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21 IntrodutionIn aeronautial CFD, engineers desire very aurate predition of the lift and drag onairraft, but they are less onerned with the preise details of the ow �eld in general,although there is a lear need to understand the qualitative nature of the ow (e.g. isthere a bad ow separation?) in order to make design hanges whih will improve the liftor drag. Similarly, other areas of CFD analysis also have a partiular interest in a few keyintegral quantities, suh as total prodution of nitrous oxides in ombustion modeling,or the net seepage of a pollutant into an aquifer when modeling soil ontamination.The objetive of this paper is to obtain higher order auray for integral funtionals(suh as the lift and drag) derived from CFD alulations. The key is the solution ofthe adjoint p.d.e. with inhomogeneous terms appropriate to the funtional of interest.We show that it is this solution whih relates the error in the original approximation (asmeasured by the extent to whih the approximate solution fails to satisfy the originalp.d.e.) to the onsequential error in the omputed value of the funtional. Given anapproximation to the adjoint solution, one an then quantify and orret the leadingorder error term in the funtional estimate. The orreted value of the funtional isthen superonvergent in that the remaining error is proportional to the produt of theerrors in the primal and adjoint solutions.The analysis is losely related to superonvergene results in the �nite element lit-erature [2, 3, 4, 12, 13, 14℄. The key distintion is that the adjoint error orretion termwhih we evaluate to obtain superonvergene is zero in a large lass of �nite elementmethods, inluding many whih are used for inompressible ow, but not those usedmost ommonly for ompressible ow. Thus, these methods automatially produe su-peronvergent results for any integral funtional without requiring the omputation ofan approximate adjoint solution.Previous papers by the present authors [8, 15℄ derived the underlying theory for alimited lass of funtionals and presented numerial results for the one-dimensional Pois-son equation and the quasi-1D Euler equations. The only 2D results were for the Poissonequation on a unit square. In this paper we address a number of issues whih are rit-ial to real multi-dimensional appliations. The �rst is the onsideration of funtionalswhih are integrals over the boundary of the domain (as in lift and drag integrals) ratherthan integrals over the interior of the domain (as in the average temperature of a uid).The seond is onsideration of domains with urved boundaries and other more generalboundary onditions for whih there are trunation errors in the approximation of theboundary onditions. These two features require extensions to the theory presentedpreviously. The third issue, whih an be important in multi-dimensional appliations,is the presene of singularities in the geometry or solution, suh as at the trailing edgeof a usped airfoil. No new theory is required in this ase, but the question is whetherthe presene of a singularity may prevent one from ahieving superonvergent results.We begin the paper by presenting the linear theory and simple examples of its ap-pliation to the two-dimensional Poisson equation in urved domains. Superonvergentresults are ahieved even when there is a singularity in the solution. We then presentthe nonlinear theory and examples of its use with the quasi-1D and 2D Euler equations



3approximated by standard seond order �nite volume methods. Unambiguous fourthorder auray is ahieved for the quasi-1D results for both subsoni and shok-freetransoni ow. The 2D results show a very signi�ant improvement in the auray ofthe omputed funtional, but it is not possible to infer the preise order of auray.2 Linear analysis2.1 Theory without boundary termsLet u be the solution of the linear di�erential equationLu = f;on the domain 
, subjet to homogeneous boundary onditions for whih the problemis well-posed when f 2 L2(
). The adjoint di�erential operator L� and assoiatedhomogeneous boundary onditions are de�ned by the identity(v; Lu) = (L�v; u);for all u, v satisfying the respetive boundary onditions. Here the notation (:; :) denotesan integral inner produt over the domain 
.Suppose now that we are onerned with the value of the funtional J=(g; u), for agiven funtion g 2 L2(
). An equivalent dual formulation of the problem is to evaluatethe funtional J=(v; f), where v satis�es the adjoint equationL�v = g;subjet to the homogeneous adjoint boundary onditions. The equivalene of the twoforms of the problem follows immediately from the de�nition of the adjoint operator.(v; f) = (v; Lu) = (L�v; u) = (g; u):Suppose that uh and vh are approximations to u and v, respetively, and satisfythe homogeneous boundary onditions. The subsript h is intended to denote thatthe approximate solutions are derived from a numerial omputation using a grid withaverage spaing h. When using �nite di�erene or �nite volume methods, uh and vhmight be reated by interpolation through omputed values at grid nodes. With �niteelement solutions, one might simply use the �nite element solutions themselves, or oneould again use interpolation through nodal values and thereby obtain approximatesolutions whih are smoother than the �nite element solutions.Let the funtions fh and gh be de�ned byLuh = fh; L�vh = gh:It is assumed that uh and vh are suÆiently smooth that fh and gh lie in L2(
). If uhand vh were equal to u and v, then fh and gh would be equal to f and g. Thus, the



