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21 IntrodutionLoal preonditioning has been suessfully utilized to aelerate the onvergene to asteady-state for Euler and Navier-Stokes simulations [1, 2, 3, 4, 5, 6, 7, 8, 9℄. Loal preon-ditioning is introdued into a time-dependent problem as,ut +Pr(u) = 0;` where u is the state vetor of length m, r is the residual vetor of length m, and P isthe m�m preonditioning matrix whih may depend on u in nonlinear problems. Sinepreonditioning e�etively alters the time-dependent properties of the governing partialdi�erential equation, modi�ations to the numerial disretization an be required. Forexample, upwind methods for invisid problems must be based on the harateristis ofthe preonditioned equations instead of the unpreonditioned equations [2℄. Similarly,the behavior of boundary onditions in onjuntion with preonditioning will also bealtered. While the a�et of preonditioning on boundary onditions is known [10, 11,12℄, to date, no quantitative analysis has been performed.The purpose of this paper is to analyze the e�et of preonditioning on several dif-ferent boundary onditions ommonly used in numerial simulations. Spei�ally, weonsider the one-dimensional, preonditioned Euler equations linearized about a steady,uniform, subsoni mean state. The work is an extension of the analysis of Giles [13℄ forthe one-dimensional, unpreonditioned Euler equations by whih the exat eigenmodesand eigenfrequenies of the initial boundary value problem an be analytially deter-mined. From these, we �nd the exponential deay rates for initial perturbations underdi�erent sets of boundary onditions. In addition to reviewing Giles' analysis for the Eu-ler equations, we analyze the Euler equations preonditioned by the Van Leer/Lee/Roe[2℄and Turkel[1℄ preonditioners. Turkel has proposed and analyzed a number of di�erentlow Mah number preonditioners; the one onsidered here is that developed by Weissand Smith [4℄ and subsequently used by many others[6, 7, 9℄. Finally, we demonstratethe validity of the analysis through numerial results for a two-dimensional appliation.2 TheoryWe start with a review of the analysis of the initial boundary value problem by Giles[13℄. The linearized Euler equations are given by,0� e�eqep 1AT +0� �q �� 00 �q ���10 ���2 �q 1A0� e�eqep 1AX = 0; (2.1)where e�, eq, ep are the perturbations to the density, veloity, and pressure, and ��, �q, � arethe undisturbed density, veloity, and speed of sound, whih is related to the pressureand density through �2 = �p=��. The subsoni inow is loated at X = 0 and the outowis at X = L.



3Next, we de�ne the following non-dimensionalizations to simplify the analysis,� � e���; q � eq� ; p � ep���2 ; x � XL ; t � TL=� : (2.2)The non-dimensional version of Equation (2.1) isut +Aux = 0; (2.3)where, u = 0� �qp 1A ; A = 0� M 1 00 M 10 1 M 1A ;and M is the undisturbed Mah number �q=�.The boundary onditions for subsoni ow require two inow quantities and oneoutow quantity to be spei�ed. The inow boundary onditions an be expressed as,Cinu(0; t) = 0; (2.4)where Cin is a 2� 3 matrix dependent on the spei� hoie of inow onditions. Simi-larly, the single outow boundary ondition an be expressed as,Coutu(1; t) = 0; (2.5)where Cout is a 1� 3 matrix dependent on the spei� hoie of outow ondition.Equations (2.3), (2.4) and (2.5) represent the initial boundary value problem for theunpreonditioned Euler equations. An eigenmode of the initial boundary value problemis given by, u = e�i!t 3Xj=1 �jei!x=�jrj: (2.6)rj and �j are the right eigenvetors and eigenvalues, respetively, of the matrix A, i.e.,(A� �jI) rj = 0:In the following developments, we assume that the eigenvalues have been ordered suhthat the two forward-moving harateristis are j=1; 2 (i.e. �1;2 > 0) and the bakward-moving harateristi is j = 3 (i.e. �3 < 0). The eigenfrequeny ! and haraterististrengths �j are determined by the boundary onditions. For the inow boundary,substitution of Equation (2.6) into Equation (2.4) leads to,� b11 b12 b13b21 b22 b23 �0� �1�2�3 1A = 0; (2.7)where � b11 b12 b13b21 b22 b23 � = Cin � r1 r2 r3 � : (2.8)



