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21 Introdu
tionIn aeronauti
al CFD, engineers desire very a

urate predi
tion of the lift and drag onair
raft, but they are less 
on
erned with the pre
ise details of the 
ow �eld in general,although there is a 
lear need to understand the qualitative nature of the 
ow (e.g. isthere a bad 
ow separation?) in order to make design 
hanges whi
h will improve the liftor drag. Similarly, other areas of CFD analysis also have a parti
ular interest in a few keyintegral quantities, su
h as total produ
tion of nitrous oxides in 
ombustion modeling,or the net seepage of a pollutant into an aquifer when modeling soil 
ontamination.The obje
tive of this paper is to obtain higher order a

ura
y for integral fun
tionals(su
h as the lift and drag) derived from CFD 
al
ulations. The key is the solution ofthe adjoint p.d.e. with inhomogeneous terms appropriate to the fun
tional of interest.We show that it is this solution whi
h relates the error in the original approximation (asmeasured by the extent to whi
h the approximate solution fails to satisfy the originalp.d.e.) to the 
onsequential error in the 
omputed value of the fun
tional. Given anapproximation to the adjoint solution, one 
an then quantify and 
orre
t the leadingorder error term in the fun
tional estimate. The 
orre
ted value of the fun
tional isthen super
onvergent in that the remaining error is proportional to the produ
t of theerrors in the primal and adjoint solutions.The analysis is 
losely related to super
onvergen
e results in the �nite element lit-erature [2, 3, 4, 12, 13, 14℄. The key distin
tion is that the adjoint error 
orre
tion termwhi
h we evaluate to obtain super
onvergen
e is zero in a large 
lass of �nite elementmethods, in
luding many whi
h are used for in
ompressible 
ow, but not those usedmost 
ommonly for 
ompressible 
ow. Thus, these methods automati
ally produ
e su-per
onvergent results for any integral fun
tional without requiring the 
omputation ofan approximate adjoint solution.Previous papers by the present authors [8, 15℄ derived the underlying theory for alimited 
lass of fun
tionals and presented numeri
al results for the one-dimensional Pois-son equation and the quasi-1D Euler equations. The only 2D results were for the Poissonequation on a unit square. In this paper we address a number of issues whi
h are 
rit-i
al to real multi-dimensional appli
ations. The �rst is the 
onsideration of fun
tionalswhi
h are integrals over the boundary of the domain (as in lift and drag integrals) ratherthan integrals over the interior of the domain (as in the average temperature of a 
uid).The se
ond is 
onsideration of domains with 
urved boundaries and other more generalboundary 
onditions for whi
h there are trun
ation errors in the approximation of theboundary 
onditions. These two features require extensions to the theory presentedpreviously. The third issue, whi
h 
an be important in multi-dimensional appli
ations,is the presen
e of singularities in the geometry or solution, su
h as at the trailing edgeof a 
usped airfoil. No new theory is required in this 
ase, but the question is whetherthe presen
e of a singularity may prevent one from a
hieving super
onvergent results.We begin the paper by presenting the linear theory and simple examples of its ap-pli
ation to the two-dimensional Poisson equation in 
urved domains. Super
onvergentresults are a
hieved even when there is a singularity in the solution. We then presentthe nonlinear theory and examples of its use with the quasi-1D and 2D Euler equations



3approximated by standard se
ond order �nite volume methods. Unambiguous fourthorder a

ura
y is a
hieved for the quasi-1D results for both subsoni
 and sho
k-freetransoni
 
ow. The 2D results show a very signi�
ant improvement in the a

ura
y ofthe 
omputed fun
tional, but it is not possible to infer the pre
ise order of a

