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31 IntroductionFlutter and forced response of turbomachinery components such as fan, compressorand turbine blades are aeroelastic phenomena which may lead to dangerous mechanicalfailures if not properly accounted for in the design of the engine. Cyclic symmetry is akey assumption that is often used to dramatically simplify the aeroelastic analysis anddesign of bladed disks, as �rst shown in [10]. This is possible because the system canbe modelled with a circulant matrix [4], whose properties allow one to investigate thisproblem by considering a single blade with a suitable periodic boundary condition, ratherthan the whole bladed disk. Unfortunately, probabilistic factors like manufacturingand material tolerances and unequal wear make questionable the assumption of cyclicsymmetry and the validity of the results obtained with tuned analyses. As a matter offact, the structurally tuned and mistuned assemblies can behave in a remarkably di�erentfashion, the extent of these di�erences being quite problem dependent. Some trends,however, seem to be quite general and these include the evidence that (a) mistuningimproves the utter boundary [8, 7, 11]; (b) mistuning can either increase or reduce theblade forced response [8, 7, 5].The use of perturbation techniques for turbomachinery aeroelasticity [1] has shownthat both e�ects are qualitatively and quantitatively inuenced by the ratio betweenthe level of mistuning and the inter-blade coupling, which can be aerodynamic [11], me-chanical [12, 13] or both [9]. The particular mistuning pattern can also play a signi�cantrole, and it has been shown that it can be optimised to achieve the stabilisation of atuned unstable system [3].Thus we see that there are three main reasons for studying the e�ects of struc-tural mistuning on turbomachinery aeroelasticity: (a) accounting for the e�ects of therandomness in blade structural properties due to stochastic factors like manufacturingtolerances on the utter boundaries (this could be done with a statistical approach, as in[2]); (b) assessing the applicability of selected mistuning patterns as a means of passiveutter control; (c) investigating the e�ects of both random and deliberate mistuning onthe blade forced response.In this report, the mechanisms through which alternate and random mistuning a�ectthe free and forced response are enlightened by means of asymptotic expansions, matrixperturbation theory, exact numerical solution of the aeroelastic equations and MonteCarlo simulations. Particular emphasis is put on the importance of the ratio betweenmistuning level and aerodynamic coupling for both utter and forced response. A carefulanalysis of alternately mistuned forced response is carried out, to explore its e�ects onthe blade peak response when deliberately introduced in the system as a passive uttercontrol technique. The blade forced response in the presence of random mistuning isalso addressed.



42 Model problemTo keep the analysis relatively simple so that the key issues can be examined in detail,we choose to consider a model problem in which there are N blades each of whichundergoes a structural oscillation with a single degree-of-freedom uj(t); j = 1; 2; :::; N .(Figure 1). Note that throughout this report we use periodic indices with modulus Nso that u0 � uN ; u1 � uN+1, and the statement j=k is shorthand for j=k mod N .After a suitable non-dimensionalisation, the equations of motion for the N bladesare assumed to be of the form�uj + (1 + ��mj)uj = � (a�1uj�1 + b�1 _uj�1 + a0uj + b0 _uj + a1uj+1 + b1 _uj+1) :The left-hand side of the equation has the structural inertial and sti�ness terms, with��mj being the structural mistuning. The right-hand side has the generalised forces dueto aerodynamic coupling, with it being assumed that a blade only experiences a forcedue to its motion and the motions of its immediate neighbours on either side, and thatthe unsteadiness is of a su�ciently low frequency that the motion is well represented byjust the displacement and velocity of each blade.This model includes only mistuning due to variations in blade sti�ness, but it is easilyextended to handle mistuning due to variations in blade mass. It also does not considerstructural coupling arising from inter-blade shrouds or disk exibility, but these e�ectscould easily be included in the aerodynamic `sti�ness' terms involving the displacementsuj and uj�1.It is convenient to write the equations of motion collectively as�u+ (I + ��M)u = �(Au +B _u); (2.1)with u = (u1 u2 : : : uN)T , M a diagonal matrix whose entries have zero mean and arenormalised by their root mean square, A and B tridiagonal circulant matrices and � afree parameter to control the ratio between the level of mistuning and the aerodynamicterms. Therefore the quantity �� is the root-mean-square of the deviations of the bladefrequencies from the common tuned value, normalised by this same quantity.A key feature of aeroelasticity in turbomachinery is that �, a constant representingthe order of magnitude of the structural mistuning and aerodynamic e�ects, is small; avalue of 0.01 is representative. As a result, it is appropriate to use asymptotic analysisbased on � � 1. When � = 0, we get simple uncoupled motion in which each bladevibrates with angular frequency !=1 and its displacement can be expressed as the realpart of a complex quantity, uj(t) = R �cjei!t� ;or as the average of the complex quantity and its complex conjugate,uj(t) = 12 �cjei!t + c�je�i!t� :In the general case with both aerodynamic coupling and structural mistuning, andwithout assuming that � is small, the general behaviour is a sum of eigenmodes of theform uj(t) = estvj;



