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This report reviews the mathematical analysis of mistuned aeroelasticity
in turbomachines, avoiding excessive mathematical complexity, and putting
the emphasis on the physical interpretation of the mathematics. The aeroe-
lastic behaviour can be analysed either by considering the motion of indi-
vidual blades or by considering a sum of travelling wave modes. The modal
viewpoint is shown to be most suitable when the degree of mistuning is
small. On the other hand, the blade viewpoint is more natural when the
structural mistuning is larger than the aerodynamic coupling, resulting in
highly localised eigenmodes.

Asymptotic analyses are used to enlighten the physical mechanisms
through which structural mistuning affects flutter and forced response, and
their accuracy is assessed by comparison with the exact solution obtained
by direct numerical computation. Numerical results illustrate the transition
from travelling wave modes to localised vibration as the degree of mistuning
increases, demonstrate the stabilising effect of mistuning on blade flutter and
help explaining the dependence of the peak blade response on the order of
the excitation in mistuned rotors. Monte Carlo simulations are carried out
for randomly mistuned blades to draw conclusions on the expected effects of
the mistuning.
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1 Introduction

Flutter and forced response of turbomachinery components such as fan, compressor
and turbine blades are aeroelastic phenomena which may lead to dangerous mechanical
failures if not properly accounted for in the design of the engine. Cyclic symmetry is a
key assumption that is often used to dramatically simplify the aeroelastic analysis and
design of bladed disks, as first shown in [10]. This is possible because the system can
be modelled with a circulant matrix [4], whose properties allow one to investigate this
problem by considering a single blade with a suitable periodic boundary condition, rather
than the whole bladed disk. Unfortunately, probabilistic factors like manufacturing
and material tolerances and unequal wear make questionable the assumption of cyclic
symmetry and the validity of the results obtained with tuned analyses. As a matter of
fact, the structurally tuned and mistuned assemblies can behave in a remarkably different
fashion, the extent of these differences being quite problem dependent. Some trends,
however, seem to be quite general and these include the evidence that (a) mistuning
improves the flutter boundary [8,7,11]; (b) mistuning can either increase or reduce the
blade forced response [8,7, 5].

The use of perturbation techniques for turbomachinery aeroelasticity [1] has shown
that both effects are qualitatively and quantitatively influenced by the ratio between
the level of mistuning and the inter-blade coupling, which can be aerodynamic [11], me-
chanical [12,13] or both [9]. The particular mistuning pattern can also play a significant
role, and it has been shown that it can be optimised to achieve the stabilisation of a
tuned unstable system [3].

Thus we see that there are three main reasons for studying the effects of struc-
tural mistuning on turbomachinery aeroelasticity: (a) accounting for the effects of the
randomness in blade structural properties due to stochastic factors like manufacturing
tolerances on the flutter boundaries (this could be done with a statistical approach, as in
[2]); (b) assessing the applicability of selected mistuning patterns as a means of passive
flutter control; (c¢) investigating the effects of both random and deliberate mistuning on
the blade forced response.

In this report, the mechanisms through which alternate and random mistuning affect
the free and forced response are enlightened by means of asymptotic expansions, matrix
perturbation theory, exact numerical solution of the aeroelastic equations and Monte
Carlo simulations. Particular emphasis is put on the importance of the ratio between
mistuning level and aerodynamic coupling for both flutter and forced response. A careful
analysis of alternately mistuned forced response is carried out, to explore its effects on
the blade peak response when deliberately introduced in the system as a passive flutter
control technique. The blade forced response in the presence of random mistuning is
also addressed.



2 Model problem

To keep the analysis relatively simple so that the key issues can be examined in detail,
we choose to consider a model problem in which there are N blades each of which
undergoes a structural oscillation with a single degree-of-freedom w;(t),j = 1,2,..., N.
(Figure 1). Note that throughout this report we use periodic indices with modulus N
so that uwg = un, u; = uny1, and the statement j=Fk is shorthand for j =%k mod N.

After a suitable non-dimensionalisation, the equations of motion for the N blades
are assumed to be of the form

’l.ij —+ (]_ =+ EO'm]‘)Uj = € ((L_l’u]‘_l —+ b_l’l.L]‘_l —+ (Lng =+ bo’l.L]‘ —+ (L1Uj+1 =+ bl’l.L]‘+1) .

The left-hand side of the equation has the structural inertial and stiffness terms, with
eom; being the structural mistuning. The right-hand side has the generalised forces due
to aerodynamic coupling, with it being assumed that a blade only experiences a force
due to its motion and the motions of its immediate neighbours on either side, and that
the unsteadiness is of a sufficiently low frequency that the motion is well represented by
just the displacement and velocity of each blade.

This model includes only mistuning due to variations in blade stiffness, but it is easily
extended to handle mistuning due to variations in blade mass. It also does not consider
structural coupling arising from inter-blade shrouds or disk flexibility, but these effects
could easily be included in the aerodynamic ‘stiffness’ terms involving the displacements
uj and uj4;.

It is convenient to write the equations of motion collectively as

i+ (I +eocM)u = e(Au + Bu), (2.1)

with w = (u; ug ... uN)T, M a diagonal matrix whose entries have zero mean and are
normalised by their root mean square, A and B tridiagonal circulant matrices and o a
free parameter to control the ratio between the level of mistuning and the aerodynamic
terms. Therefore the quantity eo is the root-mean-square of the deviations of the blade
frequencies from the common tuned value, normalised by this same quantity.