4A neessary ondition for the well-posedness of the initial boundary value problem isthat the inoming harateristis, �1 and �2, an be determined as funtions of theoutgoing harateristi, �3. This requires that the 2� 2 matrix,� b11 b12b21 b22 �is non-singular. Also, the boundary ondition at the inow will be non-reeting if theoutgoing harateristi does not ause a perturbation in the inoming harateristis.Thus the ondition to be non-reeting is that b13 = b23 = 0.For the outow boundary, substitution of Equation (2.6) into Equation (2.5) leadsto, � b31 b32 b33 �0� �1�2�3 1A = 0; (2.9)where � b31 b32 b33 � = Cout � ei!=�1r1 ei!=�2r2 ei!=�3r3 � : (2.10)In this ase, well-posedness of the initial boundary value problem requires that theinoming harateristi, �3, an be determined as a funtion of the outgoing harater-istis, �1 and �2. Thus, b33 must be non-zero. Also, the boundary ondition at theoutow will be non-reeting if b31 = b32 = 0.The inow and outow boundary onditions in Equations (2.7) and (2.9) an beombined as, B(!)0� �1�2�3 1A = 0: (2.11)In order for a non-trivial solution of the initial boundary value problem to exist, a non-zero vetor, (�1; �2; �3)T , must exist whih satis�es Equation (2.11). This is possibleonly for values of ! for whih, detB(!) = 0:Separating the eigenfrequeny into its real and imaginary parts, ! = !r + i!i, theamplitude of the eigenmodes grows as exp(!it). Thus, for the eigenmodes to deay, werequire that !i < 0 for all eigenfrequenies. We also note that the steady-state problemis well-posed if, and only if, detB(0) is non-zero [13℄.Within a omputational simulation, one indiator of the onvergene rate is atuallythe deay per time step or yle. Assuming the time step is given by a CFL ondi-tion of the form �t = ��x=�max where � is a onstant dependent on the temporalintegration, �x is the ell size, and �max is the maximum amplitude eigenvalue, then!i�t = !i=�max��x. Sine � and �x depend on the iterative sheme and the ompu-tational grid, respetively, we will use !i=�max as a measure of onvergene rate sinethis ratio only depends on the governing ow equations and the orresponding boundaryonditions. In the following, we will refer to !i=�max as the rate of deay or deay rate.Note, a more traditional measure of onvergene rate is the deay fator per yle. If



5the deay fator per yle were solely due to the propagation of solution error out of theomputational domain, then the deay fator would be,deay fator = exp (!i�t) ;= exp� !i�max ��x� :The above is the analysis for the unpreonditioned Euler equations. When using pre-onditioning the non-dimensional p.d.e. beomesut +PAux = 0; (2.12)and so the right eigenvetors and assoiated eigenvalues are de�ned by(PA� �jI) rj = 0:The rest of the analysis remains unaltered.3 Analysis3.1 No preonditioningIn the absene of any preonditioning the eigenvalues of A are �1;2;3 = M; M+1; M�1,and the eigenvetors are � r1 r2 r3 � = 0� 1 1 10 1 �10 1 1 1A : (3.1)The �rst eigenmode orresponds to the onvetion of an entropy variation. The other twomodes orrespond to aousti waves traveling downstream and upstream, respetively.The maximum eigenvalue is �max = M+1 orresponding to the downstream-runningaousti wave.3.1.1 Riemann boundary onditionsWe �rst onsider the spei�ation of Riemann invariants at both boundaries. In theiroriginal nonlinear dimensional form, these areX = 0; 8><>: p0=�0 = �p=��;q0 + 2 � 10 = �q + 2 � 1�;X = L; q0 � 2 � 10 = �q � 2 � 1�;