5where s is an eigenvalue and v is the corresponding eigenvector satisfying�(s2 + 1)I + �(�M � A� sB)�v = 0: (2.2)Taking the complex conjugate of this equation gives�(s�2 + 1)I + �(�M � A� s�B)�v� = 0;so the complex conjugate s� is also an eigenvalue, and its eigenvector is v�. Since theactual displacement is always a real quantity, the displacement can again be expressedeither as the real part of the complex quantity or as the average of the quantity and itscomplex conjugate.By de�ning u0=u; u1= _u, equation (2.1) can also be written asddt � u0u1 � = � 0 I�I + �(A� �M) �B �� u0u1 � ;and by de�ning v0=v; v1=sv, one obtainss� v0v1 � = � 0 I�I + �(A� �M) �B �� v0v1 � :In this form, one can use standard mathematical software such as MATLAB to obtainthe 2N eigenvalues. Of particular interest is the pair of eigenvalues with the largest realcomponent since these give the component of the general solution which grows fastestin time (if R(s) > 0) or decays to zero most slowly (if R(s) < 0). Thus it gives theasymptotic behaviour of the solution u(t) as t!1.Another important observation is that the sum of the 2N eigenvalues is equal tothe trace (the sum of the diagonal elements) of the matrix, which is equal to N�b0. Anecessary requirement for stability is therefore that b0 is negative. This also shows thatthe best that can be achieved through mistuning is that all 2N eigenvalues have thesame negative real component equal to 12�b0.Between the trivial case of identical blades without any coupling (� = 0) and the mostgeneral one of mistuned blades with aerodynamic coupling (�; �; A;B;M 6= 0), there aretwo important sub-cases to be considered: (a) tuned assemblies with aerodynamicallycoupled blades (�; A;B 6= 0; � = 0) and (b) mistuned assemblies with uncoupled blades(�; �;M 6= 0; A = B = 0). When the former group of modelling assumptions holds, themotion of the blades is usually analysed with a travelling wave formulation, discussedin the next section. In the latter sub-case, conversely, an individual blade representa-tion is better suited, as the eigensolution of the aeroelastic problem foresees that eachblade vibrates independently from the others. Under these circumstances, in fact, theeigenvalues of equation (2.2) are the mistuned natural frequencies of the blades, givenby sj = i!j = ip1 + ��mjand each eigenvector has only one nonzero entry, corresponding to the free motion ofthe blade it refers to.



63 Travelling wave representationWhen dealing with spatially periodic systems like tuned rotors with aerodynamicallycoupled blades, it is common to use a Fourier series representation; in the context ofturbomachinery aeroelasticity, this is usually referred to as a travelling wave represen-tation.The displacement of each blade is expressed as a sum of a number of circumferentialFourier modes, uj(t) = NXk=1 buk(t) e2�ijk=N :The amplitudes of the Fourier modes is given by the inverse mapping,buk(t) = 1N NXj=1 uj(t) e�2�ijk=N :It is convenient to express these two sets of equations in matrix-vector form asu = F û; û = F�1u = 1N FHu;where FH denotes the Hermitian conjugate (complex conjugate transpose) of matrix F .Inserting the �rst of these into equation (2.1) and pre-multiplying the entire equationby F�1 yields the travelling wave form of the unsteady equations of motion,�̂u+ (I + ��cM)û = �( bAû+ bB _̂u); (3.1)where cM = F�1MF; bA = F�1AF; bB = F�1BF:This has eigenmodes of the form û = estv̂;where s is an eigenvalue and v̂ is the corresponding eigenvector satisfying�(s2 + 1)I + �(�cM � bA� s bB)� v̂ = 0: (3.2)The attraction in using the travelling wave representation comes from the fact that bAand bB are both diagonal matrices. To prove this, we de�ne the vectors fk to be travellingwave modes of unit amplitude corresponding to the kth column of matrix F . SinceFHF = NI, these vectors possess the important orthogonality property fHk f l = N �kl;where �kl is the Kronecker delta function which is unity when k= l and zero otherwise.Direct evaluation reveals thatAf l = �a�1e�2�il=N + a0 + a1e2�il=N�f l



7and hence bAkl � 1N fHk Af l = �a�1e�2�il=N + a0 + a1e2�il=N� �kl:Similarly, bBkl � 1N fHk Bf l = �b�1e�2�il=N + b0 + b1e2�il=N� �kl:The fact that bA and bB are diagonal means that in the absence of any structuralmistuning the eigenmodes are pure travelling waves, and the eigenvalues are given bys2k + 1 = �( bAkk + sk bBkk);and so sk = 12 � bBkk �q�1 + � bAkk + 14 �2 bBkk: (3.3)The negative root arising from the quadratic equation is the complex conjugate of oneof the other positive roots, so we will not consider it further. When �� 1, the positiveroot can be expressed as an asymptotic seriessk = i + ��k +O(�2):in which �k = 12( bBkk � i bAkk): (3.4)The real part of �k isR(�k) = 12 (bo + (b�1+b1) cos �k � (a�1�a1) sin�k) ;where �k�2�k=N .The left top and bottom plots in Figure 2 show the comparison between the exactand the asymptotic evaluation of the eigenvalues for two values of �. The aerodynamicconstants are a�1 =�0:4443, a0 =�0:3587, a1 = 0:5296, b�1 =�0:0054, b0 =�1:7000,b1 = 1:5688, corresponding to the �rst bending mode of a low-pressure turbine rotorwith 20 blades (these values along with � = 0:01 hold for all �gures presented in thereport). Note that the imaginary components of all eigenvalues are clustered around i,because the aerodynamic coupling changes only slightly the in vacuo frequency of theblades. This e�ect increases with � and is called frequency shift. The second and moreimportant e�ect of the aerodynamic coupling is to introduce a small real component inthe eigenvalues, whose sign determines the stability of the associated travelling mode.The opposite of this quantity is usually referred to as the aerodynamic damping. Theeigenvalues of �ve modes are labelled in the left bottom plot in Figure 2. Negativeaerodynamic damping corresponds to instability of the associated eigenmode and forthis example, the 1st, 2nd and 3rd Fourier modes are unstable (right top and bottomplots), whereas the 12th is the most stable one. (The fact that only the �rst few modesare unstable is a frequent occurrence in the utter of bladed rotors). After a transientphase in which the most stable modes rapidly decay to zero, the vibration of the assembly



