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21 Introdu
tionLo
al pre
onditioning has been su

essfully utilized to a

elerate the 
onvergen
e to asteady-state for Euler and Navier-Stokes simulations [1, 2, 3, 4, 5, 6, 7, 8, 9℄. Lo
al pre
on-ditioning is introdu
ed into a time-dependent problem as,ut +Pr(u) = 0;` where u is the state ve
tor of length m, r is the residual ve
tor of length m, and P isthe m�m pre
onditioning matrix whi
h may depend on u in nonlinear problems. Sin
epre
onditioning e�e
tively alters the time-dependent properties of the governing partialdi�erential equation, modi�
ations to the numeri
al dis
retization 
an be required. Forexample, upwind methods for invis
id problems must be based on the 
hara
teristi
s ofthe pre
onditioned equations instead of the unpre
onditioned equations [2℄. Similarly,the behavior of boundary 
onditions in 
onjun
tion with pre
onditioning will also bealtered. While the a�e
t of pre
onditioning on boundary 
onditions is known [10, 11,12℄, to date, no quantitative analysis has been performed.The purpose of this paper is to analyze the e�e
t of pre
onditioning on several dif-ferent boundary 
onditions 
ommonly used in numeri
al simulations. Spe
i�
ally, we
onsider the one-dimensional, pre
onditioned Euler equations linearized about a steady,uniform, subsoni
 mean state. The work is an extension of the analysis of Giles [13℄ forthe one-dimensional, unpre
onditioned Euler equations by whi
h the exa
t eigenmodesand eigenfrequen
ies of the initial boundary value problem 
an be analyti
ally deter-mined. From these, we �nd the exponential de
ay rates for initial perturbations underdi�erent sets of boundary 
onditions. In addition to reviewing Giles' analysis for the Eu-ler equations, we analyze the Euler equations pre
onditioned by the Van Leer/Lee/Roe[2℄and Turkel[1℄ pre
onditioners. Turkel has proposed and analyzed a number of di�erentlow Ma
h number pre
onditioners; the one 
onsidered here is that developed by Weissand Smith [4℄ and subsequently used by many others[6, 7, 9℄. Finally, we demonstratethe validity of the analysis through numeri
al results for a two-dimensional appli
ation.2 TheoryWe start with a review of the analysis of the initial boundary value problem by Giles[13℄. The linearized Euler equations are given by,0� e�eqep 1AT +0� �q �� 00 �q ���10 ���
2 �q 1A0� e�eqep 1AX = 0; (2.1)where e�, eq, ep are the perturbations to the density, velo
ity, and pressure, and ��, �q, �
 arethe undisturbed density, velo
ity, and speed of sound, whi
h is related to the pressureand density through �
2 = 
�p=��. The subsoni
 in
ow is lo
ated at X = 0 and the out
owis at X = L.



3Next, we de�ne the following non-dimensionalizations to simplify the analysis,� � e���; q � eq�
 ; p � ep���
2 ; x � XL ; t � TL=�
 : (2.2)The non-dimensional version of Equation (2.1) isut +Aux = 0; (2.3)where, u = 0� �qp 1A ; A = 0� M 1 00 M 10 1 M 1A ;and M is the undisturbed Ma
h number �q=�
.The boundary 
onditions for subsoni
 
ow require two in
ow quantities and oneout
ow quantity to be spe
i�ed. The in
ow boundary 
onditions 
an be expressed as,Cinu(0; t) = 0; (2.4)where Cin is a 2� 3 matrix dependent on the spe
i�
 
hoi
e of in
ow 
onditions. Simi-larly, the single out
ow boundary 
ondition 
an be expressed as,Coutu(1; t) = 0; (2.5)where Cout is a 1� 3 matrix dependent on the spe
i�
 
hoi
e of out
ow 
ondition.Equations (2.3), (2.4) and (2.5) represent the initial boundary value problem for theunpre
onditioned Euler equations. An eigenmode of the initial boundary value problemis given by, u = e�i!t 3Xj=1 �jei!x=�jrj: (2.6)rj and �j are the right eigenve
tors and eigenvalues, respe
tively, of the matrix A, i.e.,(A� �jI) rj = 0:In the following developments, we assume that the eigenvalues have been ordered su
hthat the two forward-moving 
hara
teristi
s are j=1; 2 (i.e. �1;2 > 0) and the ba
kward-moving 
hara
teristi
 is j = 3 (i.e. �3 < 0). The eigenfrequen
y ! and 
hara
teristi
strengths �j are determined by the boundary 
onditions. For the in
ow boundary,substitution of Equation (2.6) into Equation (2.4) leads to,� b11 b12 b13b21 b22 b23 �0� �1�2�3 1A = 0; (2.7)where � b11 b12 b13b21 b22 b23 � = Cin � r1 r2 r3 � : (2.8)