A key feature of aeroelasticity in turbomachinery is that e, a constant representing
the order of magnitude of the structural mistuning and aerodynamic effects, is small; a
value of 0.01 is representative. As a result, it is appropriate to use asymptotic analysis
based on € < 1. When € = 0, we get simple uncoupled motion in which each blade
vibrates with angular frequency w=1 and its displacement can be expressed as the real
part of a complex quantity,

ui(t) = R (c;e"),
or as the average of the complex quantity and its complex conjugate,

ui(t) = 5 (c;e™" + e ™).

In the general case with both aerodynamic coupling and structural mistuning, and
without assuming that € is small, the general behaviour is a sum of eigenmodes of the
form

u;(t) = e™vy,



where s is an eigenvalue and v is the corresponding eigenvector satisfying
(s> +1)I+e(cM —A—sB))v=0. (2.2)
Taking the complex conjugate of this equation gives
((s* + 1) + (oM — A — s*B)) v* = 0,

so the complex conjugate s* is also an eigenvalue, and its eigenvector is v*. Since the
actual displacement is always a real quantity, the displacement can again be expressed
either as the real part of the complex quantity or as the average of the quantity and its
complex conjugate.

By defining ug=wu, u; =1u, equation (2.1) can also be written as

il )= (o ) ()

and by defining vy=wv, v =sv, one obtains

S(Z?>:(—I+e(g—aM) Jg)(ﬁ(i)

In this form, one can use standard mathematical software such as MATLAB to obtain
the 2N eigenvalues. Of particular interest is the pair of eigenvalues with the largest real
component since these give the component of the general solution which grows fastest
in time (if R(s) > 0) or decays to zero most slowly (if R(s) < 0). Thus it gives the
asymptotic behaviour of the solution w(t) as ¢t — oc.

Another important observation is that the sum of the 2N eigenvalues is equal to
the trace (the sum of the diagonal elements) of the matrix, which is equal to Neby. A
necessary requirement, for stability is therefore that by is negative. This also shows that
the best that can be achieved through mistuning is that all 2N eigenvalues have the
same negative real component equal to %ebo.

Between the trivial case of identical blades without any coupling (e = 0) and the most
general one of mistuned blades with aerodynamic coupling (e, 0, A, B, M # 0), there are
two important sub-cases to be considered: (a) tuned assemblies with aerodynamically
coupled blades (¢, A, B # 0, 0 = 0) and (b) mistuned assemblies with uncoupled blades
(e,0,M #0, A= B =0). When the former group of modelling assumptions holds, the
motion of the blades is usually analysed with a travelling wave formulation, discussed
in the next section. In the latter sub-case, conversely, an individual blade representa-
tion is better suited, as the eigensolution of the aeroelastic problem foresees that each
blade vibrates independently from the others. Under these circumstances, in fact, the
eigenvalues of equation (2.2) are the mistuned natural frequencies of the blades, given

by

5j = iwj = 14/1 + eom;
and each eigenvector has only one nonzero entry, corresponding to the free motion of
the blade it refers to.



3 Travelling wave representation

When dealing with spatially periodic systems like tuned rotors with aerodynamically
coupled blades, it is common to use a Fourier series representation; in the context of
turbomachinery aeroelasticity, this is usually referred to as a travelling wave represen-
tation.

The displacement of each blade is expressed as a sum of a number of circumferential

Fourier modes,
N

U](t) = Zﬁk(t) 627rijk/N.

k=1

The amplitudes of the Fourier modes is given by the inverse mapping,
| N
~ Z —2mijk/N
uk(t) = N < Uj(t) € ik/ .

It is convenient to express these two sets of equations in matrix-vector form as

1
u = Fa, @=F'u=—F"u,
N
where F'¥ denotes the Hermitian conjugate (complex conjugate transpose) of matrix F'.
Inserting the first of these into equation (2.1) and pre-multiplying the entire equation

by F~! yields the travelling wave form of the unsteady equations of motion,
G+ (I +eoM)a = e(Ad + Ba), (3.1)
where . R R
M =F"'MF, A=F"'AF, B = F'BF.
This has eigenmodes of the form

a = e,

where s is an eigenvalue and @ is the corresponding eigenvector satisfying

((32 Y1) +e(oM — A sé)) & =0. (3.2)

The attraction in using the travelling wave representation comes from the fact that A
and B are both diagonal matrices. To prove this, we define the vectors f, to be travelling
wave modes of unit amplitude corresponding to the k' column of matrix F. Since
FHF = NI, these vectors possess the important orthogonality property kafl = N oy,
where dy; is the Kronecker delta function which is unity when k=1[ and zero otherwise.

Direct evaluation reveals that

Afl — (a_le—QTril/N +ag + aleQWil/N) .fl



and hence

~ 1 —omi i
Akl = N ]{:{Afl = (a,le 2mil/N + ag + (Z162 Zl/N) 514:!-

Similarly,

Bkl = fl?Bfl = (b_le_QWil/N + bo + b1627ril/N) 6kl-

1

N
The fact that A and B are diagonal means that in the absence of any structural

mistuning the eigenmodes are pure travelling waves, and the eigenvalues are given by

si+1= G(A\kk + Skgkk)a

and so

Sp = %ngki \/—1 +€A\kk+i62§kk. (33)

The negative root arising from the quadratic equation is the complex conjugate of one
of the other positive roots, so we will not consider it further. When e < 1, the positive
root can be expressed as an asymptotic series

Sk =1+ e\ + O(e2).

in which

Mo = L(Bri — iAg). (3.4)
The real part of \; is

R(W) = 5 (b (b1-+b1) c0s 5 — (ay—an) sin )

where (3, =27k/N.

