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21 IntrodutionAdjoint equations arise naturally in the formulation of methods for optimal aerodynamidesign. A single adjoint solution provides the linear sensitivities of an objetive funtion,suh as lift or drag, to perturbations in the multiple design variables whih parameterisethe aerodynami shape. These sensitivities an then be used to drive a gradient-basedoptimisation proedure.To outline the approah, we start with a system of nonlinear partial di�erentialequations (e.g. the Euler equations or ompressible Navier-Stokes equations) desribinga steady ow within some given omputational domain. When alulating the two-dimensional ow around an aerofoil, one tehnique is to use urvilinear oordinates(�; �) in whih the aerofoil surfae orresponds to � = 0 (Jameson 1995). Using theseoordinates, the p.d.e. an be written asR(U) = 0; (1.1)where the oeÆients of terms within the di�erential operator R depend on both U andthe mapping from (�; �) to the Cartesian oordinates (x; y), whih in turn depends onthe geometry of the aerofoil. Perturbing the geometry hanges the mapping, and henethe oeÆients. Linearising the operator R(U) then leads to the linear p.d.e.Lu = f; (1.2)where f is due to the hange in the mapping, and u is the resultant linear perturbationto the ow �eld.In design optimisation, one is interested in the onsequential hange to some objetivefuntion whih is to be minimised. Usually, this objetive involves an integral over theboundary of the domain, as in the ase of drag minimisation. However, to simplify thisexposition, we will take the objetive funtion J(U) to be an integral over the wholedomain 
, whose linear perturbation I(u) an then be written as an inner produt overthe domain, I(u) = (g; u);for some given funtion g(�; �).Using a diret approah to design, I(u) is determined separately for eah designvariable by de�ning the appropriate geometri perturbation f and solving Equation(1.2) for u. In the adjoint approah, one evaluates the perturbed funtional withoutexpliitly alulating the perturbed ow �eld u. This is ahieved by using by using anaugmented funtional I = (g; u)� (v; Lu� f);in whih the ontinuous Lagrange multipliers v have been introdued to enfore theonstraint that u must satisfy Equation (1.2). The adjoint linear operator L� is de�nedby the identity (v; Lu) = (L�v; u);



3for all u; v satisfying the appropriate homogeneous boundary onditions. Using thisidentity, one obtains I = (v; f)� (L�v � g; u) = (v; f);provided v is the solution of the adjoint equationL�v = g: (1.3)The adjoint approah provides exatly the same �nal answer as the diret linearperturbation analysis. The bene�t of the adjoint approah is that the omputationalost an be signi�antly lower. If there are N design variables, then a diret approahrequires N solutions of Equation (1.2), eah with a di�erent funtion F , to obtain thelinear ow perturbations u. On the other hand, with the adjoint approah, Equation(1.3) has to be solved only one for the funtion g orresponding to the objetive funtionof interest. Sine solving Equations (1.2) and (1.3) requires roughly equal omputationale�ort, the overall savings beome substantial as the number of design variables inreases.In the last ten years, onsiderable e�ort has been devoted to the development ofoptimal design methods based on the adjoint approah. Some methods use urvilinearoordinates and the di�erential adjoint, as outlined above (see e.g. Jameson 1988, 1995,1999; Reuther et al. 1996, 1999a,b; Jameson, Piere & Martinelli 1998). Other methods�rst disretise the nonlinear p.d.e. and then use the adjoint (transpose) of the lineardisrete matrix operator (Elliot & Peraire 1997, Anderson & Bonhaus 1999). For a moreomprehensive introdution to adjoint methods in aerodynami design and a disussionof the relative advantages of the two main approahes, see Giles & Piere (2000). Fora review of the latest developments in design optimisation using adjoint equations, seeNewman et al. (1999).Reently, adjoint solutions have been reognised as providing a means of omputingand minimising errors in uid dynamis simulations, and in partiular the errors inintegral outputs suh as lift and drag. Suppose Uh is an approximate numerial solutionof Equation (1.1). De�ning u to be the numerial error (the di�erene between thenumerial and analyti solutions) givesR(Uh�u) = 0:Linearisation about the numerial solution then yieldsLu = f; f � R(Uh):De�ning the adjoint solution in the same way as before, the leading order error in theintegral objetive funtion is given by(g; u) = (v; f) = (v; R(Uh)):This result an be used in grid adaptation, for example by re�ning any ell in whihan estimate of the loal produt vTR(Uh) multiplied by the ell area exeeds somethreshold, to try to ahieve the maximum redution in the magnitude of the error for a