ura
y.2 Linear analysis2.1 Theory without boundary termsLet u be the solution of the linear di�erential equationLu = f;on the domain 
, subje
t to homogeneous boundary 
onditions for whi
h the problemis well-posed when f 2 L2(
). The adjoint di�erential operator L� and asso
iatedhomogeneous boundary 
onditions are de�ned by the identity(v; Lu) = (L�v; u);for all u, v satisfying the respe
tive boundary 
onditions. Here the notation (:; :) denotesan integral inner produ
t over the domain 
.Suppose now that we are 
on
erned with the value of the fun
tional J=(g; u), for agiven fun
tion g 2 L2(
). An equivalent dual formulation of the problem is to evaluatethe fun
tional J=(v; f), where v satis�es the adjoint equationL�v = g;subje
t to the homogeneous adjoint boundary 
onditions. The equivalen
e of the twoforms of the problem follows immediately from the de�nition of the adjoint operator.(v; f) = (v; Lu) = (L�v; u) = (g; u):Suppose that uh and vh are approximations to u and v, respe
tively, and satisfythe homogeneous boundary 
onditions. The subs
ript h is intended to denote thatthe approximate solutions are derived from a numeri
al 
omputation using a grid withaverage spa
ing h. When using �nite di�eren
e or �nite volume methods, uh and vhmight be 
reated by interpolation through 
omputed values at grid nodes. With �niteelement solutions, one might simply use the �nite element solutions themselves, or one
ould again use interpolation through nodal values and thereby obtain approximatesolutions whi
h are smoother than the �nite element solutions.Let the fun
tions fh and gh be de�ned byLuh = fh; L�vh = gh:It is assumed that uh and vh are suÆ
iently smooth that fh and gh lie in L2(
). If uhand vh were equal to u and v, then fh and gh would be equal to f and g. Thus, the



4residual errors fh�f and gh�g are a 
omputable indi
ation of the extent to whi
h uhand vh are not the true solutions.Now, using the de�nitions and identities given above, we obtain the following ex-pression for the fun
tional:(g; u) = (g; uh)� (gh; uh�u) + (gh�g; uh�u)= (g; uh)� (L�vh; uh�u) + (gh�g; uh�u)= (g; uh)� (vh; L(uh�u)) + (gh�g; uh�u)= (g; uh)� (vh; fh�f) + (gh�g; uh�u):The �rst term in the �nal expression is the value of the fun
tional obtained fromthe approximate solution uh. The se
ond term is an inner produ
t of the residual errorfh�f and the approximate adjoint solution vh. The adjoint solution gives the weight-ing of the 
ontribution of the lo
al residual error to the overall error in the 
omputedfun
tional. Therefore, by evaluating and subtra
ting this adjoint error term we obtaina more a

urate value for the fun
tional.The third term is the remaining error after making the adjoint 
orre
tion. If gh�g isof the same order of magnitude as vh�v then, using L2 norms, the remaining error hasa bound whi
h is proportional to the produ
t kuh�uk kvh�vk, and thus the 
orre
tedfun
tional value is super
onvergent. If the solution errors uh�u and vh�v are both O(hp)then the error in the fun
tional is O(h2p). Furthermore, the remaining error term 
anbe expressed as (gh�g; L�1(fh�f)) and so has the 
omputable a posteriori error boundkL�1k kfh�fk kgh�gk.2.2 First exampleIn a previous paper [8℄, we demonstrated the e�e
tiveness of the error 
orre
tion te
h-nique for the two-dimensional Poisson equation�2U�X2 + �2U�Y 2 = F (X; Y )on a unit square domain subje
t to homogeneous Diri
hlet boundary 
onditions. Usinga se
ond order a

urate �nite element method with bilinear test and trial fun
tions,fourth order a

ura
y was a
hieved for the fun
tional (G;U) for the parti
ular 
ase inwhi
h F = X(1�X)Y (1�Y ); G = sin(�X) sin(�Y ):To show that super
onvergen
e 
an also be a
hieved on domains with 
urved bound-aries, we use 
onformal mapping to transform this same problem into a mathemati
allyequivalent form. De�ning the 
omplex variables Z and z asZ � X + iY; z � x + iy;the mapping z = (Z + 3 + i)2



5maps the unit square onto the `warped square' shown in Figure 1. u(x; y) � U(X; Y ) isthen the solution of the transformed p.d.e.�2u�x2 + �2u�y2 = f(x; y);with f(x; y) = F (X; Y ) ����dZdz ����2 :Similarly, the transformed fun
tional is (g; u) whereg(x; y) = G(X; Y ) ����dZdz ����2 :The exa
t value of the fun
tional 
an be determined analyti
ally. Numeri
al re-sults have been obtained using a Galerkin �nite element method with pie
ewise bilinearelements on the 
urved mesh in the z-plane. Standard �nite element error analysis re-veals that both the solution error for the primal problem and the error in the 
omputedfun
tional using the �nite element solution are O(h2). However, by bi-
ubi
 spline in-terpolation of the nodal values and the grid 
oordinates at the nodal points, one 
anre
onstru
t in parametri
 form an improved approximate solution uh(x; y) with an er-ror whi
h is O(h2) in the H2 Sobolev norm and hen
e has a residual error whi
h isalso O(h2). Using a similarly re
onstru
ted approximate adjoint solution vh(x; y), one
an then 
ompute the adjoint error 
orre
tion term resulting in a 
orre
ted fun
tionalwhose a