8is dominated by the least stable wave (kth0 ), whose eigenvalue has the biggest positivereal part. In these conditions, the motion of the jth blade is given by:uj(t) = bukei(I(sk0 )t+�j)eR(sk0 )twhere �j = j�k0 . The phase between the motion of adjacent blades is usually referredto as the inter-blade phase angle and it is de�ned as �j = �j+1 � �j. The expressionabove shows that in this case it is constant and equal to �k0 . One should keep in mind,however, that this occurs only for tuned assemblies, whose eigenmodes are individualFourier harmonics, each characterised by its own �k. For mistuned assemblies, on theother hand, each eigenmode may result from the combination of more than one Fourierharmonic, as will be shown in the following sections.To complete the travelling wave representation, we need to compute the elements ofcM . Expressing mj as a Fourier series,mj =Xn bmne2�ijn=N ;then Mf l =Xn bmnf l+n;and hence cMkl � 1N fHk Mf l =Xn bmn�k l+n = bmk�l:Because we started by assuming that the entries in M have zero mean, bm0 is zero. Auniform mistuning simply causes a slight shift in frequency which could be eliminatedfrom the analysis by a minor change in the original non-dimensionalisation.4 Alternate mistuningIn alternate mistuning the number of blades, N , is even and every second blade isidentical. In the Fourier series representation just discussed, this corresponds to bmN=2being the only non-zero Fourier component.The presence of the o�-diagonal term cMj j+N=2 leads to a coupling between travellingmodes j and j+N=2, but they remain uncoupled from all other modes. Isolating theeigenvalue/eigenvector equations for these two modes alone, we have s2 + 1� �( bAjj + s bBjj) �� bm�� bm s2 + 1� �( bAj0j0 + s bBj0j0) !� v̂jv̂j0 � = 0; (4.1)where for simplicity in notation we have omitted the subscript N=2 in bmN=2, and havede�ned j 0 � j+N=2.Setting the determinant of the matrix to zero, and letting sj and sj0 be the eigenvaluesin the absence of mistuning, gives the quartic equation(s� sj)(s� s�j)(s� sj0)(s� s�j0)� �2�2 bm2 = 0; (4.2)



9whose roots can be obtained numerically.If ��1 then the two roots near i have an asymptotic expansion of the forms = i + �s(1) +O(�2);which when substituted into (4.2) yields�4(s(1) � �j)(s(1) � �j0)� �2 bm2 = 0;and hence s(1) = 12 ��j + �j0 �q(�j � �j0)2 � �2 bm2� : (4.3)We call equation (4.3) a single asymptotic approximation, because it has been derivedonly assuming ��1. There are a number of observations to be made about this result.The central one is that the solution varies signi�cantly depending whether or not thelevel of mistuning � is large relative to the di�erence between the aerodynamic terms �jand �j0.If � is much smaller, then a truncated Taylor series expansion of equation (4.3)provides the following double asymptotic approximation of the two rootss(1) � �j � �2 bm24(�j��j0 )s(1) � �j0 + �2 bm24(�j��j0 ) (4.4)Thus, under these circumstances the eigenvalues are very close to their perfectly tunedvalues, and the e�ect of the mistuning is to slightly stabilise the less stable of thetwo modes, and at the same time slightly de-stabilise the other. Physically, what ishappening is that the mistuning leads to a transfer of energy between the two travellingwave modes. If mode j is unstable and mode j 0 is stable, then energy is transferred fromj to j 0 where it is then dissipated. This therefore improves the stability of mode j.If � is much larger than the aerodynamic terms, then the double asymptotic approx-imation of the two roots iss(1) � �12 i� bm + 12 (�j + �j0)� 14 i(�j��j0)2� bm : (4.5)Hence, the eigenvalues are close to the pure mistuned values, but with a nearly equalo�set due to the aerodynamic terms. Referring back to the coe�cients of the originalproblem, one �nds that 12 (�j + �j0) = 12(b0 � ia0):Since b0 is always negative for all applications of engineering interest this means thatthe mistuning has stabilised the system. To understand this physically, one needs toconsider the associated eigenvectors which in the limit as �j; �j0 ! 0 become (1 �1)T .Thus the eigenmodes involve equal amounts of both travelling wave modes. What ishappening is that the mistuning ensures a relatively rapid transfer of energy between



