 suh thatkg(u)�g(u; uh)k � d6kuh�uk;and hene j(g(u)�g(u; uh); uh�u)j � d6 d21 h4:The seond and third terms are both identially zero beause the funtional does nothave any boundary terms and therefore h=hh=0. The boundary operators in the �fthterm are all algebrai, not di�erential, and therefore it has a bound similar to that for(1), involving the maximum errors at the two boundaries, whih are not greater thanthe maximum errors over the whole interval.The fourth term is the last to be onsidered. Integrating it by parts yields((L�uh�L�(u;uh))vh; uh�u)(whih is fourth order by a similar argument to (1a)), plus some boundary terms thatare fourth order by the same argument as for the �fth term.Thus, the seond and third terms are zero and the other three are all fourth order inmagnitude, so the remaining error is O(h4). This ompletes the outline of an a priorianalysis proving the fourth order auray of the orreted funtional in the subsoniow ase using ubi spline interpolation.When using pieewise linear interpolation, the error in v0h beomes �rst order. In theanalysis above, this error is important only in onsidering term (1b), where it initiallyappears that the degradation in the order of auray of v0h will ause (1b) to beomethird order rather than fourth order. However, numerial experiments ontinue to exhibitfourth order funtional onvergene. An explanation for this behavior requires arefulattention to the nature of the error introdued by pieewise linear interpolation.The starting point is the earlier result thatvh = v(xh)� h2w(xh) +O(h3):De�ning Ih to be the operator performing pieewise linear interpolation through thenodal values of a ontinuous funtion, and de�ning I to be the identity operator, thenvh = v + (Ih�I)v � h2Ihw +O(h3):Next, we use standard results to express the interpolation error (Ih�I)v as(Ih�I)v = q(x) +O(h3);



27where q(x) is a funtion whih on the interval [xj; xj+1℄ isq(x) = 12aj(x� xj)(x� xj+1);with aj de�ned as aj = �1h (v0(xj+1)� v0(xj)) :Hene, v0h = v0 + l(x) +O(h2);where l(x) on the open interval (xj; xj+1) isl(x) = aj(x�xj+1=2):Note in partiular that l(x) is anti-symmetri about xj+1=2, the midpoint of the interval.When this error representation is substituted into the (1b) inner produt error term,the omponent involving l(x) is of the form(Cl; uh�u);where C(x) is a matrix funtion with bounded derivative. Therefore, C(x) an bedeomposed into a dominant part C0 that is pieewise onstant and a remainder thatis O(h). The primal interpolation error uh�u an also be deomposed into a dominantpart r(x) (whih, like q(x), is zero at nodes, pieewise quadrati and O(h2)), plus aremainder whih is O(h3).The ritial observation is that the omponent of the inner produt involving all of theleading order terms, (C0l; r), is zero beause in eah sub-interval the produt (C0l)T ris anti-symmetri about the midpoint. All of the other inner produt ontributionsinvolving non-dominant terms areO(h4). Therefore, this anellation e�et is responsiblefor produing a funtional error that remains O(h4) even when using linear interpolation.8 Conlusions and future hallengesThis work provides the �rst omprehensive treatment of adjoint error orretion methodsfor bulk and boundary funtional estimates based on linear and nonlinear PDE solutionswith homogeneous and inhomogeneous boundary onditions. A priori error analysis ofone linear and one nonlinear problem orretly predits the observed superonvergeneof the funtional estimates. These disussions provide a framework for the analysis offuntional estimates of other linear and nonlinear problems. Numerial demonstrationsinluded a linear 1D bulk funtional, a linear 2D boundary funtional with a geometrisingularity in the domain, a bulk funtional of a quasi-1D nonlinear system, and aboundary funtional of a 2D nonlinear problem.In the linear ase, a posteriori analysis leads to a omputable bound on the error re-maining after adjoint error orretion. Further work is required to explore the sharpnessand utility of these bounds and to develop reliable omputable bounds for funtionalsof nonlinear problems.
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