4A ne
essary 
ondition for the well-posedness of the initial boundary value problem isthat the in
oming 
hara
teristi
s, �1 and �2, 
an be determined as fun
tions of theoutgoing 
hara
teristi
, �3. This requires that the 2� 2 matrix,� b11 b12b21 b22 �is non-singular. Also, the boundary 
ondition at the in
ow will be non-re
e
ting if theoutgoing 
hara
teristi
 does not 
ause a perturbation in the in
oming 
hara
teristi
s.Thus the 
ondition to be non-re
e
ting is that b13 = b23 = 0.For the out
ow boundary, substitution of Equation (2.6) into Equation (2.5) leadsto, � b31 b32 b33 �0� �1�2�3 1A = 0; (2.9)where � b31 b32 b33 � = Cout � ei!=�1r1 ei!=�2r2 ei!=�3r3 � : (2.10)In this 
ase, well-posedness of the initial boundary value problem requires that thein
oming 
hara
teristi
, �3, 
an be determined as a fun
tion of the outgoing 
hara
ter-isti
s, �1 and �2. Thus, b33 must be non-zero. Also, the boundary 
ondition at theout
ow will be non-re
e
ting if b31 = b32 = 0.The in
ow and out
ow boundary 
onditions in Equations (2.7) and (2.9) 
an be
ombined as, B(!)0� �1�2�3 1A = 0: (2.11)In order for a non-trivial solution of the initial boundary value problem to exist, a non-zero ve
tor, (�1; �2; �3)T , must exist whi
h satis�es Equation (2.11). This is possibleonly for values of ! for whi
h, detB(!) = 0:Separating the eigenfrequen
y into its real and imaginary parts, ! = !r + i!i, theamplitude of the eigenmodes grows as exp(!it). Thus, for the eigenmodes to de
ay, werequire that !i < 0 for all eigenfrequen
ies. We also note that the steady-state problemis well-posed if, and only if, detB(0) is non-zero [13℄.Within a 
omputational simulation, one indi
ator of the 
onvergen
e rate is a
tuallythe de
ay per time step or 
y
le. Assuming the time step is given by a CFL 
ondi-tion of the form �t = ��x=�max where � is a 
onstant dependent on the temporalintegration, �x is the 
ell size, and �max is the maximum amplitude eigenvalue, then!i�t = !i=�max��x. Sin
e � and �x depend on the iterative s
heme and the 
ompu-tational grid, respe
tively, we will use !i=�max as a measure of 
onvergen
e rate sin
ethis ratio only depends on the governing 
ow equations and the 
orresponding boundary
onditions. In the following, we will refer to !i=�max as the rate of de
ay or de
ay rate.Note, a more traditional measure of 
onvergen
e rate is the de
ay fa
tor per 
y
le. If



5the de
ay fa
tor per 
y
le were solely due to the propagation of solution error out of the
omputational domain, then the de
ay fa
tor would be,de
ay fa
tor = exp (!i�t) ;= exp� !i�max ��x� :The above is the analysis for the unpre
onditioned Euler equations. When using pre-
onditioning the non-dimensional p.d.e. be
omesut +PAux = 0; (2.12)and so the right eigenve
tors and asso
iated eigenvalues are de�ned by(PA� �jI) rj = 0:The rest of the analysis remains unaltered.3 Analysis3.1 No pre
onditioningIn the absen
e of any pre
onditioning the eigenvalues of A are �1;2;3 = M; M+1; M�1,and the eigenve
tors are � r1 r2 r3 � = 0� 1 1 10 1 �10 1 1 1A : (3.1)The �rst eigenmode 
orresponds to the 
onve
tion of an entropy variation. The other twomodes 
orrespond to a
ousti
 waves traveling downstream and upstream, respe
tively.The maximum eigenvalue is �max = M+1 
orresponding to the downstream-runninga
ousti
 wave.3.1.1 Riemann boundary 
onditionsWe �rst 
onsider the spe
i�
ation of Riemann invariants at both boundaries. In theiroriginal nonlinear dimensional form, these areX = 0; 8><>: p0=�0
 = �p=��
;q0 + 2
 � 1
0 = �q + 2
 � 1�
;X = L; q0 � 2
 � 1
0 = �q � 2
 � 1�
;