10the two modes, and so one ends up with approximately the same energy level in eachmode. The damping of the combined modes is therefore the average of their individualdamping rates. The alternative blade viewpoint is that one mode consists primarily ofeven blades vibrating, the other the odd blades. In each case, the blades next to bladeswhich are moving are almost stationary and so the only aerodynamic forces experiencedare due to the blades' own motion as given by a0 and b0.Figure 3 shows the eigenvalues (left plots) and the harmonic content of the leaststable eigenmode (right plots) for the tuned and mistuned con�guration. The least sta-ble eigenmode of the tuned system consists only of the 2nd Fourier mode (�2 = 360),whereas that of the alternately mistuned assembly has both the 2nd (�2 = 360) and the12th (�12 = 2160) ones, this latter being the most stable Fourier mode. Because of itsbene�cial contribution, the mistuned assembly has now become stable, since the eigen-value corresponding to the least stable eigenmode now lies to the left of the imaginaryaxis (left bottom plot). As the level of mistuning increases, the cloud of eigenvaluessplits in two and for high values of � they are all clustered around the two frequencies ofthe softer and harder blade, with nearly constant aerodynamic damping for all modes.This is shown in Figure 4, where the sequence of the four plots in order of increasing �also illustrates the transition from travelling wave to individual blade mode. The formerholds for levels of mistuning equal or lower than the aerodynamic terms (� � 1), whereasthe transition to the latter mode is practically complete for � � 6, which correspondsto a 3 % variation in the natural frequencies.The stability parameter �=maxR(s)=�=maxR(s(1)) is plotted versus � in Figure5. The �rst curve has been obtained calculating the exact eigenvalues of the matrixin equation (4.1), the second using the single asymptotic expansion given by equation(4.3) and the third and fourth ones using the double asymptotic expansion for dominantaerodynamic or mechanical terms (equations (4.4) and (4.5) respectively). From theexact stability curve, we observe that an unstable system achieves stability when theaerodynamic coupling and the level of mistuning are of the same order (� � 1). For� � 6 the system has nearly achieved its theoretical maximum stability (12b0) and furtherincrements of mistuning do not bring sensible improvements. These trends are quitewell predicted by the single asymptotic analysis over the whole considered range of �,whereas the two asymptotic curves corresponding to equations (4.4) and (4.5) are ingood agreement with the exact values only where they were supposed to be valid, thatis for low and high levels of mistuning, respectively.5 Random mistuningAs in the previous section, we perform two asymptotic analyses of mistuning when itslevel is either very small or very large relative to the aerodynamic terms. In fact, eachasymptotic analysis is doubly asymptotic, in that the �rst step, common to both, is toassume that ��1 so that N eigenvalues can be expressed in asymptotic form ass = i + �s(1) +O(�2):



11Substituting this expression into equation (2.2) and neglecting the higher order termsyields the single asymptotic approximation�s(1)I � i2(�M � A� iB)� v = 0; (5.1)while substituting it into equation (3.2) gives�s(1)I � i2(�cM � bA� i bB)� v̂ = 0: (5.2)These two eigenvalue/eigenvector equations are now the subject of further asymptoticanalysis using the theory presented in Appendix A.5.1 relatively low mistuningWhen the mistuning is small compared to the aerodynamic terms, we choose to useequation (5.2) with the matrix cM being regarded as a small perturbation to the diagonalmatrix bA+i bB. Applying the theory in Appendix A, one obtains the following doubleasymptotic approximation of the eigenvaluess(1)j � �j � �24 Xk 6=j cMjkcMkj�j � �k : (5.3)Now, using the relations previously established,cMjkcMkj = bmj�k bmk�j = jbmj�kj2;since bmk�j = bm�j�k. Also,1�j � �k = ��j � ��kj�j � �kj2 ; =) R� 1�j � �k� = R(�j)�R(�k)j�j � �kj2 :Therefore, it follows thatR(s(1)j ) � R(�j)� �2Xk 6=j jbmj�kj24 R(�j)�R(�k)j�j � �kj2 :Considering the index j corresponding to the least stable mode, the mode for whichR(�j) is greatest, this result shows that the e�ect of the mistuning is always stabilising,since R(s(1)j ) < R(�j).An interesting situation arises if the terms �k form a circle in the complex plane andso can be written as �k = �0 + rei�kwith �=0 corresponding to the least stable mode. In this case,1�j � �k = 1r 1� cos �k + i sin �k(1� cos �k)2 + sin2 �k = 12r �1 + i cot �k2 � :



12and hence, R(s(1)j ) � R(�j)� �28rXk 6=j jbmj�kj2:In addition, bearing in mind that the average level of mistuning is equal to zero, thenParseval's theorem gives that Xk 6=j jbmj�kj2 = 1N Xk m2k:Thus, the amount by which the mistuning stabilises the least stable mode is independentof the pattern of mistuning in the particular case when the eigenvalues of the perfectlytuned system form a circle in the complex plane.In the more general case, whether or not a particular mistuning pattern is betterthan another in stabilising the least stable mode at very low levels of mistuning willdepend on how the undisturbed eigenvalues deviate from being circular. Unfortunately,the data published in the literature usually presents only the real part of the eigenvalues(since these determine the stability) and not the imaginary part (since these imply justa minor shift in frequency). More complete knowledge of the eigenvalues for actual fans,compressors and turbines is needed before any conclusion can be drawn regarding theoptimum form of mistuning.5.2 relatively high mistuningWhen the mistuning is large compared to the aerodynamic terms, we choose to useequation (5.1) with the matrix A+ iB being regarded as a small perturbation to thediagonal matrix M . The unperturbed eigenvalues are 12 i�mj, therefore applying theperturbation theory gives the double asymptotic forms(1)j � 12 i�mj + 12(b0 � ia0) + i2� Xk=j�1 (a�1 + ib�1)(a1 + ib1)mj �mk : (5.4)Considering only the real part of this, one obtains the following double asymptoticapproximation of the eigenvaluesR(s(1)j ) � 12b0 � 12� Xk=j�1 a�1b1 + a1b�1mj �mkThis shows that at very high levels of mistuning the system is stable because of thedominance of the b0 term which is negative in real applications. The physical interpre-tation of this is that at high levels of mistuning each blade vibrates on its own at itsown natural frequency. The forces it experiences are due solely to its own motion, andthese self-induced forces are always stabilising.As the level of mistuning decreases, or equivalently the aerodynamic terms increasein strength, the aerodynamic forces cause the neighbouring blades to vibrate as well.The additional forces that this generates on the central blade may be stabilising ordestabilising.