4residual errors fh�f and gh�g are a omputable indiation of the extent to whih uhand vh are not the true solutions.Now, using the de�nitions and identities given above, we obtain the following ex-pression for the funtional:(g; u) = (g; uh)� (gh; uh�u) + (gh�g; uh�u)= (g; uh)� (L�vh; uh�u) + (gh�g; uh�u)= (g; uh)� (vh; L(uh�u)) + (gh�g; uh�u)= (g; uh)� (vh; fh�f) + (gh�g; uh�u):The �rst term in the �nal expression is the value of the funtional obtained fromthe approximate solution uh. The seond term is an inner produt of the residual errorfh�f and the approximate adjoint solution vh. The adjoint solution gives the weight-ing of the ontribution of the loal residual error to the overall error in the omputedfuntional. Therefore, by evaluating and subtrating this adjoint error term we obtaina more aurate value for the funtional.The third term is the remaining error after making the adjoint orretion. If gh�g isof the same order of magnitude as vh�v then, using L2 norms, the remaining error hasa bound whih is proportional to the produt kuh�uk kvh�vk, and thus the orretedfuntional value is superonvergent. If the solution errors uh�u and vh�v are both O(hp)then the error in the funtional is O(h2p). Furthermore, the remaining error term anbe expressed as (gh�g; L�1(fh�f)) and so has the omputable a posteriori error boundkL�1k kfh�fk kgh�gk.2.2 First exampleIn a previous paper [8℄, we demonstrated the e�etiveness of the error orretion teh-nique for the two-dimensional Poisson equation�2U�X2 + �2U�Y 2 = F (X; Y )on a unit square domain subjet to homogeneous Dirihlet boundary onditions. Usinga seond order aurate �nite element method with bilinear test and trial funtions,fourth order auray was ahieved for the funtional (G;U) for the partiular ase inwhih F = X(1�X)Y (1�Y ); G = sin(�X) sin(�Y ):To show that superonvergene an also be ahieved on domains with urved bound-aries, we use onformal mapping to transform this same problem into a mathematiallyequivalent form. De�ning the omplex variables Z and z asZ � X + iY; z � x + iy;the mapping z = (Z + 3 + i)2