The left top and bottom plots in Figure 2 show the comparison between the exact
and the asymptotic evaluation of the eigenvalues for two values of €. The aerodynamic
constants are a_; = —0.4443, ay = —0.3587, a; = 0.5296, b_; = —0.0054, by = —1.7000,
by = 1.5688, corresponding to the first bending mode of a low-pressure turbine rotor
with 20 blades (these values along with € = 0.01 hold for all figures presented in the
report). Note that the imaginary components of all eigenvalues are clustered around i,
because the aerodynamic coupling changes only slightly the in vacuo frequency of the
blades. This effect increases with € and is called frequency shift. The second and more
important effect of the aerodynamic coupling is to introduce a small real component in
the eigenvalues, whose sign determines the stability of the associated travelling mode.
The opposite of this quantity is usually referred to as the aerodynamic damping. The
eigenvalues of five modes are labelled in the left bottom plot in Figure 2. Negative
aerodynamic damping corresponds to instability of the associated eigenmode and for
this example, the 1%, 2" and 3™ Fourier modes are unstable (right top and bottom
plots), whereas the 12" is the most stable one. (The fact that only the first few modes
are unstable is a frequent occurrence in the flutter of bladed rotors). After a transient
phase in which the most stable modes rapidly decay to zero, the vibration of the assembly



is dominated by the least stable wave (k%*), whose eigenvalue has the biggest positive
real part. In these conditions, the motion of the j* blade is given by:

Uj(t) _ akei(l(sko)twj)en(sko)t

where ¢; = jB,. The phase between the motion of adjacent blades is usually referred
to as the inter-blade phase angle and it is defined as a; = ¢;411 — ¢;. The expression
above shows that in this case it is constant and equal to (k,. One should keep in mind,
however, that this occurs only for tuned assemblies, whose eigenmodes are individual
Fourier harmonics, each characterised by its own ;. For mistuned assemblies, on the
other hand, each eigenmode may result from the combination of more than one Fourier
harmonic, as will be shown in the following sections.

__ To complete the travelling wave representation, we need to compute the elements of
M. Expressing m; as a Fourier series,

— ~  2mijn/N
m; = E mpye / R
n

then
Mf, :ZmnflJrna

and hence ]
My, = N f;?Mfl = ;mnékH»n = Mgy

Because we started by assuming that the entries in M have zero mean, my is zero. A
uniform mistuning simply causes a slight shift in frequency which could be eliminated
from the analysis by a minor change in the original non-dimensionalisation.

4 Alternate mistuning

In alternate mistuning the number of blades, N, is even and every second blade is
identical. In the Fourier series representation just discussed, this corresponds to My,
being the only non-zero Fourier component.

The presence of the off-diagonal term M; ;n/2 leads to a coupling between travelling
modes j and j+ N/2, but they remain uncoupled from all other modes. Isolating the
eigenvalue/eigenvector equations for these two modes alone, we have

( s2+1—e(AAjj+sBjj) €om ) ( b; ) o, (4.1)

€Eom 52 + 1— E(Ajlj' + Slej/) f)j’

where for simplicity in notation we have omitted the subscript N/2 in My, and have
defined j' = j+N/2.

Setting the determinant of the matrix to zero, and letting s; and s; be the eigenvalues
in the absence of mistuning, gives the quartic equation

(s —s;)(s = s5)(s — s5)(s — s}) — €’ =0, (4.2)



whose roots can be obtained numerically.
If e<1 then the two roots near ¢ have an asymptotic expansion of the form

s=1i+esH +0(),
which when substituted into (4.2) yields
—4(8(1) — )\j)(S(l) — )\j’) — 0'27/7\7,2 = 0,

and hence

s =1 <)\j + Ay £ \/ (N = A)* = 0%2) : (4.3)

We call equation (4.3) a single asymptotic approximation, because it has been derived
only assuming €< 1. There are a number of observations to be made about this result.
The central one is that the solution varies significantly depending whether or not the
level of mistuning o is large relative to the difference between the aerodynamic terms A;
and Aj.

If o is much smaller, then a truncated Taylor series expansion of equation (4.3)
provides the following double asymptotic approximation of the two roots

2

1) ~ o2
S( ) ~ )\] - 4(/\jir/l\j/)
(4.4)
5(1) ~ N + ﬁ
] 4()\j—)\j/)

Thus, under these circumstances the eigenvalues are very close to their perfectly tuned
values, and the effect of the mistuning is to slightly stabilise the less stable of the
two modes, and at the same time slightly de-stabilise the other. Physically, what is
happening is that the mistuning leads to a transfer of energy between the two travelling
wave modes. If mode j is unstable and mode j' is stable, then energy is transferred from
j to j" where it is then dissipated. This therefore improves the stability of mode j.

If o is much larger than the aerodynamic terms, then the double asymptotic approx-
imation of the two roots is

1A= A)

s~ t1iom + 3 (Aj+ A\jy) F 11 (4.5)

om
Hence, the eigenvalues are close to the pure mistuned values, but with a nearly equal
offset due to the aerodynamic terms. Referring back to the coefficients of the original
problem, one finds that

% ()\J + )‘j’) = %(bg - i(Lg).

Since by is always negative for all applications of engineering interest this means that
the mistuning has stabilised the system. To understand this physically, one needs to
consider the associated eigenvectors which in the limit as A\;, A\;; — 0 become (1 £1).
Thus the eigenmodes involve equal amounts of both travelling wave modes. What is
happening is that the mistuning ensures a relatively rapid transfer of energy between
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the two modes, and so one ends up with approximately the same energy level in each
mode. The damping of the combined modes is therefore the average of their individual
damping rates. The alternative blade viewpoint is that one mode consists primarily of
even blades vibrating, the other the odd blades. In each case, the blades next to blades
which are moving are almost stationary and so the only aerodynamic forces experienced
are due to the blades’ own motion as given by ay and by.