6where the primed quantities are the sum of the undisturbed state and the 
orrespondingperturbation,e.g. p0 = �p + ep. Linearization and non-dimensionalization of the boundary 
onditionsgives, Cin = � �1 0 1�1 
�1 
 � ; Cout = � 1 
�1 �
 � :from whi
h we obtain the matrix B,B = 0� �1 0 0�1 2(
�1) 0ei!=�1 0 �2(
�1)ei!=�3 1A :b13 and b23 are both equal to zero, so the in
ow boundary 
ondition is perfe
tly non-re
e
ting. On the other hand, b31 is non-zero so the out
ow boundary 
ondition ispartially re
e
ting. Consequently, all initial perturbations will disappear entirely inthe �nite time it takes for the entropy 
hara
teristi
 to 
onve
t from the in
ow to theout
ow, plus the time it takes for the re
e
ted upstream-propagating a
ousti
 wave torea
h the in
ow.This 
omplete de
ay of initial perturbations in a �nite time is mirrored in the fa
tthat the determinant of B is detB = 4(
�1)2ei!=�3 ;and setting this equal to zero would require that !i = �1, giving an in�nite rate ofexponential de
ay.3.1.2 Entropy, stagnation enthalpy at in
ow; pressure at out
owAnother 
ommon set of boundary 
onditions for subsoni
, internal 
ows is the spe
i�
a-tion of entropy and stagnation enthalpy at the in
ow and pressure at the out
ow. Forthese boundary 
onditions, we obtainCin = � �1 0 1�1 (
�1)M 
 � ; Cout = � 0 0 1 � ;and hen
e B = 0� �1 0 0�1 (
�1)(1+M) (
�1)(1�M)0 ei!=�2 ei!=�3 1A :The eigenfrequen
ies are determined bydetB = (
�1) �(1�M)ei!=�2 � (1+M)ei!=�3� = 0:whi
h gives ! = 1�M22 ��i log�1+M1�M� + 2n�� ; for integer n:



7Thus there is an in�nite set of dis
rete eigenfrequen
ies, all with the negative growthrate !i = � 1�M22 log�1+M1�M� ) !i=�max = � 1�M2 log�1+M1�M� ;proving that all initial disturban
es will de
ay exponentially to zero. Note however thatas M ! 0 the rate of de
ay also tends towards zero, implying that the 
onvergen
e ratefor numeri
al 
omputations will be
ome poor at low Ma
h numbers.3.1.3 Velo
ity, temperature at in
ow; pressure at out
owThe �nal set of boundary 
onditions we 
onsider is setting the velo
ity and temperatureat the in
ow and the pressure at the out
ow. For these boundary 
onditions, whi
h arefairly 
ommon in low speed vis
ous 
ow appli
ations, we getCin = � 0 1 0�1 0 
 � ; Cout = � 0 0 1 � ;and B = 0� 0 1 �1�1 0 (
�1)M0 ei!=�2 ei!=�3 1A :Equating the determinant to zero gives! = (1�M2) (n+ 12) �; for integer n:The purely real nature of ! means that initial disturban
es do not de
ay as time pro
eeds.In pra
ti
e, initial disturban
es in a numeri
al 
omputation would probably die out dueto the a
tion of numeri
al smoothing, but the 
onvergen
e would be ex
eedingly slow,and would get very mu
h worse as the grid is re�ned.3.2 Van Leer/Lee/Roe pre
onditionerWith the one-dimensional version of the Van Leer/Lee/Roe pre
onditioner [2, 14℄, theresultant PA matrix is, PA = 0� M 0 �2M0 M 20 0 �M 1A :The spe
i�
 form of P is des
ribed in the Appendix. The eigenvalues of PA are �1;2;3 =M; M; �M , and the eigenve
tors are,� r1 r2 r3 � = 0� 1 0 M0 1 �10 0 M 1A : (3.2)