4given omputational e�ort (Johnson et al. 1995; Parashivoiu, Peraire & Patera 1997;Beker & Rannaher 1998; S�uli 1998) Alternatively, this error term an be arefullyevaluated and used to orret the value of the objetive funtion given by the alulatedow �eld. For the 2D Poisson equation and the quasi-1D Euler equations, this has beenshown to lead to orreted values of twie the order of auray of the ow �eld solution(Giles & Piere 1998, 1999; Piere & Giles 1998, 2000).While signi�ant e�ort has been dediated to developing methods for alulatingadjoint solutions to ompressible ow equations, there has been little disussion of theproperties of the adjoint solutions themselves (see Giles & Piere 1997, 1998). Thepresent work investigates the analyti properties of adjoint solutions for the quasi-1DEuler equations. The standard formulation of the adjoint equations using Lagrangemultipliers (Jameson 1995) is extended to inlude the analysis of a shok. Expliitenforement of the steady Rankine{Hugoniot onditions through an additional Lagrangemultiplier leads to the result that at the shok, the adjoint variables are ontinuous andthere is an internal adjoint boundary ondition. This is onsistent with a harateristiviewpoint whih indiates that one internal adjoint b.. is needed due to the disparityin the number of adjoint harateristis entering and leaving the shok. However, theonlusions di�er from those of previous investigators (see Iollo, Salas & Ta'asan 1993;Iollo & Salas 1996; Cli�, Heinkenshloss & Shenoy 1996, 1998).The analyti adjoint solutions are then derived in losed form for all Mah regimes.This is aomplished by onstruting the Green's funtions for the linearised Euler equa-tions, inluding the linearised Rankine{Hugoniot onditions, using an extension of theapproah developed by Giles and Piere (1997) for shok-free quasi-1D ows. These so-lutions on�rm the expeted behavior at the shok and reveal a logarithmi singularityin the adjoint variables at the soni point. These insights are helpful in understandingthe requirements for developing e�etive numerial methods (Giles & Piere 1998). Inthis regard, it is hoped that the analyti solutions will also serve as a useful set of testases for researhers developing adjoint numerial methods.2 Adjoint problem formulationThe quasi-1D Euler equations for steady ow in a dut of ross-setion h(x), on theinterval �1 � x � 1, may be written asR(U; h) � ddx(hF )� dhdx P = 0 ;where U = 0� ��q�E1A ; F = 0� �q�q2 + p�qH 1A ; P = 0� 0p0 1A :Here, � is the density, q is the veloity, p is the pressure, E is the total energy and H isthe stagnation enthalpy. The system is losed by the equation of state for an ideal gasH = E + p� =  � 1 p� + 12q2:



5If the solution ontains a shok at xs, the Rankine-Hugoniot jump ondition[F ℄x+sx�s = 0onnets the smooth solutions on either side.For design appliations, linearisation of R with respet to perturbations in the owsolution, u, and the geometry, eh, produesLu� f � � ddx(hAu)� dhdx Bu�� dehdxP � ddx(ehF )! = 0; (2.1)where A = (�F=�U) and B = (�P=�U).We hoose the objetive funtion to be the integral of pressure along the dut,J = Z 1�1 p dx = Z xs�1 p dx + Z 1xs p dx ;sine this mimis the lift integral whih is of importane in aeronautial appliations.Other objetive funtions ould also be onsidered with only minor hanges to the anal-ysis to be presented. The perturbation to this `lift' integral due to hanges in the owis I = Z xs�1 gTu dx + Z 1xs gTu dx � [p℄x+sx�s Æ ; (2.2)where g = (�p=�U)T , and the third term inludes the e�et of a linearised displaementÆ in the shok loation.Using ontinuous Lagrange multipliers v to enfore the di�erential ow onstraints oneither side of the shok, and a Lagrange multiplier vs to enfore the Rankine{Hugoniotonditions at the shok, the augmented nonlinear objetive funtion isJ = Z xs�1 p dx + Z 1xs p dx� Z x�s�1 vTR dx� Z 1x+s vTR dx� hsvTs [F ℄x+sx�s ;where hs � h(xs). Linearising this with respet to perturbations in the geometry eh, theshok loation Æ and the ow solution u givesI = Z xs�1 gTu dx + Z 1xs gTu dx � [p℄x+sx�s Æ� Z x�s�1 vT(Lu� f) dx � Z 1x+s vT(Lu� f) dx� hsvTs [Au℄x+sx�s � hsvTs �dFdx �x+sx�s Æ :