6where the primed quantities are the sum of the undisturbed state and the orrespondingperturbation,e.g. p0 = �p + ep. Linearization and non-dimensionalization of the boundary onditionsgives, Cin = � �1 0 1�1 �1  � ; Cout = � 1 �1 � � :from whih we obtain the matrix B,B = 0� �1 0 0�1 2(�1) 0ei!=�1 0 �2(�1)ei!=�3 1A :b13 and b23 are both equal to zero, so the inow boundary ondition is perfetly non-reeting. On the other hand, b31 is non-zero so the outow boundary ondition ispartially reeting. Consequently, all initial perturbations will disappear entirely inthe �nite time it takes for the entropy harateristi to onvet from the inow to theoutow, plus the time it takes for the reeted upstream-propagating aousti wave toreah the inow.This omplete deay of initial perturbations in a �nite time is mirrored in the fatthat the determinant of B is detB = 4(�1)2ei!=�3 ;and setting this equal to zero would require that !i = �1, giving an in�nite rate ofexponential deay.3.1.2 Entropy, stagnation enthalpy at inow; pressure at outowAnother ommon set of boundary onditions for subsoni, internal ows is the spei�a-tion of entropy and stagnation enthalpy at the inow and pressure at the outow. Forthese boundary onditions, we obtainCin = � �1 0 1�1 (�1)M  � ; Cout = � 0 0 1 � ;and hene B = 0� �1 0 0�1 (�1)(1+M) (�1)(1�M)0 ei!=�2 ei!=�3 1A :The eigenfrequenies are determined bydetB = (�1) �(1�M)ei!=�2 � (1+M)ei!=�3� = 0:whih gives ! = 1�M22 ��i log�1+M1�M� + 2n�� ; for integer n:



7Thus there is an in�nite set of disrete eigenfrequenies, all with the negative growthrate !i = � 1�M22 log�1+M1�M� ) !i=�max = � 1�M2 log�1+M1�M� ;proving that all initial disturbanes will deay exponentially to zero. Note however thatas M ! 0 the rate of deay also tends towards zero, implying that the onvergene ratefor numerial omputations will beome poor at low Mah numbers.3.1.3 Veloity, temperature at inow; pressure at outowThe �nal set of boundary onditions we onsider is setting the veloity and temperatureat the inow and the pressure at the outow. For these boundary onditions, whih arefairly ommon in low speed visous ow appliations, we getCin = � 0 1 0�1 0  � ; Cout = � 0 0 1 � ;and B = 0� 0 1 �1�1 0 (�1)M0 ei!=�2 ei!=�3 1A :Equating the determinant to zero gives! = (1�M2) (n+ 12) �; for integer n:The purely real nature of ! means that initial disturbanes do not deay as time proeeds.In pratie, initial disturbanes in a numerial omputation would probably die out dueto the ation of numerial smoothing, but the onvergene would be exeedingly slow,and would get very muh worse as the grid is re�ned.3.2 Van Leer/Lee/Roe preonditionerWith the one-dimensional version of the Van Leer/Lee/Roe preonditioner [2, 14℄, theresultant PA matrix is, PA = 0� M 0 �2M0 M 20 0 �M 1A :The spei� form of P is desribed in the Appendix. The eigenvalues of PA are �1;2;3 =M; M; �M , and the eigenvetors are,� r1 r2 r3 � = 0� 1 0 M0 1 �10 0 M 1A : (3.2)



83.2.1 Riemann boundary onditionsThe boundary ondition matries Cin and Cout are una�eted by the preonditioning,but the hange to the eigenvetors means that B is nowB = 0� �1 0 0�1 �1 (�1)(M � 1)ei!=M (�1)ei!=M �(�1)(M + 1)e�i!=M 1A :In ontrast to the unpreonditioned Euler equations, b23 and b32 are now both non-zero,and so the Riemann boundary onditions are reetive for the preonditioned Eulerequations. The determinant of B is,detB = �(�1)2 �(M � 1)ei!=M + (M + 1)e�i!=M� ;and the eigenfrequenies whih result in a zero determinant are!r = Mn�; for integer n;!i = �M2 log�1 +M1�M� :Sine �max =M for this preonditioned system,!i=�max = �12 log�1 +M1�M� :In partiular, we note that asM ! 0, !i=�max ! 0. Thus, at low Mah numbers, distur-banes will not deay rapidly, indiating that the use of Riemann boundary onditionsbased on the Euler equations is likely to impede onvergene to a steady state.3.2.2 Entropy, stagnation enthalpy at inow; pressure at outowFor these boundary onditions, we obtainB = 0� �1 0 0�1 (�1)M 00 0 Me�i!=M 1A :We note that b13 = b23 = b31 = b32 = 0. Thus, outgoing waves do not generate anyreetions at either the inow or outow boundaries. Disturbanes are eliminated in thetime it takes for all of the harateristis to propagate from one end to the other. Thisis veri�ed by setting the determinant of B equal to zero,detB = �(�1)M2e�i!=M = 0;whih requires that !i = �1. This is in ontrast to the results for the unpreonditionedEuler equations for whih the boundary onditions are reetive, and the exponentialdeay rate is �nite.