Figure 3 shows the eigenvalues (left plots) and the harmonic content of the least
stable eigenmode (right plots) for the tuned and mistuned configuration. The least sta-
ble eigenmode of the tuned system consists only of the 2"? Fourier mode (3, = 36°),
whereas that of the alternately mistuned assembly has both the 2™¢ (3, = 36°) and the
12t (B85 = 216°) ones, this latter being the most stable Fourier mode. Because of its
beneficial contribution, the mistuned assembly has now become stable, since the eigen-
value corresponding to the least stable eigenmode now lies to the left of the imaginary
axis (left bottom plot). As the level of mistuning increases, the cloud of eigenvalues
splits in two and for high values of o they are all clustered around the two frequencies of
the softer and harder blade, with nearly constant aerodynamic damping for all modes.
This is shown in Figure 4, where the sequence of the four plots in order of increasing o
also illustrates the transition from travelling wave to individual blade mode. The former
holds for levels of mistuning equal or lower than the aerodynamic terms (o < 1), whereas
the transition to the latter mode is practically complete for o &~ 6, which corresponds
to a 3 % variation in the natural frequencies.

The stability parameter § = max R(s)/e =max R(s())) is plotted versus o in Figure
5. The first curve has been obtained calculating the exact eigenvalues of the matrix
in equation (4.1), the second using the single asymptotic expansion given by equation
(4.3) and the third and fourth ones using the double asymptotic expansion for dominant
aecrodynamic or mechanical terms (equations (4.4) and (4.5) respectively). From the
exact stability curve, we observe that an unstable system achieves stability when the
aerodynamic coupling and the level of mistuning are of the same order (¢ =~ 1). For
o ~ 6 the system has nearly achieved its theoretical maximum stability (3by) and further
increments of mistuning do not bring sensible improvements. These trends are quite
well predicted by the single asymptotic analysis over the whole considered range of o,
whereas the two asymptotic curves corresponding to equations (4.4) and (4.5) are in
good agreement with the exact values only where they were supposed to be valid, that
is for low and high levels of mistuning, respectively.

5 Random mistuning

As in the previous section, we perform two asymptotic analyses of mistuning when its
level is either very small or very large relative to the aerodynamic terms. In fact, each
asymptotic analysis is doubly asymptotic, in that the first step, common to both, is to
assume that e 1 so that N eigenvalues can be expressed in asymptotic form as

s =i+es) +0(e?).
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Substituting this expression into equation (2.2) and neglecting the higher order terms
yields the single asymptotic approximation

(s —Li(cM - A—iB))v =0, (5.1)
while substituting it into equation (3.2) gives
<s(1)l — (oM — A - zﬁ)) &= 0. (5.2)

These two eigenvalue/eigenvector equations are now the subject of further asymptotic
analysis using the theory presented in Appendix A.

5.1 relatively low mistuning

When the mistuning is small compared to the aerodynamic terms, we choose to use
equation (5 2) with the matrix M being regarded as a small perturbation to the diagonal
matrix A-+iB. Applying the theory in Appendix A, one obtains the following double
asymptotic approximation of the eigenvalues

M, My,

(1) 9 jk k)
4 = Aj— A

(5.3)

Now, using the relations previously established,

—~

o~ ~ D 2
MjkMkj =My_Mi—; = |mg_k| s
since Mmy,_; =M ;. Also,

1 :)\;f—)\;w . R( 1 )ZR(Aj)—R(2)\k)
No— e N — Al N — M I\ — Al

Therefore, it follows that

R (s ;1)) Z |m] Kl Aj) — ()‘k)‘

— N2
k#j |)\ Al

Considering the index j corresponding to the least stable mode, the mode for which
R(\;) is greatest, this result shows that the effect of the mistuning is always stabilising,
since ’R(sgl)) < R(A)).
An interesting situation arises if the terms \; form a circle in the complex plane and
so can be written as
)‘k = )\0 + T@iek

with 6=0 corresponding to the least stable mode. In this case,

1 1 1—cosf+isinb, 1 0,
= - —— = 1+ icot —
N— M 7 (L—cosf)?+sin’0, 2r 2
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and hence,
R(si)) = ROG) = = > Il

In addition, bearing in mind that the average level of mistuning is equal to zero, then
Parseval’s theorem gives that

Dl = % > mp.
k#j k

Thus, the amount by which the mistuning stabilises the least stable mode is independent
of the pattern of mistuning in the particular case when the eigenvalues of the perfectly
tuned system form a circle in the complex plane.

In the more general case, whether or not a particular mistuning pattern is better
than another in stabilising the least stable mode at very low levels of mistuning will
depend on how the undisturbed eigenvalues deviate from being circular. Unfortunately,
the data published in the literature usually presents only the real part of the eigenvalues
(since these determine the stability) and not the imaginary part (since these imply just
a minor shift in frequency). More complete knowledge of the eigenvalues for actual fans,
compressors and turbines is needed before any conclusion can be drawn regarding the
optimum form of mistuning.

5.2 relatively high mistuning

When the mistuning is large compared to the aerodynamic terms, we choose to use

equation (5.1) with the matrix A+iB being regarded as a small perturbation to the
diagonal matrix M. The unperturbed eigenvalues are Liom;, therefore applying the

2
perturbation theory gives the double asymptotic form

1 . . i
55- ) %zamj + %(bo —iag) + 55

Z (CL_l + z'b_l)(al + Zbl) .

m; — Mg

(5.4)
k=j+1

Considering only the real part of this, one obtains the following double asymptotic
approximation of the eigenvalues

R(M) ~ Sy — £ 3 it aba

J 2
m; —m
k=j+1 J k

This shows that at very high levels of mistuning the system is stable because of the
dominance of the by term which is negative in real applications. The physical interpre-
tation of this is that at high levels of mistuning each blade vibrates on its own at its
own natural frequency. The forces it experiences are due solely to its own motion, and
these self-induced forces are always stabilising.