83.2.1 Riemann boundary 
onditionsThe boundary 
ondition matri
es Cin and Cout are una�e
ted by the pre
onditioning,but the 
hange to the eigenve
tors means that B is nowB = 0� �1 0 0�1 
�1 (
�1)(M � 1)ei!=M (
�1)ei!=M �(
�1)(M + 1)e�i!=M 1A :In 
ontrast to the unpre
onditioned Euler equations, b23 and b32 are now both non-zero,and so the Riemann boundary 
onditions are re
e
tive for the pre
onditioned Eulerequations. The determinant of B is,detB = �(
�1)2 �(M � 1)ei!=M + (M + 1)e�i!=M� ;and the eigenfrequen
ies whi
h result in a zero determinant are!r = Mn�; for integer n;!i = �M2 log�1 +M1�M� :Sin
e �max =M for this pre
onditioned system,!i=�max = �12 log�1 +M1�M� :In parti
ular, we note that asM ! 0, !i=�max ! 0. Thus, at low Ma
h numbers, distur-ban
es will not de
ay rapidly, indi
ating that the use of Riemann boundary 
onditionsbased on the Euler equations is likely to impede 
onvergen
e to a steady state.3.2.2 Entropy, stagnation enthalpy at in
ow; pressure at out
owFor these boundary 
onditions, we obtainB = 0� �1 0 0�1 (
�1)M 00 0 Me�i!=M 1A :We note that b13 = b23 = b31 = b32 = 0. Thus, outgoing waves do not generate anyre
e
tions at either the in
ow or out
ow boundaries. Disturban
es are eliminated in thetime it takes for all of the 
hara
teristi
s to propagate from one end to the other. Thisis veri�ed by setting the determinant of B equal to zero,detB = �(
�1)M2e�i!=M = 0;whi
h requires that !i = �1. This is in 
ontrast to the results for the unpre
onditionedEuler equations for whi
h the boundary 
onditions are re
e
tive, and the exponentialde
ay rate is �nite.



9This surprising result 
an be further understood by 
onsidering the pre
onditionedequations re-written with entropy (s), stagnation enthalpy (H), and pressure (p) as thedependent states. These equations (with appropriate non-dimensionalization) are0� sHp 1At +0� M 0 00 M 00 0 �M 1A0� sHp 1Ax = 0: (3.3)Thus, the pre
onditioned Euler equations are a set of de
oupled adve
tion equations forentropy, stagnation enthalpy, and pressure in whi
h entropy and stagnation enthalpypropagate downstream and the pressure propagates upstream. Hen
e, these boundary
onditions are a
tually 
hara
teristi
 boundary 
onditions and non-re
e
tive.3.2.3 Velo
ity, temperature at in
ow; pressure at out
owFor these boundary 
onditions, we �nd thatB = 0� 0 1 �1�1 0 (
�1)M0 0 Me�i!=M 1A :Comparing this to the matrix B without pre
onditioning, the signi�
ant di�eren
e isthat b32 is zero, in addition to b31, and so the out
ow boundary 
ondition is now perfe
tlynon-re
e
ting (i.e. !i = �1). This is be
ause the upstream propagating 
hara
teristi
wave is a pressure perturbation (see Equation (3.3)), and so the imposition of the exitpressure �xes the value of the upstream propagating 
hara
teristi
.The non-re
e
ting out
ow boundary 
ondition results as usual in the eliminationof initial transients within a �nite time, in marked 
ontrast to the unpre
onditionedbehavior in whi
h the initial transients persist inde�nitely. The fa
t that the in
owboundary 
ondition is re
e
ting means that the �nite 
onvergen
e time is equal to thesum of the times taken for 
hara
teristi
s to travel up and down the domain, whi
his pre
isely double that required when spe
ifying the entropy and stagnation enthalpyinstead at the in
ow boundary.3.3 Turkel pre
onditionerFor the one-dimensional form of the Turkel pre
onditioner[1℄ employed by Weiss andSmith [4℄, the resultant PA matrix is,PA = 0� M � M(��1)0 M 10 � M� 1A :The spe
i�
 form of P is again des
ribed in the Appendix. The eigenvalues of PA are�1 = M; �2 = 12 (M(1+�) + �) ; �3 = 12 (M(1+�)� �) ;