9This surprising result an be further understood by onsidering the preonditionedequations re-written with entropy (s), stagnation enthalpy (H), and pressure (p) as thedependent states. These equations (with appropriate non-dimensionalization) are0� sHp 1At +0� M 0 00 M 00 0 �M 1A0� sHp 1Ax = 0: (3.3)Thus, the preonditioned Euler equations are a set of deoupled advetion equations forentropy, stagnation enthalpy, and pressure in whih entropy and stagnation enthalpypropagate downstream and the pressure propagates upstream. Hene, these boundaryonditions are atually harateristi boundary onditions and non-reetive.3.2.3 Veloity, temperature at inow; pressure at outowFor these boundary onditions, we �nd thatB = 0� 0 1 �1�1 0 (�1)M0 0 Me�i!=M 1A :Comparing this to the matrix B without preonditioning, the signi�ant di�erene isthat b32 is zero, in addition to b31, and so the outow boundary ondition is now perfetlynon-reeting (i.e. !i = �1). This is beause the upstream propagating harateristiwave is a pressure perturbation (see Equation (3.3)), and so the imposition of the exitpressure �xes the value of the upstream propagating harateristi.The non-reeting outow boundary ondition results as usual in the eliminationof initial transients within a �nite time, in marked ontrast to the unpreonditionedbehavior in whih the initial transients persist inde�nitely. The fat that the inowboundary ondition is reeting means that the �nite onvergene time is equal to thesum of the times taken for harateristis to travel up and down the domain, whihis preisely double that required when speifying the entropy and stagnation enthalpyinstead at the inow boundary.3.3 Turkel preonditionerFor the one-dimensional form of the Turkel preonditioner[1℄ employed by Weiss andSmith [4℄, the resultant PA matrix is,PA = 0� M � M(��1)0 M 10 � M� 1A :The spei� form of P is again desribed in the Appendix. The eigenvalues of PA are�1 = M; �2 = 12 (M(1+�) + �) ; �3 = 12 (M(1+�)� �) ;



10with � =p(1��)2M2 + 4�, and the eigenvetors are� r1 r2 r3 � = 0BB� 1 1 10 M(1��)+�2� M(1��)��2�0 1 1 1CCA :To make the three eigenvalues of the same order of magnitude at low Mah numbers, itis usual to de�ne � to be � = minf1; �M2g: (3.4)where � is a onstant typially taken from 1 � � � 4. Note that when �=1, P reduesto the identity matrix. Therefore, the de�nition of � ensures that the preonditioning isswithed o� in a ontinuous manner when the Mah number reahes 1=p�.3.3.1 Riemann boundary onditionsThe matrix B isB = 0BBB� �1 0 0�1 (�1) hM(1��)+�2� + 1i (�1) hM(1��)��2� + 1iei!=�1 (�1) hM(1��)+�2� � 1i ei!=�2 (�1) hM(1��)��2� � 1i ei!=�3 1CCCA ;and hene the eigenfrequenies whih make its determinant equal to zero are!r = �2�3�3��2 2n�; for integer n;!i = � �2�3�3��2 log��+ 1 + ��+ 1� �� :Thus, sine the largest eigenvalue is �max = �2,!i=�max = � �3�3��2 log�� + 1 + ��+ 1� �� :Sine �2�3=(�3��2) is positive, this means there is a �nite rate of exponential deay ofinitial transients, due to the reetive nature of the boundary onditions in onjuntionwith the Turkel preonditioner. Even worse, as M ! 0, �+1+��+1�� ! 1 and so the rate ofdeay tends to zero at low Mah numbers indiating very poor onvergene to the steadystate. Note that, �3�3��2 = 12 �1� M� (1 + �)� ;and as M!0, �3=(�3��2)! 12(1� 1=p1 + 4�) whih remains �nite.