As the level of mistuning decreases, or equivalently the aerodynamic terms increase
in strength, the aerodynamic forces cause the neighbouring blades to vibrate as well.
The additional forces that this generates on the central blade may be stabilising or
destabilising.
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5.3 results

The random mistuning pattern in the left plot of Figure 6 has been used to solve the
aeroelastic problem as given by equation (2.2) and the left top plot of Figures 7 and
8 shows the cloud of eigenvalues for an assembly with low and high level of random
mistuning, respectively. By comparing them, one can notice how the loss of cyclic
symmetry breaks the regular pattern of the tuned eigensolution. The harmonic content,
the blade amplitudes of oscillation and the inter-blade phase angle « for the least stable
eigenmode are provided in the top right, left bottom and right bottom plots, respectively.
When the level of mistuning is low (Figure 7), the harmonic content is similar to the
tuned one with a single travelling wave, indicating that the motion is still characterised
by the dominance of a single Fourier mode (3, = 36°). This is also reflected by the fact
that the blade amplitudes of oscillation and inter-blade phase angles are nearly constant.
Conversely, when the level of mistuning is high (Figure 8), the modal analysis of the
least stable eigenvector reveals the presence of many Fourier modes. This corresponds to
the localisation of the vibration to a few blades and to large variations of the inter-blade
phase angle.

The evolution of the cloud of eigenvalues for increasing o's is displayed in Figure
9. The regularity of the tuned cloud is progressively broken as the level of mistuning
increases. However the transition from travelling wave to individual blade mode takes
place slower than with alternate mistuning. For example, the level of mistuning corre-
sponding to o =6 is enough to equalise the damping of all eigenmodes in the alternate
mistuning case (right bottom plot of Figure 4), whereas the damping of the eigenmodes
is not yet as constant for the same amount of random mistuning (right bottom plot
of Figure 9). Nevertheless the eigenmodes of the randomly mistuned system for o = 6
correspond to the localisation of the vibration to a few blades. All this indicates that the
vibration of the system does occur neither in the travelling wave nor in the individual
blade mode, but rather in an intermediate form. The threshold o above which the tran-
sition to individual blade mode is complete, depends both on the particular mistuning
pattern and the shape of the cloud of tuned eigenvalues.

In order to compare the o — § stability curve for random and alternate mistuning
and to make the results of the analysis represent the average effects of the randomness,
a Monte Carlo simulation has been carried out by performing 1000 calculations with
different random matrices M. The results plotted in Figure 10 correspond to the central
80 %, omitting the 10 % of the results with the best and worst stability and they show
that mistuning always improves the stability of the assembly. However different patterns
have different stabilising strength depending on the ratio between aerodynamic coupling
and mistuning level. When the latter is lower or of the same order of the former one,
the random distribution of blade stiffness is more effective than the alternate pattern, as
proved by the fact that the stability band with random mistuning is below the stability
curve with purely alternate mistuning for 0 < ¢ < 2. On the other hand, when the
level of mistuning is higher than the aerodynamic coupling, alternate mistuning is more
effective than random mistuning. The stability band for random-alternate mistuning
refers to a particular type of deliberate mistuning which can be obtained from any given
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random pattern by first sorting the blades in order of increasing stiffness and then filling
first the odd numbered slots in the disk and then the even ones. This produces a set
of blades whose frequency alternates between low and high values. A random pattern
and its random-alternate counterpart are given in Figure 6. We consider this type of
mistuning both because of the stabilising properties shown by alternate mistuning and
because of the ease by which it could be achieved in practice, since it only requires the
measurement, of the natural frequency of the blades before assembling them in the disk.
The results of the statistical analysis provided in Figure 10 show that the stabilisation
achieved with this pattern of mistuning is always greater than with the other two types
of mistuning and this may suggest the use of the random-alternate rearrangement as a
simple device for improving the flutter stability of those systems characterised by low
aerodynamic coupling. A final remark on the results of these Monte Carlo simulations
is that the vibration of the randomly mistuned assembly in the individual blade mode
does not occur before o = 10, which represents a pessimistic upper bound for the current
manufacturing tolerances. For several mistuning patterns the individual blade mode did
not occur before ¢'s as high as 50.

Figure 11, shows the random and the random-alternate mistuning patterns that give
the worst and the best stability for o = 10. The best random-alternate is the closest
to the purely random pattern, whereas the worst random is the farthest one. mainly
because of the small difference between the frequency of blades 3 and 4 and blades 7
and 8.

An analogous Monte Carlo analysis has been carried out to assess the accuracy of the
single (equation (5.1)) and double (equations (5.3) and (5.4)) asymptotic approximations
of the aeroelastic problem. The asymptotic bands of aeroelastic stability are compared
with the exact one determined with equation (2.2), in Figure 12. The agreement between
the exact and the single asymptotic result is very good (the differences cannot be distin-
guished in the plot), the double asymptotic analysis for o <1 is acceptably accurate for
low levels of mistuning and the double asymptotic analysis for ¢ >>1 gives poor results
unless the level of mistuning is unrealistically high. The range of o over which one has
an acceptable agreement between the exact and the double asymptotic solution for high
and low levels of mistuning is remarkably narrower than in the alternate mistuning case.
In order to understand why this happens, let us consider the case of low mistuning with
alternate and random mistuning. The double asymptotic stability is given by equations
(4.4) and (5.3), respectively. In general, all Fourier modes are coupled when the rotor
is randomly mistuned, whereas only the harmonics j and j' = j+N/2 are coupled when
the assembly is alternately mistuned. Therefore the perturbing terms )\ji " in equation
(5.3) can be quite large because of the small separation of adjacent eigenvalues, whereas

the term /\j—l/\j, in equation (4.4) is smaller, because the eigenvalues j and j' are well

separated one from the other, if the tuned cloud of eigenvalues is sufficiently regular.
Consequently the range of o over which the O(c?) term remains small is much more lim-
ited in the random mistuning case. Similar arguments hold for the double asymptotic
expansion for o> 1.
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6 Forced response