10with � =p(1��)2M2 + 4�, and the eigenve
tors are� r1 r2 r3 � = 0BB� 1 1 10 M(1��)+�2� M(1��)��2�0 1 1 1CCA :To make the three eigenvalues of the same order of magnitude at low Ma
h numbers, itis usual to de�ne � to be � = minf1; �M2g: (3.4)where � is a 
onstant typi
ally taken from 1 � � � 4. Note that when �=1, P redu
esto the identity matrix. Therefore, the de�nition of � ensures that the pre
onditioning isswit
hed o� in a 
ontinuous manner when the Ma
h number rea
hes 1=p�.3.3.1 Riemann boundary 
onditionsThe matrix B isB = 0BBB� �1 0 0�1 (
�1) hM(1��)+�2� + 1i (
�1) hM(1��)��2� + 1iei!=�1 (
�1) hM(1��)+�2� � 1i ei!=�2 (
�1) hM(1��)��2� � 1i ei!=�3 1CCCA ;and hen
e the eigenfrequen
ies whi
h make its determinant equal to zero are!r = �2�3�3��2 2n�; for integer n;!i = � �2�3�3��2 log��+ 1 + ��+ 1� �� :Thus, sin
e the largest eigenvalue is �max = �2,!i=�max = � �3�3��2 log�� + 1 + ��+ 1� �� :Sin
e �2�3=(�3��2) is positive, this means there is a �nite rate of exponential de
ay ofinitial transients, due to the re
e
tive nature of the boundary 
onditions in 
onjun
tionwith the Turkel pre
onditioner. Even worse, as M ! 0, �+1+��+1�� ! 1 and so the rate ofde
ay tends to zero at low Ma
h numbers indi
ating very poor 
onvergen
e to the steadystate. Note that, �3�3��2 = 12 �1� M� (1 + �)� ;and as M!0, �3=(�3��2)! 12(1� 1=p1 + 4�) whi
h remains �nite.



113.3.2 Entropy, stagnation enthalpy at in
ow; pressure at out
owThe matrix B isB = 0BB� �1 0 0�1 (
�1) hM2(1��)+M�2� + 1i (
�1) hM2(1��)�M�2� + 1i0 ei!=�2 ei!=�3 1CCA ;and hen
e the eigenfrequen
ies are!r = �2�3�3��2 2n�; for integer n;!i = � �2�3�3��2 log �M2(1� �) + 2�+M�M2(1� �) + 2��M� � ;!i=�max = � �3�3��2 log �M2(1� �) + 2�+M�M2(1� �) + 2��M� � :These boundary 
onditions give a �nite rate of exponential de
ay when used with theTurkel pre
onditioner. In addition, as M! 0, M2(1��)+2�+M�M2(1��)+2��M� ! 1+2�+p1+4�1+2��p1+4� and so thethe rate of de
ay remains �nite. However, this is still not quite as good as the �nitetime 
onvergen
e a
hieved with the same boundary 
onditions in 
onjun
tion with theVan Leer/Lee/Roe pre
onditioner.3.3.3 Velo
ity, temperature at in
ow; pressure at out
owThe matrix B is B = 0BB� �1 
�1 
�10 M(1��)+�2� M(1��)��2�0 ei!=�2 ei!=�3 1CCA ;and so the eigenfrequen
ies are!r = �2�3�3��2 (2n+1) �; for integer n;!i = � �2�3�3��2 log �� +M(1��)� �M(1��)� ;!i=�max = � �3�3��2 log �� +M(1��)� �M(1��)� :When M ! 0, �+M(1��)��M(1��) ! p1+4� + 1p1+4� � 1 and so the rate of de
ay remains �nite and anyinitial disturban
e will de
ay exponentially.