135.3 resultsThe random mistuning pattern in the left plot of Figure 6 has been used to solve theaeroelastic problem as given by equation (2.2) and the left top plot of Figures 7 and8 shows the cloud of eigenvalues for an assembly with low and high level of randommistuning, respectively. By comparing them, one can notice how the loss of cyclicsymmetry breaks the regular pattern of the tuned eigensolution. The harmonic content,the blade amplitudes of oscillation and the inter-blade phase angle � for the least stableeigenmode are provided in the top right, left bottom and right bottom plots, respectively.When the level of mistuning is low (Figure 7), the harmonic content is similar to thetuned one with a single travelling wave, indicating that the motion is still characterisedby the dominance of a single Fourier mode (�2 = 360). This is also reected by the factthat the blade amplitudes of oscillation and inter-blade phase angles are nearly constant.Conversely, when the level of mistuning is high (Figure 8), the modal analysis of theleast stable eigenvector reveals the presence of many Fourier modes. This corresponds tothe localisation of the vibration to a few blades and to large variations of the inter-bladephase angle.The evolution of the cloud of eigenvalues for increasing �0s is displayed in Figure9. The regularity of the tuned cloud is progressively broken as the level of mistuningincreases. However the transition from travelling wave to individual blade mode takesplace slower than with alternate mistuning. For example, the level of mistuning corre-sponding to �=6 is enough to equalise the damping of all eigenmodes in the alternatemistuning case (right bottom plot of Figure 4), whereas the damping of the eigenmodesis not yet as constant for the same amount of random mistuning (right bottom plotof Figure 9). Nevertheless the eigenmodes of the randomly mistuned system for � = 6correspond to the localisation of the vibration to a few blades. All this indicates that thevibration of the system does occur neither in the travelling wave nor in the individualblade mode, but rather in an intermediate form. The threshold � above which the tran-sition to individual blade mode is complete, depends both on the particular mistuningpattern and the shape of the cloud of tuned eigenvalues.In order to compare the � � � stability curve for random and alternate mistuningand to make the results of the analysis represent the average e�ects of the randomness,a Monte Carlo simulation has been carried out by performing 1000 calculations withdi�erent random matricesM . The results plotted in Figure 10 correspond to the central80 %, omitting the 10 % of the results with the best and worst stability and they showthat mistuning always improves the stability of the assembly. However di�erent patternshave di�erent stabilising strength depending on the ratio between aerodynamic couplingand mistuning level. When the latter is lower or of the same order of the former one,the random distribution of blade sti�ness is more e�ective than the alternate pattern, asproved by the fact that the stability band with random mistuning is below the stabilitycurve with purely alternate mistuning for 0 < � < 2. On the other hand, when thelevel of mistuning is higher than the aerodynamic coupling, alternate mistuning is moree�ective than random mistuning. The stability band for random-alternate mistuningrefers to a particular type of deliberate mistuning which can be obtained from any given



14random pattern by �rst sorting the blades in order of increasing sti�ness and then �lling�rst the odd numbered slots in the disk and then the even ones. This produces a setof blades whose frequency alternates between low and high values. A random patternand its random-alternate counterpart are given in Figure 6. We consider this type ofmistuning both because of the stabilising properties shown by alternate mistuning andbecause of the ease by which it could be achieved in practice, since it only requires themeasurement of the natural frequency of the blades before assembling them in the disk.The results of the statistical analysis provided in Figure 10 show that the stabilisationachieved with this pattern of mistuning is always greater than with the other two typesof mistuning and this may suggest the use of the random-alternate rearrangement as asimple device for improving the utter stability of those systems characterised by lowaerodynamic coupling. A �nal remark on the results of these Monte Carlo simulationsis that the vibration of the randomly mistuned assembly in the individual blade modedoes not occur before � = 10, which represents a pessimistic upper bound for the currentmanufacturing tolerances. For several mistuning patterns the individual blade mode didnot occur before �0s as high as 50.Figure 11, shows the random and the random-alternate mistuning patterns that givethe worst and the best stability for � = 10. The best random-alternate is the closestto the purely random pattern, whereas the worst random is the farthest one. mainlybecause of the small di�erence between the frequency of blades 3 and 4 and blades 7and 8.An analogous Monte Carlo analysis has been carried out to assess the accuracy of thesingle (equation (5.1)) and double (equations (5.3) and (5.4)) asymptotic approximationsof the aeroelastic problem. The asymptotic bands of aeroelastic stability are comparedwith the exact one determined with equation (2.2), in Figure 12. The agreement betweenthe exact and the single asymptotic result is very good (the di�erences cannot be distin-guished in the plot), the double asymptotic analysis for ��1 is acceptably accurate forlow levels of mistuning and the double asymptotic analysis for ��1 gives poor resultsunless the level of mistuning is unrealistically high. The range of � over which one hasan acceptable agreement between the exact and the double asymptotic solution for highand low levels of mistuning is remarkably narrower than in the alternate mistuning case.In order to understand why this happens, let us consider the case of low mistuning withalternate and random mistuning. The double asymptotic stability is given by equations(4.4) and (5.3), respectively. In general, all Fourier modes are coupled when the rotoris randomly mistuned, whereas only the harmonics j and j 0 � j+N=2 are coupled whenthe assembly is alternately mistuned. Therefore the perturbing terms 1�j��k in equation(5.3) can be quite large because of the small separation of adjacent eigenvalues, whereasthe term 1�j��j0 in equation (4.4) is smaller, because the eigenvalues j and j 0 are wellseparated one from the other, if the tuned cloud of eigenvalues is su�ciently regular.Consequently the range of � over which the O(�2) term remains small is much more lim-ited in the random mistuning case. Similar arguments hold for the double asymptoticexpansion for ��1.