In forced response, equation (2.1) is modified through the addition of a prescribed peri-
odic forcing term
i+ (I + ecM)u = e(Au + Bu) + f(t). (6.1)

The forcing term f(t) can be decomposed into a sum of components each of which has a
particular frequency w and an inter-blade phase angle 3. Because of the linearity of the
differential equation, the response to f(t) is equal to the sum of the responses to each of
the individual components. Such components are normally referred to as engine orders
(E.O.). By this term, one means the number of obstructions upstream or downstream of
the rotor under investigation, which feels the resulting periodic circumferential variations
of the flow field as a backward travelling excitation. Hence, the k" harmonic is excited
by the (N — k)™ engine order in a tuned system. Therefore, from here onwards we
analyse the case in which f(¢) has just one such engine order.
Switching to the travelling wave representation, the forced response version of equa-
tion (3.1) is
i+ (I+eoM)a = e(Aa+ Ba) + £(¢), (6.2)

with the elements of the vector f being zero apart from the k' element corresponding
to the particular inter-blade phase angle of the forcing.
Making the substitutions

u(t) =e“'v, f(t)=eg, a(t)=e"'s, f(t) =g,
then yields the following counterparts to equations (2.2) and (3.2),

((—w2 + DI +¢e(lcM— A - in)) v=g. (6.3)

((—w2 + 1)1 + G(Uﬁ— A— zw§)> D =g. (6.4)

Either equation can be used to determine the blade forced response. For example, solving
(6.3) yields v, from which u(t) can be obtained.
If [1—w?| > € and o =~ 1, the effect of the O(¢) terms in the two equations above is

negligible, and the solution is
1
v= 1 _w2 g,

and hence .

u(t) ~ T f(t).

This equation holds for both tuned and not too heavily mistuned assemblies and it
means that the blade response is independent of the engine order if the exciting frequency
is far enough from the natural frequency of the blades.

On the other hand, if the exciting frequency is close to the natural frequency of the
blades, then 1—w? = O(e) and the other O(¢) terms become significant. It is then more
convenient to analyse separately the tuned and the mistuned cases.
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6.1 tuned system

If there is no mistuning then, since A and B are diagonal, equation (6.4) can be solved
to obtain X
. 9k
Vi — = =< .
1—w? — e(Agy + iwBgg)

Making the substitution
w=1+ew,

and ignoring terms which are O(e?) yields

~

N 3 g
Vi = =

e(—2w® — Ay, — iByy)  =2e(w® +4))

If w) is treated as a variable, the peak response is

By = Agk I 9 : (6.5)
—€Z(Awe + iB,)  —26R(\)

when

w(l) = _%R(;{kk + Zékk) = I()\k)

Equation (6.5) shows that the peak response of the tuned assembly is proportional to the
reciprocal of the damping of the excited harmonic. Consequently, the difference between
the response of the least and most damped harmonic decreases with increasing overall
level of damping by. In particular, the response would be independent of the order of the
excitation if the damping was constant for all modes. This condition is asymptotically
approached for by — —oco. In order to demonstrate the effect of different overall levels
of damping on forced response, two stable tuned aeroelastic systems with low and high
aerodynamic damping have been considered for the analyses presented in the following
sections and their eigenvalues are plotted in Figure 13. These two spectra are obtained
by shifting to the left the cloud of eigenvalues shown in the left top plot of Figure 2, to
give by = —3 and by = —8.

Figure 14 shows the blade response 7 of the tuned assembly with low damping
(bg = —3) versus the forcing frequency w and the engine order (E.O.), normalised by
the maximum peak response. As expected, the maximum peak response occurs for the
18" engine order, as this excites the least damped travelling wave (the 2"?) and the
minimum for the 8", as this excites the most damped travelling wave (the 12).

6.2 alternately mistuned system

When there is alternate mistuning, the forced response equation corresponding to equa-
tion (4.1) is

—w?4+1- G(Ekk + zwékk) €om o\ [ Gk
eom —w2 +1-— E(Ak’k’ + iWBk/k/) @k’ 0 ’
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where for simplicity in notation we have again omitted the subscript N/2 in my/2, and
have defined k' = k+N/2. Note the term g has been set to zero since we are considering
forcing with an inter-blade phase angle corresponding to element k.
Making the substitution
w=1+ ew(l),

and ignoring terms which are O(e?) then yields

—2wM — 24\, om o N\ _1( Gk
om —2wM — 24\ o ) e\ 0 )

where \; and A\ are as defined earlier in equation (3.4).

This has solution
o ) _ 1 =200 —2ixy
Vgt o eD —-m ’

where
—2&)(1) — Qi)\k m (1) . (1) S\ ~92
D = det < ~ Lo _oing ) = 4w+ idg) (W) +iA)) — me.