12 upper wall
in
ow out
ow

lower wall with bump(a) 32� 16 grid

(b) Cp 
ontours, M = 0:1.Figure 1: Sample du
t grid and pressure 
oeÆ
ient data.4 Numeri
al ResultsTo illustrate the e�e
t of di�erent boundary 
onditions on numeri
al 
onvergen
e as wellas 
he
k the a

ura
y of the analysis, we simulate the two-dimensional 
ow in a du
twith a straight upper wall and a bump on the lower wall between 0 � x � 1 des
ribedby y = 0:042 sin2(�x). The domain is 5 unit lengths long and 2 lengths high. The gridis stru
tured with 
lustering toward the wall boundary.We use the numeri
al algorithm des
ribed by Darmofal and Siu [9℄ whi
h employsthe semi-
oarsening te
hnique of Mulder [15, 16℄ in 
onjun
tion with a multi-stage, blo
kJa
obi relaxation[17, 18℄. The dis
retization is a 2nd order upwind s
heme with a Roeapproximate Riemann solver [19℄. The 
al
ulations are performed on a grid of 32� 16
ells. A three level, V-
y
le is utilized with 2 pre- and post-smoothing iterations at ea
hlevel. All 
al
ulations are initialized to uniform 
ow. The grid and a typi
al distribution



13of pressure 
oeÆ
ient are shown in Figure 1.The Turkel pre
onditioner analyzed in Se
tion 3.3 is used in the simulations. Asopposed to the � de�nition given in Equation (3.4), Darmofal and Siu[9℄ have foundslightly better 
onvergen
e is obtained for a blo
k Ja
obi iterative s
heme when � isgiven by, �
ut = � M2=(1� �2
utM2) for M < M
ut;1 for M �M
ut; (4.1)where �2
ut = (1 �M2
ut)=M2
ut and M
ut is the user-de�ned Ma
h number above whi
hno pre
onditioning is used. For the results in this paper, we use M
ut = 0:5. For thisde�nition of �, the value of !i=�max is plotted versus Ma
h number in Figure 2 (a) forthe three sets of boundary 
onditions. For the Euler Riemann boundary 
onditions, thede
ay rate 
learly approa
hes zero as M ! 0; however, as M ! 0:5, pre
onditioningis turned o� and the Riemann boundary 
onditions are non-re
e
tive (thus, !i=�max !�1). The entropy, enthalpy, and pressure boundary 
onditions (SHP) have a �niterate of de
ay and for M < 0:3 have the fastest de
ay rate of the three sets of boundary
onditions. Above this Ma
h number, the Riemann boundary 
onditions are the fastestde
aying. Finally, the velo
ity, temperature, and pressure (QTP) boundary 
onditionshave a �nite rate of de
ay for low Ma
h numbers but as M ! 0:5, !i ! 0. ForM > 0:2,the QTP boundary 
onditions have the slowest rate of de
ay of the three boundary
onditions.We have implemented the boundary 
onditions des
ribed above by 
onstru
ting aboundary fa
e state ve
tor and 
al
ulating the boundary 
ux dire
tly from this stateve
tor. For example, at an in
ow for the SHP boundary 
onditions, entropy, enthalpy,and the tangential velo
ity are pres
ribed from the exterior and the pressure is extrap-olated from the interior. At an out
ow, we reverse the pro
edure and spe
ify pressurefrom the exterior and extrapolate entropy, enthalpy, and tangential velo
ity from the in-terior. Note, regardless of the spe
i�
 boundary 
onditions, we always use the tangentialvelo
ity as the additional variable for the two-dimensional boundary implementation.The number of 
y
les required to 
onverge the solution six orders of magnitude fromthe initial residual are given in Table 1. Also, the 
onvergen
e behavior is plotted inFigure 2(b). Spe
i�
ally, we plot the variation of �1=
y
les whi
h would proportionalto the analyti
 de
ay rate in Figure 2(a) if the analysis was a reasonable model of the
omputation. As 
an be 
learly seen, the analyti
al and 
omputational results behavequite similarly. At low Ma
h numbers, the Riemann boundary 
onditions are unstablewhile the SHP boundary 
onditions perform best. The velo
ity, temperature, pressureboundary (QTP) 
onditions are about 75% more expensive than the SHP 
onditions forlow Ma
h numbers. At the higher Ma
h numbers, the Riemann boundary 
ondition 
asesbegin to 
onverge and the number of 
y
les de
reases with in
reasing Ma
h number. Inparti
ular, the Riemann boundary 
onditions 
onverge faster than the QTP and SHPboundary 
onditions for approximately M > 0:3 and 0:45, respe
tively.
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onditions (Se
tion 3.1.2).QTP: velo
ity, temperature, pressure boundary 
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15Ma
h Riemann SHP QTP0.001 UNS 8 130.01 UNS 8 130.1 UNS 8 130.2 20 8 140.3 14 8 150.4 11 8 180.5 9 10 20Table 1: Number of 
y
les required to drop residual six orders of magnitude for di�erentMa
h numbers and boundary 
onditions. Riemann: Euler Riemann invariant boundary
onditions from Se
tion 3.1.1. SHP: entropy, enthalpy, pressure boundary 
onditionsfrom Se
tion 3.1.2. QTP: velo
ity, temperature, pressure boundary 
onditions fromSe
tion 3.1.3. UNS: algorithm was unstable and aborted with in�nite residual.5 Final remarksThe present analysis of the Euler equations with two forms of low Ma
h number pre
on-ditioning shows the quite signi�
ant e�e
t of the pre
onditioning on the e�e
tiveness ofboundary 
onditions in eliminating initial transients.Boundary 
onditions based on the Riemann invariants of the Euler equations arefound to be re
e
tive in 
onjun
tion with pre
onditioning, whereas they are non-re
e
tingat the in
ow without it; the problem is most detrimental at low Ma
h numbers wherethe perturbation de
ay rate approa
hes zero.Boundary 
onditions whi
h spe
ify entropy and stagnation enthalpy at an in
owand pressure at an out
ow are found to be non-re
e
tive with the Van Leer/Lee/Roepre
onditioning, and weakly non-re
e
tive in the other two 
ases. Numeri
al results
on�rm that this is the best of the three boundary 
onditions 
onsidered over a widerange of Ma
h numbers.The spe
i�
ation of velo
ity and density at the in
ow and pressure at the out
ow isfound to be non-re
e
ting for the Van Leer/Lee/Roe pre
onditioning and weakly re
e
-tive for the Turkel pre
onditioning. However, for the unpre
onditioned Euler equationsthey provide no damping of initial transients in the absen
e of numeri
al smoothing.There are many other boundary 
onditions whi
h 
ould have been 
onsidered. Onepossibility, whi
h is parti
ularly appropriate for airfoil appli
ations in whi
h the entirefar-�eld 
ow state is known, would be to use linear 
hara
teristi
 boundary 
onditions.By design these are perfe
tly non-re
e
ting, but their 
onstru
tion is based upon the
hara
teristi
 eigenve
tors; 
hanging the pre
onditioning therefore requires a 
hange tothe formulation of the boundary 
onditions. Pursuing this approa
h, in multiple di-mensions the 1D 
hara
teristi
 boundary 
onditions will only be perfe
tly non-re
e
tingwhen the outgoing waves have wave
rests whi
h are aligned with the boundary. To mini-mize the re
e
tion when the wave in
iden
e is not normal it would be possible to employhigher order methods whi
h have been su