5maps the unit square onto the `warped square' shown in Figure 1. u(x; y) � U(X; Y ) isthen the solution of the transformed p.d.e.�2u�x2 + �2u�y2 = f(x; y);with f(x; y) = F (X; Y ) ����dZdz ����2 :Similarly, the transformed funtional is (g; u) whereg(x; y) = G(X; Y ) ����dZdz ����2 :The exat value of the funtional an be determined analytially. Numerial re-sults have been obtained using a Galerkin �nite element method with pieewise bilinearelements on the urved mesh in the z-plane. Standard �nite element error analysis re-veals that both the solution error for the primal problem and the error in the omputedfuntional using the �nite element solution are O(h2). However, by bi-ubi spline in-terpolation of the nodal values and the grid oordinates at the nodal points, one anreonstrut in parametri form an improved approximate solution uh(x; y) with an er-ror whih is O(h2) in the H2 Sobolev norm and hene has a residual error whih isalso O(h2). Using a similarly reonstruted approximate adjoint solution vh(x; y), onean then ompute the adjoint error orretion term resulting in a orreted funtionalwhose auray is O(h4). All inner produt integrals are approximated by 3�3 Gaussianquadrature on eah quadrilateral ell to ensure that the numerial quadrature errors areof a higher order.Figure 2 shows the error in the omputed value for the funtional, before and afterthe adjoint orretion, together with the bound for the remaining error. The ordinateis the logarithm of the number of ells in eah dimension. Lines of slope �2 and �4passing through the �nal data points are superimposed to show that the base error inthe funtional is learly seond order whereas the error in the orreted value of thefuntional is fourth order.Note also that an error level of 10�8 is ahieved with a grid of 16 � 16 when usingthe adjoint error orretion, whereas it requires a grid of 256 � 256 without the errororretion. Thus, the omputational savings are enormous and more than justify theost of the adjoint alulation.2.3 Theory with boundary termsWe now extend the theory to inlude inhomogeneous boundary onditions for the primaland dual problems, and boundary integrals in their output funtionals.Let u be the solution of the linear di�erential equationLu = f;
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Figure 1: The reonstruted primal and dual solutions for a 2D Poisson problem on awarped square.
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7in the domain 
, subjet to the linear boundary onditionsBu = e;on the boundary �
. In general, the dimension of the operator B will be di�erent ondi�erent setions of the boundary (e.g. inow and outow setions for the onvetionp.d.e.).The output funtional of interest is taken to beJ = (g; u) + (h; Cu)�
;where (:; :)�
 represents an integral inner produt over the boundary �
. The boundaryoperator C may be algebrai (e.g. Cu � u) or di�erential (e.g. Cu � �u�n), but musthave the same dimension as the adjoint boundary ondition operator B� to be de�nedshortly. Note that the omponents of h may be set to zero if the funtional does nothave a boundary integral ontribution.The orresponding linear adjoint problem isL�v = g;in 
, subjet to the boundary onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and the boundaryoperator C� is (L�v; u) + (B�v; Cu)�
 = (v; Lu) + (C�v; Bu)�
;for all u; v. This identity is obtained by integration by parts, and in a previous paper wedesribe the onstrution of the appropriate adjoint operators for the linearized Eulerand Navier-Stokes equations [6℄.Using the adjoint identity, one immediately obtains the equivalent dual form of theoutput funtional, J = (v; f) + (C�v; e)�
:Given approximate solutions uh; vh we de�ne eh; fh; gh; hh byLuh = fh; L�vh = gh;Buh = eh; B�vh = hh;and hene obtain(g; u) + (h; Cu)�
 = (g; uh) + (h; Cuh)�
�(gh; uh � u)� (hh; C(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�




8 = (g; uh) + (h; Cuh)�
�(L�vh; uh � u)� (B�vh; C(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(vh; L(uh � u))� (C�vh; B(uh � u))�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
= (g; uh) + (h; Cuh)�
�(vh; fh � f)� (C�vh; eh � e)�
+(gh � g; uh � u) + (hh � h; C(uh � u))�
:In the �nal result, the �rst line is the funtional based on the approximate solution uh.The seond line is the adjoint orretion term whih now inludes a term related to theextent to whih the primal solution does not orretly satisfy the boundary onditions.The third line is the remaining error for whih an a posteriori error bound an again befound.2.4 Seond exampleIn addition to urved boundaries, it is also interesting to investigate the inuene ofgeometri singularities in the domain, suh as the usp at the trailing edge of an airfoil.Using the same onformal mapping approah as above, we de�ne the domain in theZ-plane to be the region between two irles entered at (X; Y ) = (�0:1; 0) with radiiof R1 = 1:1 and R2 = 3:0. Appliation of the Joukowski mappingz = Z + 1Z ;then produes a omputational domain between a usped airfoil (�
z1) and a smoothouter boundary (�
z2).Using ylindrial oordinates R; � de�ned byX + 0:1 = R os �; Y = R sin �;the funtion U(X; Y ) = R2 � R21R sin �;is a solution of the Laplae equation subjet to the boundary onditions U =0 on theinner irle, and U = R22 �R21R2 sin �;on the outer ylinder.