Switching back into the blade viewpoint, it can be shown that the maximum response
of any individual blade is equal to the greater of the two values given by

1200 + 26\ 4 7|
€| D|

|0 £ Opr| = (6.6)
The two plots in Figure 15 show that the alternately mistuned assembly has two peak
responses for each engine order, one corresponding to resonance of the odd blades and
one to resonance of the even ones. In both plots, the blade response is normalised by the
maximum peak response of the tuned assembly. The peak response of the alternately
mistuned system is higher than that of the tuned assembly for the 8 engine order
excitation and neighbouring ones, whereas it is lower for the 18" and neighbouring ones.
This can be explained considering the harmonic analysis of the peak blade response,
shown in Figure 16. For each engine order, the harmonic content of the forced response
has been normalised by the peak modal response of the tuned assembly. Note that
although the inter-blade phase angle of the engine orders from 6 to 10 is that of the
harmonics from 14 to 10 which are the more damped ones, there exist a remarkably
high response of the harmonics from 20 to 4 too, which in turn are the less damped
ones. This occurs because of the energy transfer between the harmonics k and k+ N/2,
which is triggered by the alternate mistuning. The damping of the resulting forced
vibration is an average of the damping of the two coupled harmonics. As a consequence,
the peak blade response of the alternately mistuned assembly is lower than the tuned
one for the engine orders which excite directly the less damped harmonics thanks to the
higher damping of the coupled ones. Vice versa, the alternately mistuned response is
higher than the tuned one for the engine orders which excite directly the more damped
harmonics because of the lower damping of the coupled ones
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These mechanisms are quantitatively affected by the ratio between the level of mis-
tuning and aerodynamic coupling. The ratio I',,,; between the maximum peak blade
response of the alternately mistuned and the tuned assembly for all engine orders and
for 5 values of o is plotted in Figure 17. The curves have been calculated with the
low damping tuned spectrum (b, = —3). Initially the differences between the tuned
and mistuned peak response grow quite rapidly with the level of mistuning (curves for
o = 0.5,2.0) and then more slowly for further increments (curves for o = 3.5,5.0, 10).
This is due to the fact that the equalisation of the damping of the eigenmodes increases
rapidly with the level of mistuning for 0 <o < 4 and more slowly thereafter, as the equal-
isation is nearly complete at o4 (Figures 4 and 5). In these conditions the mistuned
peak response becomes independent of the engine order and the curves for o > 3.5 in
Figure 17 are merely the reciprocal of the tuned peak response. They are still weakly
varying with ¢ because of the decreasing stiffness of the softer blades, which leads to a
slight growth in their response.

Figure 18 shows that the trends discussed above hold also for higher levels of aero-
dynamic damping, although with reduced strength. This is due to the higher uniformity
of damping of the travelling waves.

The exact and asymptotic evaluations of I';,,,, (equation (6.6)) for different levels of
damping and mistuning are compared in the three plots of Figure 19, The agreement
is in general quite good and this proves again the applicability of the asymptotic and
perturbation techniques to turbomachinery aeroelasticity.

6.3 randomly mistuned system

All the results presented in this section refer to the random pattern of blade stiffness
given in the left plot of Figure 6.

The forced response of the tuned rotor and of four selected blades for two levels of
random mistuning versus the exciting frequency w has been computed for the 8 and
18" engine order excitations and is plotted in Figure 20, in which all ordinates have
been normalised by the maximum peak response of the tuned assembly. The left plots
refer to the response of the tuned rotor and the other four to the response with random
mistuning. There are several observations to be done. We first note that the mistuning
of blade natural frequencies causes multiple peaks in the response, each corresponding
to a particular blade frequency. As a consequence, resonance may now OCCUI OVEr a
finite range of w rather than at a single frequency like in the tuned assembly, and
the potentially dangerous frequency span widens as the level of mistuning increases,
since the difference between maximum and minimum blade frequency increases with o.
Comparing the tuned and mistuned response for 0 =4, shows that random mistuning
increases the maximum peak response when the inter-blade phase angle of the excitation
is that of the most damped travelling wave (8" E.O.) and reduces it when the inter-blade
phase angle is that of the least damped travelling wave (18" E.O.), as in the alternate
mistuning case. Additionally, the maximum peak response for this level of mistuning
is not that of the softest blade (7'"), as visible in the centre bottom plot. The right
plots show that the response becomes increasingly independent of the engine order as
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o increases. All these phenomena are due to the energy transfer among the travelling
waves, as already discussed in the previous subsection.

The harmonic content of the peak blade response is shown in Figure 21. Unlike the
alternate mistuning case, each engine order excites all harmonics. The dominant one
is that which has the same inter-blade phase angle of the forcing, but there is always
a contribution from all other harmonics too, in particular from the less damped ones
(from 20 to 4). Therefore, the peak blade response with random mistuning is lower than
the tuned one only for the engine orders which have the same inter-blade phase angle
of the least damped travelling waves, since any contribution from the others can only
increase the damping of the mistuned response. For all other engine orders, the peak
response is higher than the tuned one, because the least damped harmonics are always
involved in the response.

This is further emphasised in Figures 22 and 23 which provide the ratio I';,,, between
the maximum peak response of the blades of the randomly mistuned assembly and the
tuned peak response for all engine orders for five levels of mistuning o and for two
levels of aerodynamic damping. Figure 22 refers to the low damping case. Comparing
the curves for 0 =0.5,2,3.5 with those in Figure 17, clearly shows that the maximum
peak response with random mistuning is always equal or higher than that with alternate
mistuning. This is due to the fact that the negative contribution of the least damped
travelling waves to the overall damping is present for all engine orders when the rotor
is randomly mistuned, and only for the fewer ones which have the inter-blade phase
angle of the more damped travelling waves when the rotor is alternately mistuned. As
o increases, the energy transfer among travelling waves becomes stronger and it finally
results in the response of the mistuned assembly being independent of the order of the
excitation and the curves in Figure 22 tend to the reciprocal of the tuned response for
very high ¢’s. Asin the alternate mistuning case, these trends hold also for higher levels
of aerodynamic damping, though with a reduced strength (Figure 23).
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7 Conclusions

A comprehensive analysis of the effects of mistuning on turbomachinery aeroelasticity
has been carried out.