ura
y is O(h4). All inner produ
t integrals are approximated by 3�3 Gaussianquadrature on ea
h quadrilateral 
ell to ensure that the numeri
al quadrature errors areof a higher order.Figure 2 shows the error in the 
omputed value for the fun
tional, before and afterthe adjoint 
orre
tion, together with the bound for the remaining error. The ordinateis the logarithm of the number of 
ells in ea
h dimension. Lines of slope �2 and �4passing through the �nal data points are superimposed to show that the base error inthe fun
tional is 
learly se
ond order whereas the error in the 
orre
ted value of thefun
tional is fourth order.Note also that an error level of 10�8 is a
hieved with a grid of 16 � 16 when usingthe adjoint error 
orre
tion, whereas it requires a grid of 256 � 256 without the error
orre
tion. Thus, the 
omputational savings are enormous and more than justify the
ost of the adjoint 
al
ulation.2.3 Theory with boundary termsWe now extend the theory to in
lude inhomogeneous boundary 
onditions for the primaland dual problems, and boundary integrals in their output fun
tionals.Let u be the solution of the linear di�erential equationLu = f;
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Figure 1: The re
onstru
ted primal and dual solutions for a 2D Poisson problem on awarped square.
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7in the domain 
, subje
t to the linear boundary 
onditionsBu = e;on the boundary �
. In general, the dimension of the operator B will be di�erent ondi�erent se
tions of the boundary (e.g. in
ow and out
ow se
tions for the 
onve
tionp.d.e.).The output fun
tional of interest is taken to beJ = (g; u) + (h; Cu)�
;where (:; :)�
 represents an integral inner produ
t over the boundary �
. The boundaryoperator C may be algebrai
 (e.g. Cu � u) or di�erential (e.g. Cu � �u�n), but musthave the same dimension as the adjoint boundary 
ondition operator B� to be de�nedshortly. Note that the 
omponents of h may be set to zero if the fun
tional does nothave a boundary integral 
ontribution.The 
orresponding linear adjoint problem isL�v = g;in 
, subje
t to the boundary 
onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and the boundaryoperator C� is (L�v; u) + (B�v; Cu)�
 = (v; Lu) + (C�v; Bu)�
;for all u; v. This identity is obtained by integration by parts, and in a previous paper wedes
ribe the 
onstru
tion of the appropriate adjoint operators for the linearized Eulerand Navier-Stokes equations [6℄.Using the adjoint identity, one immediately obtains the equivalent dual form of theoutput fun
tional, J = (v; f) + (C�v; e)�
:Given approximate solutions uh; vh we de�ne eh; fh; gh; hh byLuh = fh; L�vh = gh;Buh = eh; B�vh = hh;and hen
e obtain(g; u) + (h; Cu)�
 = (g; uh) + (h; Cuh)�
�(gh; uh � u)� (hh; C(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�




8 = (g; uh) + (h; Cuh)�
�(L�vh; uh � u)� (B�vh; C(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(vh; L(uh � u))� (C�vh; B(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(vh; fh � f)� (C�vh; eh � e)�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
:In the �nal result, the �rst line is the fun
tional based on the approximate solution uh.The se
ond line is the adjoint 
orre
tion term whi
h now in
ludes a term related to theextent to whi
h the primal solution does not 
orre
tly satisfy the boundary 
onditions.The third line is the remaining error for whi
h an a posteriori error bound 
an again befound.2.4 Se
ond exampleIn addition to 
urved boundaries, it is also interesting to investigate the in
uen
e ofgeometri
 singularities in the domain, su
h as the 
usp at the trailing edge of an airfoil.Using the same 
onformal mapping approa
h as above, we de�ne the domain in theZ-plane to be the region between two 
ir
les 
entered at (X; Y ) = (�0:1; 0) with radiiof R1 = 1:1 and R2 = 3:0. Appli
ation of the Joukowski mappingz = Z + 1Z ;then produ
es a 
omputational domain between a 
usped airfoil (�
z1) and a smoothouter boundary (�
z2).Using 
ylindri
al 
oordinates R; � de�ned byX + 0:1 = R 
os �; Y = R sin �;the fun
tion U(X; Y ) = R2 � R21R sin �;is a solution of the Lapla
e equation subje
t to the boundary 
onditions U =0 on theinner 
ir
le, and U = R22 �R21R2 sin �;on the outer 
ylinder.