113.3.2 Entropy, stagnation enthalpy at inow; pressure at outowThe matrix B isB = 0BB� �1 0 0�1 (�1) hM2(1��)+M�2� + 1i (�1) hM2(1��)�M�2� + 1i0 ei!=�2 ei!=�3 1CCA ;and hene the eigenfrequenies are!r = �2�3�3��2 2n�; for integer n;!i = � �2�3�3��2 log �M2(1� �) + 2�+M�M2(1� �) + 2��M� � ;!i=�max = � �3�3��2 log �M2(1� �) + 2�+M�M2(1� �) + 2��M� � :These boundary onditions give a �nite rate of exponential deay when used with theTurkel preonditioner. In addition, as M! 0, M2(1��)+2�+M�M2(1��)+2��M� ! 1+2�+p1+4�1+2��p1+4� and so thethe rate of deay remains �nite. However, this is still not quite as good as the �nitetime onvergene ahieved with the same boundary onditions in onjuntion with theVan Leer/Lee/Roe preonditioner.3.3.3 Veloity, temperature at inow; pressure at outowThe matrix B is B = 0BB� �1 �1 �10 M(1��)+�2� M(1��)��2�0 ei!=�2 ei!=�3 1CCA ;and so the eigenfrequenies are!r = �2�3�3��2 (2n+1) �; for integer n;!i = � �2�3�3��2 log �� +M(1��)� �M(1��)� ;!i=�max = � �3�3��2 log �� +M(1��)� �M(1��)� :When M ! 0, �+M(1��)��M(1��) ! p1+4� + 1p1+4� � 1 and so the rate of deay remains �nite and anyinitial disturbane will deay exponentially.
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(b) Cp ontours, M = 0:1.Figure 1: Sample dut grid and pressure oeÆient data.4 Numerial ResultsTo illustrate the e�et of di�erent boundary onditions on numerial onvergene as wellas hek the auray of the analysis, we simulate the two-dimensional ow in a dutwith a straight upper wall and a bump on the lower wall between 0 � x � 1 desribedby y = 0:042 sin2(�x). The domain is 5 unit lengths long and 2 lengths high. The gridis strutured with lustering toward the wall boundary.We use the numerial algorithm desribed by Darmofal and Siu [9℄ whih employsthe semi-oarsening tehnique of Mulder [15, 16℄ in onjuntion with a multi-stage, blokJaobi relaxation[17, 18℄. The disretization is a 2nd order upwind sheme with a Roeapproximate Riemann solver [19℄. The alulations are performed on a grid of 32� 16ells. A three level, V-yle is utilized with 2 pre- and post-smoothing iterations at eahlevel. All alulations are initialized to uniform ow. The grid and a typial distribution