essfully developed for the Euler equations
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ular 
hoi
e of boundary 
onditions is determinedby other fa
tors, an interesting possibility would be to in
orporate boundary 
ondition
onsiderations into the design of the pre
onditioner, so that the 
ombination of thepre
onditioner and the boundary 
onditions is non-re
e
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onditioners [14, 1℄ are usuallyderived using the symmetrizing variables whi
h in dimensional form are (ep=���
; eq; ep ��
2e�). Using Equation (2.2), the non-dimensional symmetrizing variables are,v = � p; q; p� � �T ;and are related to the u = (�; q; p)T variables through the transformation, v = Su,where, S = 0� 0 0 10 1 0�1 0 1 1A :The pre
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18where, Pv = SPS�1, and, Av = SAS�1 = 0� M 1 01 M 00 0 M 1A :The one-dimensional Van Leer/Lee/Roe pre
onditioner is given by,Pv = 0� M2�2 �M�2 0�M�2 1 + 1�2 00 0 1 1A ;whi
h results in P = S�1PvS = 0B� 1 �M�2 M2�2 � 10 1 + 1�2 �M�20 �M�2 M2�2 1CA ;where �2 = 1�M2.The one-dimensional form of the Turkel pre
onditioner[1℄ employed by Weiss andSmith [4℄ is given by, Pv = 0� � 0 00 1 00 0 1 1A ;whi
h results in P = S�1PvS = 0� 1 0 ��10 1 00 0 � 1A :