6After integration by parts and rearrangement, this yieldsI = Z xs�1 vTf dx + Z 1xs vTf dx� Z x�s�1 (L�v � g)Tu dx � Z 1x+s (L�v � g)Tu dx� Æ hsvTs �dFdx �x+sx�s + [p℄x+sx�s !� hs(vs�v(x+s ))T Aujx+s + hs(vs�v(x�s ))T Aujx�s� �hvTAu�1�1 ;where the adjoint operator L� is de�ned byL�v � �hAT dvdx � dhdx BTv :The idea of the adjoint approah is to de�ne the adjoint problem so as to eliminatethe expliit dependene of I on u and Æ, giving the adjoint form of the objetive funtionI = Z xs�1 vTf dx + Z 1xs vTf dx = Z 1�1 vTfdx : (2.3)To eliminate the dependene on u, v must satisfy the adjoint o.d.e.L�v � g = 0 ; (2.4)and at the shok v and vs must satisfyv(x�s ) = vs = v(x+s ) ;proving that the adjoint variables are ontinuous aross the shok. Removing the de-pendene of I on Æ then requires thathsvT (xs) �dFdx �x+sx�s = � [p℄x+sx�s ;whih is an internal boundary ondition at the shok. Noting that�dFdx �x+sx�s = �1h dhdxP�x+sx�s ;this redues to the simple b.. v2(xs) = ��dhdx(xs)��1 : (2.5)



7Finally, the inlet and exit boundary onditions for the adjoint problem are de�ned so asto remove the expliit dependene of �hvTAu�1�1 (2.6)on u. At a boundary where the ow equations have n inoming harateristis, andhene n imposed boundary onditions, the adjoint equations will thus have (3�n) b..'sorresponding to an equal number of inoming adjoint harateristis (Giles & Piere1997).The need for an adjoint boundary ondition at the shok an be understood byonsidering the harateristis of the hyperboli system. For the adjoint problem, in-formation travels along harateristis in the opposite diretion as for the ow problem.Thus, at the shok, there are three outgoing harateristis on the upstream side andone outgoing harateristi on the downstream side. Continuity of the adjoint variablesaross the shok provides three onditions and the additional shok boundary onditionprovides a fourth, ensuring that all outgoing harateristis are fully determined.In Iollo et al. (1993) it is suggested that one ould impose v = 0 at the shok, butthis over-onstrains the adjoint problem, in addition to ontraditing (2.5). Cli� etal. (1996,1998) onlude that there is a \shok" in the adjoint variables at the shokloation, having proved that the adjoint variables undergo a hange of sign aross theshok. However, as this hange of sign is entirely due to the non-standard oordinatesystem they employ in formulating the augmented Lagrangian, the onlusion that theadjoint variables are disontinuous at the shok is misleading.A �nal observation is that the adjoint equation (2.4) and the adjoint shok b.. (2.5)together ause the gradient of the adjoint variables to vanish at the shok. This maybe seen by writing (2.4) using Jaobians based on the non-onservative ow variablesUp = (�; q; p)T , so that the adjoint equation beomes,h0�q q2 12q3� 2�q �1p+ 32�q20 1 �1q 1A dvdx = �0� 001 + dhdxv2 1A ;and the adjoint shok b.. produes (dv=dx) = 0 at the shok. This feature is importantin understanding the suess of ertain numerial disretisations in produing the or-ret adjoint behavior at the shok, without expliit enforement of the internal adjointboundary ondition (Giles & Piere 1998).3 Green's funtion approahTo verify the properties of the adjoint solutions and to provide a referene for omparisonwith numerial results, the analyti adjoint solutions are now derived for both isentropiand shoked transoni ows.The derivation uses a Green's funtion approah (Giles & Piere 1997) in whih weonsider the linearised problem with point soure termsLuj(x; �) = fj(�)Æ(x� �); (3.1)