13of pressure oeÆient are shown in Figure 1.The Turkel preonditioner analyzed in Setion 3.3 is used in the simulations. Asopposed to the � de�nition given in Equation (3.4), Darmofal and Siu[9℄ have foundslightly better onvergene is obtained for a blok Jaobi iterative sheme when � isgiven by, �ut = � M2=(1� �2utM2) for M < Mut;1 for M �Mut; (4.1)where �2ut = (1 �M2ut)=M2ut and Mut is the user-de�ned Mah number above whihno preonditioning is used. For the results in this paper, we use Mut = 0:5. For thisde�nition of �, the value of !i=�max is plotted versus Mah number in Figure 2 (a) forthe three sets of boundary onditions. For the Euler Riemann boundary onditions, thedeay rate learly approahes zero as M ! 0; however, as M ! 0:5, preonditioningis turned o� and the Riemann boundary onditions are non-reetive (thus, !i=�max !�1). The entropy, enthalpy, and pressure boundary onditions (SHP) have a �niterate of deay and for M < 0:3 have the fastest deay rate of the three sets of boundaryonditions. Above this Mah number, the Riemann boundary onditions are the fastestdeaying. Finally, the veloity, temperature, and pressure (QTP) boundary onditionshave a �nite rate of deay for low Mah numbers but as M ! 0:5, !i ! 0. ForM > 0:2,the QTP boundary onditions have the slowest rate of deay of the three boundaryonditions.We have implemented the boundary onditions desribed above by onstruting aboundary fae state vetor and alulating the boundary ux diretly from this statevetor. For example, at an inow for the SHP boundary onditions, entropy, enthalpy,and the tangential veloity are presribed from the exterior and the pressure is extrap-olated from the interior. At an outow, we reverse the proedure and speify pressurefrom the exterior and extrapolate entropy, enthalpy, and tangential veloity from the in-terior. Note, regardless of the spei� boundary onditions, we always use the tangentialveloity as the additional variable for the two-dimensional boundary implementation.The number of yles required to onverge the solution six orders of magnitude fromthe initial residual are given in Table 1. Also, the onvergene behavior is plotted inFigure 2(b). Spei�ally, we plot the variation of �1=yles whih would proportionalto the analyti deay rate in Figure 2(a) if the analysis was a reasonable model of theomputation. As an be learly seen, the analytial and omputational results behavequite similarly. At low Mah numbers, the Riemann boundary onditions are unstablewhile the SHP boundary onditions perform best. The veloity, temperature, pressureboundary (QTP) onditions are about 75% more expensive than the SHP onditions forlow Mah numbers. At the higher Mah numbers, the Riemann boundary ondition asesbegin to onverge and the number of yles dereases with inreasing Mah number. Inpartiular, the Riemann boundary onditions onverge faster than the QTP and SHPboundary onditions for approximately M > 0:3 and 0:45, respetively.
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15Mah Riemann SHP QTP0.001 UNS 8 130.01 UNS 8 130.1 UNS 8 130.2 20 8 140.3 14 8 150.4 11 8 180.5 9 10 20Table 1: Number of yles required to drop residual six orders of magnitude for di�erentMah numbers and boundary onditions. Riemann: Euler Riemann invariant boundaryonditions from Setion 3.1.1. SHP: entropy, enthalpy, pressure boundary onditionsfrom Setion 3.1.2. QTP: veloity, temperature, pressure boundary onditions fromSetion 3.1.3. UNS: algorithm was unstable and aborted with in�nite residual.5 Final remarksThe present analysis of the Euler equations with two forms of low Mah number preon-ditioning shows the quite signi�ant e�et of the preonditioning on the e�etiveness ofboundary onditions in eliminating initial transients.Boundary onditions based on the Riemann invariants of the Euler equations arefound to be reetive in onjuntion with preonditioning, whereas they are non-reetingat the inow without it; the problem is most detrimental at low Mah numbers wherethe perturbation deay rate approahes zero.Boundary onditions whih speify entropy and stagnation enthalpy at an inowand pressure at an outow are found to be non-reetive with the Van Leer/Lee/Roepreonditioning, and weakly non-reetive in the other two ases. Numerial resultson�rm that this is the best of the three boundary onditions onsidered over a widerange of Mah numbers.The spei�ation of veloity and density at the inow and pressure at the outow isfound to be non-reeting for the Van Leer/Lee/Roe preonditioning and weakly ree-tive for the Turkel preonditioning. However, for the unpreonditioned Euler equationsthey provide no damping of initial transients in the absene of numerial smoothing.There are many other boundary onditions whih ould have been onsidered. Onepossibility, whih is partiularly appropriate for airfoil appliations in whih the entirefar-�eld ow state is known, would be to use linear harateristi boundary onditions.By design these are perfetly non-reeting, but their onstrution is based upon theharateristi eigenvetors; hanging the preonditioning therefore requires a hange tothe formulation of the boundary onditions. Pursuing this approah, in multiple di-mensions the 1D harateristi boundary onditions will only be perfetly non-reetingwhen the outgoing waves have waverests whih are aligned with the boundary. To mini-mize the reetion when the wave inidene is not normal it would be possible to employhigher order methods whih have been suessfully developed for the Euler equations