156 Forced responseIn forced response, equation (2.1) is modi�ed through the addition of a prescribed peri-odic forcing term �u+ (I + ��M)u = �(Au+B _u) + f(t): (6.1)The forcing term f(t) can be decomposed into a sum of components each of which has aparticular frequency ! and an inter-blade phase angle �. Because of the linearity of thedi�erential equation, the response to f(t) is equal to the sum of the responses to each ofthe individual components. Such components are normally referred to as engine orders(E:O:). By this term, one means the number of obstructions upstream or downstream ofthe rotor under investigation, which feels the resulting periodic circumferential variationsof the ow �eld as a backward travelling excitation. Hence, the kth harmonic is excitedby the (N � k)th engine order in a tuned system. Therefore, from here onwards weanalyse the case in which f(t) has just one such engine order.Switching to the travelling wave representation, the forced response version of equa-tion (3.1) is �̂u+ (I + ��cM)û = �( bAû+ bB _̂u) + f̂(t); (6.2)with the elements of the vector f̂ being zero apart from the kth element correspondingto the particular inter-blade phase angle of the forcing.Making the substitutionsu(t) = ei!tv; f(t) = ei!tg; û(t) = ei!tv̂; f̂(t) = ei!tĝ;then yields the following counterparts to equations (2.2) and (3.2),�(�!2 + 1)I + �(�M � A� i!B)�v = g: (6.3)�(�!2 + 1)I + �(�cM � bA� i! bB)� v̂ = ĝ: (6.4)Either equation can be used to determine the blade forced response. For example, solving(6.3) yields v, from which u(t) can be obtained.If j1�!2j � � and � � 1, the e�ect of the O(�) terms in the two equations above isnegligible, and the solution is v � 11�!2 g;and hence u(t) � 11�!2 f(t):This equation holds for both tuned and not too heavily mistuned assemblies and itmeans that the blade response is independent of the engine order if the exciting frequencyis far enough from the natural frequency of the blades.On the other hand, if the exciting frequency is close to the natural frequency of theblades, then 1�!2 = O(�) and the other O(�) terms become signi�cant. It is then moreconvenient to analyse separately the tuned and the mistuned cases.



166.1 tuned systemIf there is no mistuning then, since bA and bB are diagonal, equation (6.4) can be solvedto obtain v̂k = ĝk1�!2 � �( bAkk + i! bBkk) :Making the substitution ! = 1 + �!(1);and ignoring terms which are O(�2) yieldsv̂k = ĝk�(�2!(1) � bAkk � i bBkk) = ĝk�2�(!(1) + i�k) :If !(1) is treated as a variable, the peak response isv̂k = ĝk��I( bAkk + i bBkk) = ĝk�2�R(�k) ; (6.5)when !(1) = �12R( bAkk + i bBkk) = I(�k):Equation (6.5) shows that the peak response of the tuned assembly is proportional to thereciprocal of the damping of the excited harmonic. Consequently, the di�erence betweenthe response of the least and most damped harmonic decreases with increasing overalllevel of damping b0. In particular, the response would be independent of the order of theexcitation if the damping was constant for all modes. This condition is asymptoticallyapproached for b0 ! �1. In order to demonstrate the e�ect of di�erent overall levelsof damping on forced response, two stable tuned aeroelastic systems with low and highaerodynamic damping have been considered for the analyses presented in the followingsections and their eigenvalues are plotted in Figure 13. These two spectra are obtainedby shifting to the left the cloud of eigenvalues shown in the left top plot of Figure 2, togive b0 = �3 and b0 = �8.Figure 14 shows the blade response  of the tuned assembly with low damping(b0 = �3) versus the forcing frequency ! and the engine order (E:O:), normalised bythe maximum peak response. As expected, the maximum peak response occurs for the18th engine order, as this excites the least damped travelling wave (the 2nd) and theminimum for the 8th, as this excites the most damped travelling wave (the 12th).6.2 alternately mistuned systemWhen there is alternate mistuning, the forced response equation corresponding to equa-tion (4.1) is �!2 + 1� �( bAkk + i! bBkk) �� bm�� bm �!2 + 1� �( bAk0k0 + i! bBk0k0) !� v̂kv̂k0 � = � ĝk0 � ;



17where for simplicity in notation we have again omitted the subscript N=2 in bmN=2, andhave de�ned k0 � k+N=2. Note the term ĝk0 has been set to zero since we are consideringforcing with an inter-blade phase angle corresponding to element k.Making the substitution ! = 1 + �!(1);and ignoring terms which are O(�2) then yields� �2!(1) � 2i�k � bm� bm �2!(1) � 2i�k0 �� v̂kv̂k0 � = 1� � ĝk0 � ;where �k and �k0 are as de�ned earlier in equation (3.4).This has solution � v̂kv̂k0 � = 1�D � �2!(1) � 2i�k0�bm � ;whereD = det� �2!(1) � 2i�k bmbm �2!(1) � 2i�k0 � = 4(!(1) + i�k)(!(1) + i�0k)� bm2:Switching back into the blade viewpoint, it can be shown that the maximum responseof any individual blade is equal to the greater of the two values given byjv̂k � v̂k0j = j2!(1) + 2i�k0 � bmj�jDj : (6.6)The two plots in Figure 15 show that the alternately mistuned assembly has two peakresponses for each engine order, one corresponding to resonance of the odd blades andone to resonance of the even ones. In both plots, the blade response is normalised by themaximum peak response of the tuned assembly. The peak response of the alternatelymistuned system is higher than that of the tuned assembly for the 8th engine orderexcitation and neighbouring ones, whereas it is lower for the 18th and neighbouring ones.This can be explained considering the harmonic analysis of the peak blade response,shown in Figure 16. For each engine order, the harmonic content of the forced responsehas been normalised by the peak modal response of the tuned assembly. Note thatalthough the inter-blade phase angle of the engine orders from 6 to 10 is that of theharmonics from 14 to 10 which are the more damped ones, there exist a remarkablyhigh response of the harmonics from 20 to 4 too, which in turn are the less dampedones. This occurs because of the energy transfer between the harmonics k and k+N=2,which is triggered by the alternate mistuning. The damping of the resulting forcedvibration is an average of the damping of the two coupled harmonics. As a consequence,the peak blade response of the alternately mistuned assembly is lower than the tunedone for the engine orders which excite directly the less damped harmonics thanks to thehigher damping of the coupled ones. Vice versa, the alternately mistuned response ishigher than the tuned one for the engine orders which excite directly the more dampedharmonics because of the lower damping of the coupled ones