8where Æ(x) is the Dira delta funtion. Using the adjoint form of the objetive funtion(2.3), the orresponding linearised objetive isIj(�) = Z 1�1 vT (x)fj(�)Æ(x� �) dx = vT (�)fj(�):Given three linearly independent vetors fj(�), the three simultaneous equations anthen be solved for the adjoint variablesvT (�) = �I1(�)jI2(�)jI3(�)��f1(�)jf2(�)jf3(�)��1 : (3.2)The approah is then to hoose fj(�), solve the linearised ow equations to obtain theow perturbation uj(x; �) and the shok displaement Æ, evaluate Ij(�) using (2.2) and�nally obtain v(�) from (3.2).The key to arrying out the proedure desribed above is to hoose a set of sourevetors fj(�) whih lead to relatively simple solutions to the linearised ow equations.We begin by onsidering isentropi ow through a onverging-diverging dut with inlet,throat and outlet loated at x = �1; 0;+1, respetively. The nonlinear equations ensurethat mass ux mh � �qh, stagnation enthalpy H and stagnation pressure p0 all remainonstant along the dut. Therefore, solutions to the linear homogeneous equations mustintrodue uniform perturbations to these three quantities. The general solution to thelinear homogeneous equations may then be written in the formu(x) = ah(x) �U�m(x)����H;p0 + b �U�H (x)����p0;M +  �U�p0 (x)����H;M ;where the three vetors are linearly independent and a, b and  represent the uniformperturbations to mh, H and p0. To simplify the analysis, perturbations to stagnationenthalpy and pressure are introdued at �xed Mah number rather than at �xed massux, so that non-zero values for b and  both imply an additional uniform perturbationto mh. By ontrast, a non-zero value for a does not perturb either H or p0.If we now onsider the inhomogeneous equations with soure terms fj(�)Æ(x��), theorresponding solutionsuj(x; �) = a(x; �) 1h(x) �U�m(x)����H;p0 + b(x; �) �U�H (x)����p0;M + (x; �) �U�p0 (x)����H;Mmust satisfy the homogeneous equations on either side of �, and therefore a; b;  willhave uniform values a1; b1; 1 for x < � and a2; b2; 2 for x > �. The jump onditions forthe onstants are obtained by integrating the dominant terms in (3.1) from x = �� tox = �+, givingh(�) (a2 � a1) 1h(�) �F�m(�)����H;p0 + (b2 � b1) �F�H (�)����p0;M + (2 � 1) �F�p0 (�)����H;M! = fj(�):



9Hene, by hoosing the three linearly independent soure vetorsf1(�) = �F�m(�)����H;p0 = 0� 1qH1A ;f2(�) = h(�) �F�H (�)����p0;M = h(�)2H 0���q0�qH1A ;f3(�) = h(�) �F�p0 (�)����H;M = h(�)p0 0� �q�q2 + p�qH 1A ;the perturbations will have the simple propertiesf1(�) ) a2 � a1 = 1; b2 = b1; 2 = 1;f2(�) ) b2 � b1 = 1; 2 = 1; a2 = a1;f3(�) ) 2 � 1 = 1; a2 = a1; b2 = b1: (3.3)For eah soure vetor fj(�), the three remaining unknowns in the orresponding solutionuj(x; �) are determined by the three homogeneous boundary onditions appropriate tothe Mah regime under onsideration. These homogeneous boundary onditions areequivalent to demanding that there is no perturbation to the boundary onditions forthe original nonlinear problem.4 Supersoni FlowFor supersoni ow, M , H and p0 are �xed at the supersoni inlet and there are noboundary onditions at the supersoni exit. Hene, for all three soure vetors werequire a1 = b1 = 1 = 0to prevent perturbations to the inlet boundary onditions. Making referene to the jumprelations (3.3), we then obtainf1(�) ) a = H(x� �); b = 0;  = 0;f2(�) ) b = H(x� �);  = 0; a = 0;f3(�) )  = H(x� �); a = 0; b = 0;orresponding to the solutionsu1(x; �) = H(x� �) 1h(x) �U�m (x)����H;p0 ;