9In the z-plane, the funtion u(x; y) = U(X; Y ) is the solution of the Laplae equation�2u�x2 + �2u�y2 = 0;subjet to u=0 on the airfoil, and the appropriate Dirihlet boundary onditions on thefar-�eld boundary. As illustrated in Figure 3, this solution orresponds to the streamfuntion for inompressible invisid ow around the airfoil, with zero irulation.The boundary funtional in the Z-plane is de�ned to beZ 2�0 H(�) �U�n ����R=R1 d�;where H = sin �R1 ;and its value an be obtained analytially. When mapped into the z-plane, the orre-sponding expression for the funtional is�H; �u�n��
z1 ;and hene the dual problem is the Laplae equation subjet to the inhomogeneous Dirih-let ondition v=H on the airfoil surfae and v = 0 on the far-�eld boundary.Figure 4 shows the numerial results obtained using the same Galerkin �nite elementmethod, bi-ubi spline interpolation and 2� 2 Gaussian quadrature, owing to memoryonstraints resulting from a larger omputational mesh. The solution is splined period-ially around the airfoil, inluding on the surfae where there is a usp in the geometry.The errors produed by this treatment of the geometri singularity at the trailing edgeonverge faster then the seond order auray of the baseline �nite element method.Again the superimposed lines of slope �2 and �4 show that the base solution isseond order aurate whereas the orreted value for the funtional is fourth orderaurate.3 Nonlinear theoryThe nonlinear theory in the absene of boundary integrals in the funtional and errors inapproximating the boundary onditions has been presented previously [8, 15℄, and so wenow proeed diretly to the theory inluding boundary e�ets whih is presented herefor the �rst time.Let u be the solution of the nonlinear di�erential equationN(u) = 0;in the domain 
, subjet to the nonlinear boundary onditionsD(u) = 0;



10

−4 −2 0 2 4
−4

−2

0

2

4

x

y

Primal Solution

−4 −2 0 2 4
−4

−2

0

2

4

x

y

Dual Solution

Figure 3: The reonstruted primal and dual solutions for a 2D Laplae problem arounda Joukowski airfoil.
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11on the boundary �
.The linear di�erential operators Lu and Bu are de�ned to be the Fr�ehet derivativesof N and D, respetively, Lu ~u � lim�!0 N(u+ �~u)�N(u)� ;Bu ~u � lim�!0 D(u+ �~u)�D(u)� :It is assumed that the nonlinear funtional of interest, J(u), has a Fr�ehet derivativeof the following form,lim�!0 J(u+ �~u)� J(u)� = (g(u); ~u) + (h; Cu~u)�
:Here the dimension of the operator Cu (whih may be di�erential) is required to equalthe dimension of the adjoint boundary operator B�u, to be de�ned shortly.The orresponding linear adjoint problem isL�uv = g(u)in 
, subjet to the boundary onditionsB�uv = hon the boundary �
. The identity de�ning L�u, B�u and the boundary operator C�u is(L�uv; ~u) + (B�uv; Cu~u)�
 = (v; Lu~u) + (C�uv; Bu~u)�
;for all ~u; v.We now onsider approximate solutions uh; vh and de�ne gh; hh byL�uhvh = gh; B�uhvh = hhNote the use of the Fr�ehet derivatives based on uh whih is known, instead of thosebased on u whih is not known.The analysis also requires averaged Fr�ehet derivatives de�ned byL(u;uh) = Z 10 Lju+�(uh�u) d�;B(u;uh) = Z 10 Bju+�(uh�u) d�;C(u;uh) = Z 10 Cju+�(uh�u) d�;g(u; uh) = Z 10 g(u+ �(uh�u)) d�;