18 These mechanisms are quantitatively a�ected by the ratio between the level of mis-tuning and aerodynamic coupling. The ratio �max between the maximum peak bladeresponse of the alternately mistuned and the tuned assembly for all engine orders andfor 5 values of � is plotted in Figure 17. The curves have been calculated with thelow damping tuned spectrum (b0 = �3). Initially the di�erences between the tunedand mistuned peak response grow quite rapidly with the level of mistuning (curves for� = 0:5; 2:0) and then more slowly for further increments (curves for � = 3:5; 5:0; 10).This is due to the fact that the equalisation of the damping of the eigenmodes increasesrapidly with the level of mistuning for 0<�< 4 and more slowly thereafter, as the equal-isation is nearly complete at ��4 (Figures 4 and 5). In these conditions the mistunedpeak response becomes independent of the engine order and the curves for � > 3:5 inFigure 17 are merely the reciprocal of the tuned peak response. They are still weaklyvarying with � because of the decreasing sti�ness of the softer blades, which leads to aslight growth in their response.Figure 18 shows that the trends discussed above hold also for higher levels of aero-dynamic damping, although with reduced strength. This is due to the higher uniformityof damping of the travelling waves.The exact and asymptotic evaluations of �max (equation (6.6)) for di�erent levels ofdamping and mistuning are compared in the three plots of Figure 19, The agreementis in general quite good and this proves again the applicability of the asymptotic andperturbation techniques to turbomachinery aeroelasticity.6.3 randomly mistuned systemAll the results presented in this section refer to the random pattern of blade sti�nessgiven in the left plot of Figure 6.The forced response of the tuned rotor and of four selected blades for two levels ofrandom mistuning versus the exciting frequency ! has been computed for the 8th and18th engine order excitations and is plotted in Figure 20, in which all ordinates havebeen normalised by the maximum peak response of the tuned assembly. The left plotsrefer to the response of the tuned rotor and the other four to the response with randommistuning. There are several observations to be done. We �rst note that the mistuningof blade natural frequencies causes multiple peaks in the response, each correspondingto a particular blade frequency. As a consequence, resonance may now occur over a�nite range of ! rather than at a single frequency like in the tuned assembly, andthe potentially dangerous frequency span widens as the level of mistuning increases,since the di�erence between maximum and minimum blade frequency increases with �.Comparing the tuned and mistuned response for � = 4, shows that random mistuningincreases the maximum peak response when the inter-blade phase angle of the excitationis that of the most damped travelling wave (8th E.O.) and reduces it when the inter-bladephase angle is that of the least damped travelling wave (18th E.O.), as in the alternatemistuning case. Additionally, the maximum peak response for this level of mistuningis not that of the softest blade (7th), as visible in the centre bottom plot. The rightplots show that the response becomes increasingly independent of the engine order as



19� increases. All these phenomena are due to the energy transfer among the travellingwaves, as already discussed in the previous subsection.The harmonic content of the peak blade response is shown in Figure 21. Unlike thealternate mistuning case, each engine order excites all harmonics. The dominant oneis that which has the same inter-blade phase angle of the forcing, but there is alwaysa contribution from all other harmonics too, in particular from the less damped ones(from 20 to 4). Therefore, the peak blade response with random mistuning is lower thanthe tuned one only for the engine orders which have the same inter-blade phase angleof the least damped travelling waves, since any contribution from the others can onlyincrease the damping of the mistuned response. For all other engine orders, the peakresponse is higher than the tuned one, because the least damped harmonics are alwaysinvolved in the response.This is further emphasised in Figures 22 and 23 which provide the ratio �max betweenthe maximum peak response of the blades of the randomly mistuned assembly and thetuned peak response for all engine orders for �ve levels of mistuning � and for twolevels of aerodynamic damping. Figure 22 refers to the low damping case. Comparingthe curves for � = 0:5; 2; 3:5 with those in Figure 17, clearly shows that the maximumpeak response with random mistuning is always equal or higher than that with alternatemistuning. This is due to the fact that the negative contribution of the least dampedtravelling waves to the overall damping is present for all engine orders when the rotoris randomly mistuned, and only for the fewer ones which have the inter-blade phaseangle of the more damped travelling waves when the rotor is alternately mistuned. As� increases, the energy transfer among travelling waves becomes stronger and it �nallyresults in the response of the mistuned assembly being independent of the order of theexcitation and the curves in Figure 22 tend to the reciprocal of the tuned response forvery high �0s. As in the alternate mistuning case, these trends hold also for higher levelsof aerodynamic damping, though with a reduced strength (Figure 23).