9In the z-plane, the fun
tion u(x; y) = U(X; Y ) is the solution of the Lapla
e equation�2u�x2 + �2u�y2 = 0;subje
t to u=0 on the airfoil, and the appropriate Diri
hlet boundary 
onditions on thefar-�eld boundary. As illustrated in Figure 3, this solution 
orresponds to the streamfun
tion for in
ompressible invis
id 
ow around the airfoil, with zero 
ir
ulation.The boundary fun
tional in the Z-plane is de�ned to beZ 2�0 H(�) �U�n ����R=R1 d�;where H = sin �R1 ;and its value 
an be obtained analyti
ally. When mapped into the z-plane, the 
orre-sponding expression for the fun
tional is�H; �u�n��
z1 ;and hen
e the dual problem is the Lapla
e equation subje
t to the inhomogeneous Diri
h-let 
ondition v=H on the airfoil surfa
e and v = 0 on the far-�eld boundary.Figure 4 shows the numeri
al results obtained using the same Galerkin �nite elementmethod, bi-
ubi
 spline interpolation and 2� 2 Gaussian quadrature, owing to memory
onstraints resulting from a larger 
omputational mesh. The solution is splined period-i
ally around the airfoil, in
luding on the surfa
e where there is a 
usp in the geometry.The errors produ
ed by this treatment of the geometri
 singularity at the trailing edge
onverge faster then the se
ond order a

ura
y of the baseline �nite element method.Again the superimposed lines of slope �2 and �4 show that the base solution isse
ond order a

urate whereas the 
orre
ted value for the fun
tional is fourth ordera

urate.3 Nonlinear theoryThe nonlinear theory in the absen
e of boundary integrals in the fun
tional and errors inapproximating the boundary 
onditions has been presented previously [8, 15℄, and so wenow pro
eed dire
tly to the theory in
luding boundary e�e
ts whi
h is presented herefor the �rst time.Let u be the solution of the nonlinear di�erential equationN(u) = 0;in the domain 
, subje
t to the nonlinear boundary 
onditionsD(u) = 0;
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Figure 3: The re
onstru
ted primal and dual solutions for a 2D Lapla
e problem arounda Joukowski airfoil.
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11on the boundary �
.The linear di�erential operators Lu and Bu are de�ned to be the Fr�e
het derivativesof N and D, respe
tively, Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :It is assumed that the nonlinear fun
tional of interest, J(u), has a Fr�e
het derivativeof the following form,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h; Cu~u)�
:Here the dimension of the operator Cu (whi
h may be di�erential) is required to equalthe dimension of the adjoint boundary operator B�u, to be de�ned shortly.The 
orresponding linear adjoint problem isL�uv = g(u)in 
, subje
t to the boundary 
onditionsB�uv = hon the boundary �
. The identity de�ning L�u, B�u and the boundary operator C�u is(L�uv; ~u) + (B�uv; Cu~u)�
 = (v; Lu~u) + (C�uv; Bu~u)�
;for all ~u; v.We now 
onsider approximate solutions uh; vh and de�ne gh; hh byL�uhvh = gh; B�uhvh = hhNote the use of the Fr�e
het derivatives based on uh whi
h is known, instead of thosebased on u whi
h is not known.The analysis also requires averaged Fr�e
het derivatives de�ned byL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;