16[20, 21, 22℄.Finally, for ases in whih the partiular hoie of boundary onditions is determinedby other fators, an interesting possibility would be to inorporate boundary onditiononsiderations into the design of the preonditioner, so that the ombination of thepreonditioner and the boundary onditions is non-reetive.Referenes[1℄ E. Turkel. Preonditioned methods for solving the inompressible and low speedompressible equations. Journal of Computational Physis, 72:277{298, 1987.[2℄ B. Van Leer, W.T. Lee, and P.L. Roe. Charateristi time-stepping or loal pre-onditioning of the Euler equations. AIAA Paper 91-1552, 1991.[3℄ Y.H. Choi and C.L. Merkle. The appliation of preonditioning in visous ows.Journal of Computational Physis, 105:203{223, 1993.[4℄ J.M. Weiss and W.A. Smith. Preonditioning applied to variable and onstantdensity ows. AIAA Journal, 33(11):2050{2057, 1995.[5℄ E. Turkel, V.N. Vatsa, and R. Radespiel. Preonditioning methods for low-speedows. AIAA Paper 96-2460, 1996.[6℄ D. Jespersen, T. Pulliam, and P. Buning. Reent enhanements to OVERFLOW.AIAA Paper 97-0644, 1997.[7℄ D. Mavriplis. Multigrid strategies for visous ow solvers on anisotropi unstru-tured meshes. AIAA Paper 97-1952, 1997.[8℄ D.L. Darmofal and B. Van Leer. Loal preonditioning: Manipulating MotherNature to fool Father Time. In M. Hafez and D.A. Caughey, editors, Computingthe Future II: Advanes and Prospets in Computational Aerodynamis. John Wileyand Sons, 1998.[9℄ D.L. Darmofal and K. Siu. A robust multigrid algorithm for the Euler equationswith loal preonditioning and semi-oarsening. Journal of Computational Physis,151:728{756, 1999.[10℄ W.T. Lee. Loal preonditioning of the Euler equations. PhD thesis, University ofMihigan, 1991.[11℄ A.C. Godfrey. Steps toward a robust preonditioning. AIAA Paper 94-0520, 1994.[12℄ E. Turkel, R. Radespiel, and N. Kroll. Assessment of two preonditioning methodsfor aerodynami problems. Computers and Fluids, 26:613{634, 1997.



17[13℄ M.B. Giles. Eigenmode analysis of unsteady one-dimensional Euler equations.ICASE Report No. 83-47, 1983.[14℄ D. Lee. Loal preonditioning of the Euler and Navier-Stokes equations. PhD thesis,University of Mihigan, 1996.[15℄ W.A. Mulder. A new approah to onvetion problems. Journal of ComputationalPhysis, 83:303{323, 1989.[16℄ W.A. Mulder. A high resolution Euler solver based on multigrid, semi-oarsening,and defet orretion. Journal of Computational Physis, 100:91{104, 1992.[17℄ J.F. Lynn and B. Van Leer. Multi-stage shemes for the Euler and Navier-Stokesequations with optimal smoothing. AIAA Paper 93-3355, 1993.[18℄ S.R. Allmaras. Analysis of a loal matrix preonditioner for the 2-D Navier-Stokesequations. AIAA Paper 93-3330, 1993.[19℄ P.L. Roe. Approximate Riemann solvers, parametri vetors, and di�ereneshemes. Journal of Computational Physis, 43:357{372, 1981.[20℄ B. Engquist and A. Majda. Absorbing boundary onditions for the numerial sim-ulation of waves. Mathematis of Computation, 31:629{651, 1977.[21℄ M.B. Giles. Non-reeting boundary onditions for Euler equation alulations.AIAA Journal, 28(12):2050{2058, 1990.[22℄ M.B. Giles. Non-reeting boundary onditions for unsteady airfoil alulations. InProeedings of Third International Conferene on Hyperboli Problems. Chartwell-Bratt, 1990.AppendixThe one-dimensional Van Leer/Lee/Roe and Turkel preonditioners [14, 1℄ are usuallyderived using the symmetrizing variables whih in dimensional form are (ep=���; eq; ep ��2e�). Using Equation (2.2), the non-dimensional symmetrizing variables are,v = � p; q; p� � �T ;and are related to the u = (�; q; p)T variables through the transformation, v = Su,where, S = 0� 0 0 10 1 0�1 0 1 1A :The preonditioned Euler equations in terms of v are,vt +PvAvvx = 0;



18where, Pv = SPS�1, and, Av = SAS�1 = 0� M 1 01 M 00 0 M 1A :The one-dimensional Van Leer/Lee/Roe preonditioner is given by,Pv = 0� M2�2 �M�2 0�M�2 1 + 1�2 00 0 1 1A ;whih results in P = S�1PvS = 0B� 1 �M�2 M2�2 � 10 1 + 1�2 �M�20 �M�2 M2�2 1CA ;where �2 = 1�M2.The one-dimensional form of the Turkel preonditioner[1℄ employed by Weiss andSmith [4℄ is given by, Pv = 0� � 0 00 1 00 0 1 1A ;whih results in P = S�1PvS = 0� 1 0 ��10 1 00 0 � 1A :