10 u2(x; �) = H(x� �) �U�H (x)����p0;M ;u3(x; �) = H(x� �) �U�p0 (x)����H;M :The objetive funtions are thenI1(�) = Z 1� 1h(x) �p�m(x)����H;p0 dx;I2(�) = Z 1� �p�H (x)����p0;M dx;I3(�) = Z 1� �p�p0 (x)����H;M dx;with �p�m (x)����H;p0 = �q1�M2 ; �p�H (x)����p0;M = 0; �p�p0 (x)����H;M = pp0 :The objetive funtion I2(�) is zero beause the pressure is onstant at �xed M and p0.5 Subsoni FlowFor subsoni ow, there are two boundary onditions on H and p0 at the subsoni inletand one boundary ondition on stati pressure p at the subsoni exit.5.1 Change in mh at �xed H; p0For f1, the inlet boundary onditions require b =  = 0 and the exit ondition requiresa2 = 0, orresponding to the solution and objetive funtionu1(x; �) = �H(� � x) 1h(x) �U�m(x)����H;p0 ; I1(�) = Z ��1 1h(x) �p�m(x)����H;p0 dx:5.2 Change in H at �xed p0;MIn this ase, the inlet onditions give b1 =  = 0 and the exit ondition gives a = 0,yielding a solution and objetive funtion that are idential to the supersoni aseu2(x; �) = H(x� �) �U�H (x)����p0;M ; I2(�) = 0:



115.3 Change in p0 at �xed H;MThe inlet onditions now give b = 1 = 0. Also, to ensure zero perturbation to the exitpressure, we require ah(x) �p�m(x)����H;p0 + 2 �p�p0 (x)����H;M!�����x=1 = 0;where 2 = 1. The solution then beomesu3(x; �) = H(x� �) �U�p0 (x)����H;M + ah(x) �U�m(x)����H;p0 ;with orresponding objetive funtionI3(�) = Z 1� �p�p0 (x)����H;M dx + Z 1�1 ah(x) �p�m (x)����H;p0 dx:6 Isentropi transoni owFor isentropi transoni ow, H and p0 are �xed at the subsoni inlet and there are noboundary onditions at the supersoni exit. The third requirement is that the Mahnumber remains unity at the throat.6.1 Change in mh at �xed H; p0For f1, the inlet boundary onditions ensure that b =  = 0 and the throat onditionrequires that a equals zero at the throat. Therefore, a2 = 0 for � < 0 and a1 = 0 for� > 0, leading to the solutionu1(x; �) = 8>>><>>>: �H(� � x) 1h(x) �U�m (x)����H;p0 ; � < 0 ;H(x� �) 1h(x) �U�m (x)����H;p0 ; � > 0 :Hene, if � < 0, the mass ux upstream of x = � is redued by a unit amount, whereasif � > 0, the mass ux downstream of x = � is inreased by a unit amount.The objetive funtion isI1(�) = 8>>><>>>: � Z ��1 1h(x) �p�m(x)����H;p0 dx ; � < 0 ;Z 1� 1h(x) �p�m(x)����H;p0 dx ; � > 0 : (6.1)



12Sine �p�m(x)����H;p0 = �q1�M2 ;and M varies approximately linearly through a hoked throat, then�p�m(x)����H;p0 � 1x; as x! 0:It follows that I1(�) � log (�); as � ! 0;so there is a logarithmi singularity in the adjoint variables at a soni throat.6.2 Change in H at �xed p0;MIn this ase, the inlet onditions on H and p0 require b1 =  = 0 and the throat onditiongives a = 0. The solution is thenu2(x; �) = H(x� �) �U�H (x)����p0;M ;and the orresponding objetive funtion, I2(�), is zero beause �p�H (x)��p0;M = 0.6.3 Change in p0 at �xed H;MNow, the inlet onditions on H and p0 yield b = 1 = 0, and the Mah number is �xedat the throat, so again a = 0. The solution and linear funtional thus beomeu3(x; �) = H(x� �) �U�p0 (x)����H;M ; I3(�) = Z 1� �p�p0 (x)����H;M dx:7 Shoked owFor shoked ow, there are two boundary onditions on H and p0 at the subsoni inlet,the throat is again soni, there is a shok downstream of the throat and there is oneboundary ondition on p at the subsoni exit. The nonlinear equations one again ensureuniform mass ux and stagnation enthalpy throughout the dut, but the stagnationpressure now has di�erent values on either side of the shok. Consequently, solutionsto the linearized equations must now admit di�erent but uniform stagnation pressureperturbations on either side of the shok. To aount for the shok, the form of thesolution must be generalised touj(x; xs; �) = a(x; xs; �) 1h(x) �U�m (x)����H;p0 + b(x; xs; �) �U�H (x)����p0;M + (x; xs; �) �U�p0 (x)����H;Mwhere the perturbations a, b, and  may now be disontinuous at the shok loation xsas well as at �.