12so that N(uh)�N(u) = Z 10 ���N(u+ �(uh�u)) d�= L(u;uh) (uh�u);and similarly D(uh)�D(u) = B(u;uh) (uh�u);J(uh)�J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
:We now obtain the following:J(uh)� J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
= (gh; uh�u) + (hh; Cuh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
:In the �nal result, the �rst line is the adjoint 
orre
tion term taking into a

ountresidual errors in approximating both the p.d.e. and the boundary 
onditions. The otherlines are the remaining errors, whi
h in
lude the 
onsequen
es of nonlinearity in L;B;Cand g as well as residual errors in approximating the adjoint problem.If the solution errors for the nonlinear primal problem and the linear adjoint problemare of the same order, and they are both suÆ
iently smooth that the 
orrespondingresidual errors are also of the same order, then the order of a

ura
y of the fun
tional



13

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

2.5
Mach Number

x

M

Subsonic

Isentropic transonic

Figure 5: Ma
h number distributions for quasi-1D Euler equation test 
ases.approximation after making the adjoint 
orre
tion is twi
e the order of the primal andadjoint solutions. However, rigorous a priori and a posteriori analysis of the remainingerrors is mu
h harder than in the linear 
ase [15℄ and pra
ti
al a posteriori error boundshave yet to be obtained for the quasi-1D and 2D Euler equations.4 Quasi-1D Euler equationsThe steady quasi-1D Euler equations for the 
ow of an ideal 
ompressible 
uid in avariable area du
t are ddx(AF )� dAdx P = 0;where A(x) is the 
ross-se
tional area of the du
t and U , F and P are de�ned asU = 0� ��q�E 1A ; F = 0� �q�q2 + p�qH 1A ; P = 0� 0p0 1A :Here � is the density, q is the velo
ity, p is the pressure, E is the total energy and H isthe stagnation enthalpy. The system is 
losed by the equation of state for an ideal gas.The fun
tional of interest is the `lift' J = Z p dx:



14 The equations are approximated using a standard se
ond order �nite volume methodwith 
hara
teristi
 smoothing on a uniform 
omputational grid. The linear adjoint prob-lem is approximated by the so-
alled `
ontinuous' method, whi
h involves linearizing thenonlinear 
ow equations, 
onstru
ting the analyti
 adjoint equations, and then forminga dis
rete approximation to these on the same uniform grid as the 
ow solution [1,10℄. The alternative `dis
rete' approa
h, in whi
h one takes the dis
retized nonlinear
ow equations, linearizes them and then uses the transpose of the linear matrix as thedis
rete adjoint operator [5℄, is employed for the two-dimensional 
al
ulation presentedlater in the paper. Previous resear
h has shown that both approa
hes produ
e 
onsistentapproximations to the analyti
 adjoint solution, whi
h has been determined in 
losedform for the quasi-1D Euler equations [7℄.The approximate solution uh(x) is 
onstru
ted from the dis
rete 
ow solution by
ubi
 spline interpolation of the nodal values of the three 
omponents of the state ve
torU . Similarly, the approximate adjoint solution vh(x) is obtained by 
ubi
 spline inter-polation of the nodal values of the three 
omponents of the dis
rete adjoint solution.The integrals whi
h form the base value for the fun
tional and the adjoint 
orre
tion areapproximated by 3-point Gaussian quadrature.4.1 Subsoni
 
owThe �rst 
ase is smooth subsoni
 
ow in a 
onverging-diverging du
t 
orresponding tothe Ma
h number distribution depi
ted in Figure 5. Figure 6 shows the error 
onvergen
efor the 
omputed fun
tional. The superimposed lines of slope �2 and �4 show that thebase error is se
ond order whereas the error in the 
orre
ted fun
tional is fourth order.This is in agreement with an a priori error analysis [15℄ whi
h proves that uh�u, vh�vand their �rst derivatives are all O(h2) for the parti
ular �nite volume s
heme whi
h isused, and hen
e the error in the 
orre
ted fun
tional is O(h4).4.2 Isentropi
 transoni
 
owFigure 7 shows the error 
onvergen
e for a transoni
 
ow in a 
onverging-diverging du
t
orresponding to the Ma
h number distribution of Figure 5. The 
ow is subsoni
 atthe in
ow boundary and upstream of the throat (lo
ated at x = 0), and supersoni
downstream of the throat and at the out
ow boundary. Again the results show that thebase error is se
ond order while the remaining error after the adjoint 
orre
tion is fourthorder, even though there is logarithmi
 singularity in the adjoint solution at the throat[7℄.5 2D Euler equationsThe nonlinear steady-state Euler equations in 
onservation form are��xFx(U) + ��yFy(U) = 0;
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e for subsoni
 