The key factors affecting the free response of mistuned rotors are the topology of
the tuned cloud of eigenvalues, the ratio between the level of mistuning and the inter-
blade coupling and the mistuning pattern itself. When the structural mistuning is much
lower or much higher than the aerodynamic terms, the free response of the system takes
place in the travelling wave or in the individual blade mode, respectively. In the former
case, the eigenmodes of the system are characterised by nearly constant amplitudes
of oscillation and nearly constant inter-blade phase angle, whereas in the latter one the
effect of the aerodynamic forces is only to provide a uniform damping for all eigenmodes,
which consist of the vibration of individual blades. For the randomly mistuned assembly,
however, the mistuning levels above which this state occurs are far beyond the worst
current manufacturing tolerances, as proved by the Monte Carlo analyses. The vibration
occurs in the travelling wave mode for the lower levels of mistuning and in an hybrid
form for the higher levels. whose main feature is the localisation of the vibration to a
small group of neighbouring blades.

The double asymptotic analyses prove that the effect of mistuning on the blade
flutter is always stabilising in the limit of very low and very high mistuning-to-coupling
ratios. When this parameter is small, the mistuning enhances the stability of the least
stable travelling wave mode by transferring energy to the other more stable modes by
which it is then dissipated and when it is high, the individual vibrating blades experience
aerodynamic forces due only to their own motion, which are damping ones.

Both theoretical analysis and numerical results indicate that alternate mistuning is
particularly effective in providing improved flutter stability for a given level of mistuning.
This suggests the use of alternate mistuning as a measure for passive flutter control. The
Monte Carlo simulations also demonstrate the improved stability that can be achieved
by simply reordering a set of blades with varying properties due to manufacturing tol-
erances (random-alternate pattern). This method for passive flutter control would be
particularly effective for assemblies with low aerodynamic coupling.

The energy transfer among travelling waves is also the key mechanism through which
mistuning affects the forced response. The mistuned response depends on the damping
of the harmonics involved by the excitation. Alternate mistuning couples only the k"
and the (k + N/2)" Fourier modes for an excitation of order (N — k), whereas random
mistuning involves all modes for any order of the excitation. In the latter case the least
damped Fourier modes worsen the mistuned response for all orders of the excitations
except for those which have its same inter-blade phase angle, since the damping of all
the other modes is higher and brings a beneficial effect. In the alternate mistuning case,
conversely, the response is lower than the tuned one for all engine orders N — k such
that the damping of the travelling wave k is lower than the damping of the travelling
wave k’. Consequently the peak forced response with random mistuning is worse than
the tuned response over a wider range of engine orders than the alternate mistuned is.

Structural mistuning also leads to peak splitting and to the widening of the frequency
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range over which resonance may occur. These effects increase with the level of mistuning
o, whereas the amplifications and the reductions of the mistuned peak response with
respect to the tuned one depend both on the ratio between mistuning and aerodynamic
coupling and on the absolute level of damping, which influence the variations of damping
associated to the travelling waves.

A final observation is that the computational costs of the analyses in this report are
negligible, making the approach very suitable for design optimisation, or even for tai-
lored assembly of blade sets during manufacturing. In particular, the single asymptotic
models and the Monte Carlo simulations can be straightforwardly extended to 3D aeroe-
lastic problems and introduced into everyday design practice, similarly to [6]. This is
made possible by the fact that turbomachinery blades are usually designed keeping the
structural modes well apart each from the other. Consequently, aeroelasticity analyses
can be carried out considering a single degree-of-freedom per blade, corresponding to
the structural mode under investigation.
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Appendix A Eigenvalue/eigenvector perturbation
theory

Consider the eigenvalues and eigenvectors defined by
(D+€eP —A)u =0, (A.1)

where D is a diagonal matrix with distinct eigenvalues and [ is the identity matrix.
When =0, the eigenvalues are equal to the diagonal elements of D

and the eigenvectors are

where e; is the unit vector all of whose elements are zero except for the j%* which is
unity.

When €< 1, the perturbed eigenvalues and eigenvectors can be expressed as asymp-
totic series,

A= A rall e o),

u; = ej+eZc§.?ek+O(62).
ki

Substituting these expressions into equation (A.1), and equating the terms which are
O(e), the k™ row, for k # j, yields

()\](CO) - )\(0)) ng) + ij = 0,

and hence

Looking at the j row, the terms which are O(¢) yield

A =p

5 Ji»
while the terms which are O(€?) yield

@ _ S Pjy, Py
N = D Pkl = ) A0 0

k#j k#j 7 k
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Figure 1: Model problem

€=0.01 €=0.01
1.04— " " " 0.08 : .
—— Linearized
*  Exact —
~J.02 X
gz;‘l £0.04
£ i
- 1 f:j:} ]
0 stable
0.98 """ unstable
-0.06 -0.04 -0.02 O 0 90 1[?0 270 360
Re(sk) K
€=0.03 €=0.03
1.04 T T T 0.08 . :
5
) 10 3004 ‘ 12
g x
19 ' f
15 0t stable v
0.98 unstable
7-0.06 -0.04 -0.02 © 0
Re(sk)

90 ]€O 270 360
k

Figure 2: Exact versus linearised eigenvalues. (N = 20,a_; = —0.4443, ay = —0.3587,
a; = 0.5296,b_1 = —0.0054, by = —1.7000, b; = 1.5688).
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Figure 21: Harmonic content of peak blade response of a randomly mistuned assembly
(bg = —3,0 = 1.5).
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Figure 22: Maximum blade response of randomly mistuned assembly with low level of
aerodynamic damping (by = —3).
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Figure 23: Maximum blade response of randomly mistuned assembly with high level of
aerodynamic damping (by = —8).