137.1 Shok movementThe displaement in the shok an be alulated from the normal shok relationp02 = p01f(M1); f(M1) = �p2p1� 1 + �12 M221 + �12 M21 !=�1 ;with shok jump onditionsp2p1 = 1 + 2 + 1(M21 � 1); M22 = 1 + [( � 1)=2℄M21M21 � ( � 1)=2 ;where the subsripts 1 and 2 represent quantities upstream and downstream of the shok,respetively. The perturbations to the stagnation pressure then satisfy2 = 1f(M1) + p01f 0(M1)  dMdx Æ + a1h(x) �M�m (x)����H;p0!�����x=x�s ; (7.1)where Æ is the resulting displaement of the shok and�M�m (x)����H;p0 = Mm �1 + [( � 1)=2℄M21�M2 � :If h(x) is a pieewise di�erentiable funtion, then dM=dx may be evaluated analytiallyusing the area Mah number relation� hh��2 = 1M2 � 2 + 1 �1 +  � 12 M2��(+1)=(�1) :The throat is soni so the soni area h� is identially equal to the throat area ht.7.2 Change in mh at �xed H; p0Sine the throat is hoked and H and p0 are �xed at the inlet, the form of the solutionand objetive funtion will be the same as for the isentropi transoni ase when � < 0.The two new senarios to onsider are when � is between the throat and the shok, andbetween the shok and the exit. In either ase, the mass ux perturbation will ausethe shok to move and the solution will need to ensure that the perturbations to massux and stagnation enthalpy remain onstant aross the shok, in addition to satisfyingthe exit boundary ondition on pressure.7.2.1 Perturbation between the throat and the shok (0 < � < xs)The hoked ondition at the throat requires that all perturbations are zero for x < �.For onsisteny with the shok jump subsripts, perturbations between � and the shok



14are denoted by a1; b1; 1 and perturbations between the shok and the exit are denotedby a2; b2; 2. At �, there is a unit mass ux perturbation at onstant H and p0, soa1 = 1; b1 = 0; 1 = 0:Furthermore, H remains onstant for any shok loation so b2 = 0. The perturbation tomass ux aross the shok must be onstant, soa1 = a2 + 2  h(x) �m�p0 (x)����H;M!�����x=x+s :Also, to avoid perturbing the exit pressure, we require a2h(x) �p�m(x)����H;p0 + 2 �p�p0 (x)����H;M!�����x=1 = 0:These two equations determine the two unknowns a2 and 2 and equation (7.1) thendetermines the shok movement Æ. The perturbed solution is thenu1(x; xs; �) = 1h(x) [H(x� �) + (a2 � 1)H(x� xs)℄ �U�m (x)����H;p0+ 2H(x�xs) �U�p0 (x)����H;M ;and the orresponding objetive funtion isI1(�) = Z xs� 1h(x) �p�m(x)����H;p0dx+Z 1xs a2h(x) �p�m(x)����H;p0+ 2 �p�p0 (x)����H;M! dx� (p2�p1) Æ:7.2.2 Perturbation between the shok and the exit (xs < � < 1)All perturbations are now zero for x < xs, soa1 = b1 = 1 = 0;sine perturbations introdued in the subsoni region following the shok annot a�etthe supersoni zone. Perturbations between the shok and � are now denoted by a2; b2; 2and perturbations between � and the exit are denoted by a3; b3; 3.For ompatibility with the upstream ow, there must be no perturbation to H arossthe shok, so b2 = b3 = 0. The perturbation to the stagnation pressure must be uniformthroughout the subsoni region, so 2 = 3 � . At �, the soure term produes a unitperturbation in mass ux so a3 � a2 = 1:To math the ow upstream of the shok, there must be no mass ux perturbation onthe downstream side of the shoka2 +   h(x) �m�p0 (x)����H;M!�����x=x+s = 0:



15Also, to ensure zero perturbation of the exit stati pressure we require, a3h(x) �p�m(x)����H;p0 +  �p�p0 (x)����H;M!�����x=1 = 0;giving three equations for the three unknowns. The perturbed solution then has theformu1(x; xs; �) = 1h(x) [a2H(x� xs) +H(x� �)℄ �U�m(x)����H;p0+ H(x� xs) �U�p0 (x)����H;M ;with objetive funtionI1(�) = Z �xs a2h(x) �p�m(x)����H;p0dx+Z 1� a3h(x) �p�m(x)����H;p0dx+Z 1xs  �p�p0 (x)����H;Mdx� (p2�p1) Æ:7.3 Change in H at �xed p0;MAhead of the shok, the perturbation to stagnation pressure  must be zero due tothe inlet boundary ondition, and the mass ux perturbation a must be zero due to thehoked throat. The inlet ondition onH ensures the perturbation to stagnation enthalpyis zero for x < �, and the unit jump in b at � will produe a uniform perturbation in Haross the shok, without a�eting the exit ondition on pressure.There still exists the possibility that a and  are non-zero onstants following theshok, balaning to produe zero mass ux perturbation at the shok a +  h(x) �m�p0 (x)����H;M!�����x=x+s = 0;and zero pressure perturbation at the exit ah(x) �p�m(x)����H;p0 +  �p�p0 (x)����H;M!�����x=1 = 0:However, the determinant of this system is nonzero, so there is only the trivial solutiona =  = 0. Hene, the solution and objetive funtion in the shoked ase have the formu2(x; xs; �) = H(x� �) �U�H (x)����p0;M ; I2(�) = 0;and there is no displaement of the shok.7.4 Change in p0 at �xed H;MFor shoked ow with a unit jump in stagnation pressure, the presene of the shoka�ets the perturbed solution for all loations of �. This is in ontrast to the shokedase with a jump in mass ux, where the solution remained unhanged from the isentropitransoni ase for � < 0. The two senarios to onsider in the present ase are when �is between the inlet and the shok, and between the shok and the exit.



167.4.1 Perturbation between the inlet and the shok (�1 < � < xs)As in the shok-free ase, there is no perturbation for x < �. Denoting the perturbationsbetween � and the shok by a1; b1; 1 and those after the shok by a2; b2; 2, we have byde�nition a1 = 0; b1 = 0; 1 = 1:The perturbation to H must be onstant aross the shok so b2 = 0. Constant mass uxperturbation at the shok requires1  h(x) �m�p0 (x)����H;M!�����x=x�s = a2 + 2  h(x) �m�p0 (x)����H;M!�����x=x+s ;and zero perturbation to the exit pressure is ensured by setting a2h(x) �p�m(x)����H;p0 + 2 �p�p0 (x)����H;M!�����x=1 = 0 ;providing two equations for the two unknowns. The solution then has the formu3(x; xs; �) = [H(x� �) + (2 � 1)H(x� xs)℄ �U�p0 (x)����H;M + a2h(x)H(x� xs) �U�m(x)����H;p0 ;with orresponding objetive funtionI3(x; xs; �) = Z xs� �p�p0 (x)����H;Mdx+Z 1xs a2h(x) �p�m (x)����H;p0+ 2 �p�p0 (x)����H;M! dx� (p2�p1) Æ :7.4.2 Perturbation between the shok and the exit (xs < � < 1)There are now no perturbations upstream of the shok, soa1 = b1 = 1 = 0:Perturbations in the region between the shok and � are denoted by a2; b2; 2 and thosebetween � and the exit are denoted by a3; b3; 3.Compatibility at the shok and the fat that mh and p0 are perturbed at onstantH, together imply that there are no perturbations to stagnation enthalpy following theshok, so b2 = b3 = 0. Perturbations to the mass ux must be onstant throughout thesubsoni region (a2 = a3 � a) sine the jump ondition at � orresponds solely to a unitperturbation in stagnation pressure 3 � 2 = 1:Zero mass ux perturbation at the shok then givesa+ 2  �m�p0 (x)����H;M!�����x=x+s = 0 ;