ow in a 2D nozzle.where U is the ve
tor of 
onserved variables and Fx(U) and Fy(U) are the nonlinear 
uxfun
tions U=0BB� ��qx�qy�E 1CCA ; Fx=0BB� �qx�q2x+p�qxqy�qxH 1CCA ; Fy=0BB� �qy�qxqy�q2y+p�qyH 1CCA :The pre
eding test 
ases dealt with many of the theoreti
al and pra
ti
al issues thatare likely to arise in CFD 
al
ulations, in
luding 
urved boundaries, geometri
 singular-ities and nonlinear systems. To take the next step, the present example demonstrateserror 
orre
tion for subsoni
 invis
id 
ompressible 
ow through a smooth 
onverging-diverging du
t that has a 10% 
onstri
tion at the throat relative to the inlet and outletareas. To assist in the validation of the 
ode, the fun
tional is 
hosen to mimi
 the `lift'of the quasi-1D 
ases, J = 12 Z (ptop + pbottom) dx:The 
ow solution is 
omputed with a standard se
ond order �nite volume dis
retiza-tion on a stru
tured mesh 
omposed of quadrilateral 
ells. The adjoint solution is ob-tained using the previously des
ribed `dis
rete' approa
h. As before, bi-
ubi
 splining ofthe nodal values and mesh 
oordinates is used to re
onstru
t the 
ow and adjoint solu-tions. Analyti
 boundary 
onditions are enfor
ed during the re
onstru
tion at solid aswell as in
ow and out
ow boundaries so that the boundary terms in the error 
orre
tionformulation vanish. These boundary errors are propagated to the interior of the domainthrough the re
onstru
tion, so that they are a

ounted for in the bulk 
orre
tion term
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omputed with 3�3 Gaussian quadrature on ea
h mesh 
ell.Figure 8 demonstrates that the error 
orre
tion approa
h provides a substantial im-provement in the a

ura
y of the fun
tional estimate relative to the baseline lift value.However, sin
e the analyti
 solution to this problem is not available, it is not possibleto determine the order of a

ura
y as for the previous test 
ases.
6 Con
lusionsIn this paper we have presented a method of doubling the order of a

ura
y of integralquantities derived from CFD 
al
ulations. Doing so requires a solution of the adjoint
ow equations, whi
h are the same equations used in the optimal aerodynami
 designapproa
h of Jameson [9, 10℄. Be
ause of the importan
e of design, many adjoint solversare 
urrently being developed for the Euler and Reynolds-averaged Navier-Stokes equa-tions [1, 5, 11℄, fa
ilitating rapid exploitation of the error 
orre
tion ideas des
ribed inthis paper.The theory has been fully developed for both linear and nonlinear p.d.e.'s, and thispaper presents for the �rst time the extensions required to treat boundary integral fun
-tionals and trun
ation errors in the numeri
al approximation of boundary 
onditions.The numeri
al results for the 2D Poisson and Lapla
e equations 
on�rm the abilityof the error 
orre
tion to give super
onvergen
e for domains with 
urved boundaries andeven singularities in the geometry and solution, provided there is adequate grid resolu-tion. The results for the quasi-1D Euler equations also show an unambiguous doublingof the order of a

ura
y for the integrated pressure, 
on�rming that the theory 
orre
tlytreats nonlinear problems. Thus, these model problems test all of the 
omponents of thetheory needed for real engineering appli
ations.The numeri
al results for the 2D Euler equations are very preliminary in nature.They show a quite signi�
ant improvement in the a

ura
y of the fun
tional but it isnot possible to infer the pre
ise order of a

ura
y of the 
orre
ted fun
tional. Also, thetest 
ase is very simple, involving a 
onverging-diverging du
t with a very mild area
ontra
tion. Future work will address mu
h more 
hallenging problems, su
h as the 
owover airfoils and wings.There are two other issues to be addressed in future resear
h. The 
urrent workinvolves 
ubi
 spline interpolation of CFD data on stru
tured grids. On unstru
turedgrids, the 
onstru
tion of a smooth interpolation is a mu
h more diÆ
ult task. The useof unstru
tured grids also introdu
es the whole topi
 of optimal grid adaptation [4, 13℄.The magnitude of the adjoint error 
orre
tion term (vh; fh�f) 
an be redu
ed by adaptingthe grid in the regions in whi
h the produ
t vTh (fh�f) is largest. Alternatively, if gridadaptation is to be used in 
onjun
tion with adjoint error 
orre
tion then the remainingerror is perhaps best minimized by adapting the grid where the residual errors fh�fand gh�g are largest.
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