207 ConclusionsA comprehensive analysis of the e�ects of mistuning on turbomachinery aeroelasticityhas been carried out.The key factors a�ecting the free response of mistuned rotors are the topology ofthe tuned cloud of eigenvalues, the ratio between the level of mistuning and the inter-blade coupling and the mistuning pattern itself. When the structural mistuning is muchlower or much higher than the aerodynamic terms, the free response of the system takesplace in the travelling wave or in the individual blade mode, respectively. In the formercase, the eigenmodes of the system are characterised by nearly constant amplitudesof oscillation and nearly constant inter-blade phase angle, whereas in the latter one thee�ect of the aerodynamic forces is only to provide a uniform damping for all eigenmodes,which consist of the vibration of individual blades. For the randomly mistuned assembly,however, the mistuning levels above which this state occurs are far beyond the worstcurrent manufacturing tolerances, as proved by the Monte Carlo analyses. The vibrationoccurs in the travelling wave mode for the lower levels of mistuning and in an hybridform for the higher levels. whose main feature is the localisation of the vibration to asmall group of neighbouring blades.The double asymptotic analyses prove that the e�ect of mistuning on the bladeutter is always stabilising in the limit of very low and very high mistuning-to-couplingratios. When this parameter is small, the mistuning enhances the stability of the leaststable travelling wave mode by transferring energy to the other more stable modes bywhich it is then dissipated and when it is high, the individual vibrating blades experienceaerodynamic forces due only to their own motion, which are damping ones.Both theoretical analysis and numerical results indicate that alternate mistuning isparticularly e�ective in providing improved utter stability for a given level of mistuning.This suggests the use of alternate mistuning as a measure for passive utter control. TheMonte Carlo simulations also demonstrate the improved stability that can be achievedby simply reordering a set of blades with varying properties due to manufacturing tol-erances (random-alternate pattern). This method for passive utter control would beparticularly e�ective for assemblies with low aerodynamic coupling.The energy transfer among travelling waves is also the key mechanism through whichmistuning a�ects the forced response. The mistuned response depends on the dampingof the harmonics involved by the excitation. Alternate mistuning couples only the kthand the (k +N=2)th Fourier modes for an excitation of order (N � k), whereas randommistuning involves all modes for any order of the excitation. In the latter case the leastdamped Fourier modes worsen the mistuned response for all orders of the excitationsexcept for those which have its same inter-blade phase angle, since the damping of allthe other modes is higher and brings a bene�cial e�ect. In the alternate mistuning case,conversely, the response is lower than the tuned one for all engine orders N � k suchthat the damping of the travelling wave k is lower than the damping of the travellingwave k0. Consequently the peak forced response with random mistuning is worse thanthe tuned response over a wider range of engine orders than the alternate mistuned is.Structural mistuning also leads to peak splitting and to the widening of the frequency



21range over which resonance may occur. These e�ects increase with the level of mistuning�, whereas the ampli�cations and the reductions of the mistuned peak response withrespect to the tuned one depend both on the ratio between mistuning and aerodynamiccoupling and on the absolute level of damping, which inuence the variations of dampingassociated to the travelling waves.A �nal observation is that the computational costs of the analyses in this report arenegligible, making the approach very suitable for design optimisation, or even for tai-lored assembly of blade sets during manufacturing. In particular, the single asymptoticmodels and the Monte Carlo simulations can be straightforwardly extended to 3D aeroe-lastic problems and introduced into everyday design practice, similarly to [6]. This ismade possible by the fact that turbomachinery blades are usually designed keeping thestructural modes well apart each from the other. Consequently, aeroelasticity analysescan be carried out considering a single degree-of-freedom per blade, corresponding tothe structural mode under investigation.
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23Appendix A Eigenvalue/eigenvector perturbationtheoryConsider the eigenvalues and eigenvectors de�ned by(D + �P � �I)u = 0; (A.1)where D is a diagonal matrix with distinct eigenvalues and I is the identity matrix.When �=0, the eigenvalues are equal to the diagonal elements of D�(0)j = Djjand the eigenvectors are u(0)j = ej;where ej is the unit vector all of whose elements are zero except for the jth which isunity.When ��1, the perturbed eigenvalues and eigenvectors can be expressed as asymp-totic series, �j = �(0)j + ��(1)j + �2�(2)j +O(�3);uj = ej + �Xk 6=j c(1)jk ek +O(�2):Substituting these expressions into equation (A.1), and equating the terms which areO(�), the kth row, for k 6= j, yields(�(0)k � �(0)j ) c(1)jk + Pkj = 0;and hence c(1)jk = Pkj�(0)j ��(0)k :Looking at the jth row, the terms which are O(�) yield�(1)j = Pjj;while the terms which are O(�2) yield�(2)j = Xk 6=j Pjkc(1)jk = Xk 6=j PjkPkj�(0)j ��(0)k :
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Figure 18: Maximum blade response of alternately mistuned assembly with high levelof aerodynamic damping (b0 = �8).
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Figure 19: Exact and asymptotic predictions of blade peak response with alternatemistuning.
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Figure 20: Blade response of randomly mistuned assembly for two engine orders and fordi�erent levels of mistuning. (|: blade 7, ��: blade 19, � � �: blade 13, -.-.-: blade 10).
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Figure 21: Harmonic content of peak blade response of a randomly mistuned assembly(b0 = �3; � = 1:5).
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Figure 22: Maximum blade response of randomly mistuned assembly with low level ofaerodynamic damping (b0 = �3).
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Figure 23: Maximum blade response of randomly mistuned assembly with high level ofaerodynamic damping (b0 = �8).