17and zero perturbation to the exit pressure requires ah(x) �p�m(x)����H;p0 + 3 �p�p0 (x)����H;M!�����x=1 = 0 ;providing three equations for three unknowns. The solution has the formu3(x; xs; �) = [2H(x� xs) +H(x� �)℄ �U�p0 (x)����H;M + ah(x)H(x� xs) �U�m(x)����H;p0 ;with orresponding objetive funtionI3(�) = Z 1xs ah(x) �p�m(x)����H;p0 dx+Z �xs 2 �p�p0 (x)����H;M dx+Z 1� 3 �p�p0 (x)����H;M dx�(p2�p1)Æ:8 Sample solutionsThe analyti objetive funtions I(�) and adjoint solutions v(�) orresponding to su-personi, subsoni, isentropi and shoked transoni ows are shown in �gures 1 to 4.The boundary onditions for these test ases are de�ned in the �gure aptions and thegeometri de�nition of the dut is given byh(x) = 8>><>>: 2; �1 � x � �12 ;1 + sin2(�x); �12 < x < 12 ;2; 12 � x � 1:The analyti results have been veri�ed using numerial solutions obtained by dis-retising the adjoint equation (2.4) diretly (Giles & Piere 1998). For the supersoniase of �gure 1, the adjoint variables are all zero at the exit, as required to eliminate thedependene on u of the boundary term (2.6) in the adjoint derivation. For the isentropitransoni ase of �gure 3, the logarithmi singularity in I1 at the soni throat is reetedin the singularities of all three adjoint variables. For the shoked ase of �gure 4, the ob-jetive funtions are disontinuous at the shok, but the adjoint variables are ontinuouswith zero gradient, as proved earlier.
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Figure 1: Mah number, objetive funtions and adjoint variables for supersoni owonditions. Min = 3; Hin = 4; p0in = 2.
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Figure 2: Mah number, objetive funtions and adjoint variables for subsoni owonditions. Hin = 4; p0in = 2; pex = 1:98.
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Figure 3: Mah number, objetive funtions and adjoint variables for isentropi transoniow onditions. Hin = 4; p0in = 2.
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Figure 4: Mah number, objetive funtions and adjoint variables for shoked ow on-ditions. Hin = 4; p0in = 2; pex = 1:6.



229 ConlusionsIn this paper we have undertaken a detailed investigation of adjoint solutions for thequasi-1D Euler equations, fousing in partiular on the solution behaviour at a shok ora soni point where there is a hange in sign of one of the hyperboli harateristis.Formulating the adjoint equations using Lagrange multipliers to enfore the Rankine-Hugoniot shok jump onditions proves that, ontrary to previous literature, the adjointvariables are ontinuous at the shok. This result is supported by the derivation of alosed form solution to the adjoint equations using a Green's funtion approah. Inaddition to proving the existene of a log(x) singularity at the soni point, this losedform solution should be very helpful as a test ase for others developing numerialmethods for the adjoint equations.Future researh will attempt to extend this analysis to two dimensions. Preliminaryanalysis, supported by the results of numerial omputations (Giles & Piere 1997),shows that the adjoint variables are again ontinuous at a shok, and that an adjointboundary ondition is required along the length of the shok. However, sine adjointomputations urrently employed for transoni aerofoil optimisation do not enfore thisinternal boundary ondition, it remains an open question as to whether there is a on-sisteny error in the limit of inreasing grid resolution. In two dimensions, numerialevidene suggests that there is no longer a singularity at a soni line if (as is usually thease) it is not orthogonal to the ow. This an be explained qualitatively by onsideringthe region of inuene of points in the neighbourhood of the soni line (Giles & Piere1997). An important new feature that must be onsidered for two-dimensional ows isthe behavior of the adjoint solution at stagnation points. Here, the analysis indiatesan inverse square-root singularity along the inoming stagnation streamline, but furthernumerial experiments are required to on�rm this behavior.An improved understanding of the behaviour of adjoint solutions is neessary bothto rigorously establish the theoretial basis for engineering optimal design methods andto illuminate the role of the adjoint solution in numerial error analysis. In this lattersetting, the adjoint solution reveals the sensitivity of a funtional, suh as lift, to thetrunation errors assoiated with the numerial disretisation. Where there are singu-larities in the adjoint variables it is desirable to greatly inrease the grid resolution soas to redue the ontribution of the loal trunation error to the error in the funtional.Thus, adjoint analysis o�ers a rigorous basis for optimal grid adaptation (Venditti &Darmofal 1999). Furthermore, by estimating the trunation error in the original nonlin-ear numerial solution, and using the adjoint solution to estimate the onsequential errorin the funtional of interest, one an obtain an improved estimate with twie the orderof auray (Giles & Piere 1998, 1999; Piere & Giles 1998, 2000). Future develop-ments along these lines will lead to great improvements in auray for key engineeringquantities suh as lift and drag.
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