12so that N(uh)�N(u) = Z 10 ���N(u+ �(uh�u)) d�= L(u;uh) (uh�u);and similarly D(uh)�D(u) = B(u;uh) (uh�u);J(uh)�J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
:We now obtain the following:J(uh)� J(u) = (g(u; uh); uh�u) + (h; C(u;uh)(uh�u))�
= (gh; uh�u) + (hh; Cuh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (L�uhvh; uh�u) + (B�uhvh; Cuh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (vh; Luh(uh�u)) + (C�uhvh; Buh(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
= (vh; L(u;uh)(uh�u)) + (C�uhvh; B(u;uh)(uh�u))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
= (vh; N(uh)) + (C�uhvh; D(uh))�
�(gh�g(u; uh); uh�u)� (h; (Cuh�C(u;uh))(uh�u))�
�(hh�h; Cuh(uh�u))�
 + (vh; (Luh�L(u;uh))(uh�u))+(C�uhvh; (Buh�B(u;uh))(uh�u))�
:In the �nal result, the �rst line is the adjoint orretion term taking into aountresidual errors in approximating both the p.d.e. and the boundary onditions. The otherlines are the remaining errors, whih inlude the onsequenes of nonlinearity in L;B;Cand g as well as residual errors in approximating the adjoint problem.If the solution errors for the nonlinear primal problem and the linear adjoint problemare of the same order, and they are both suÆiently smooth that the orrespondingresidual errors are also of the same order, then the order of auray of the funtional
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14 The equations are approximated using a standard seond order �nite volume methodwith harateristi smoothing on a uniform omputational grid. The linear adjoint prob-lem is approximated by the so-alled `ontinuous' method, whih involves linearizing thenonlinear ow equations, onstruting the analyti adjoint equations, and then forminga disrete approximation to these on the same uniform grid as the ow solution [1,10℄. The alternative `disrete' approah, in whih one takes the disretized nonlinearow equations, linearizes them and then uses the transpose of the linear matrix as thedisrete adjoint operator [5℄, is employed for the two-dimensional alulation presentedlater in the paper. Previous researh has shown that both approahes produe onsistentapproximations to the analyti adjoint solution, whih has been determined in losedform for the quasi-1D Euler equations [7℄.The approximate solution uh(x) is onstruted from the disrete ow solution byubi spline interpolation of the nodal values of the three omponents of the state vetorU . Similarly, the approximate adjoint solution vh(x) is obtained by ubi spline inter-polation of the nodal values of the three omponents of the disrete adjoint solution.The integrals whih form the base value for the funtional and the adjoint orretion areapproximated by 3-point Gaussian quadrature.4.1 Subsoni owThe �rst ase is smooth subsoni ow in a onverging-diverging dut orresponding tothe Mah number distribution depited in Figure 5. Figure 6 shows the error onvergenefor the omputed funtional. The superimposed lines of slope �2 and �4 show that thebase error is seond order whereas the error in the orreted funtional is fourth order.This is in agreement with an a priori error analysis [15℄ whih proves that uh�u, vh�vand their �rst derivatives are all O(h2) for the partiular �nite volume sheme whih isused, and hene the error in the orreted funtional is O(h4).4.2 Isentropi transoni owFigure 7 shows the error onvergene for a transoni ow in a onverging-diverging dutorresponding to the Mah number distribution of Figure 5. The ow is subsoni atthe inow boundary and upstream of the throat (loated at x = 0), and supersonidownstream of the throat and at the outow boundary. Again the results show that thebase error is seond order while the remaining error after the adjoint orretion is fourthorder, even though there is logarithmi singularity in the adjoint solution at the throat[7℄.5 2D Euler equationsThe nonlinear steady-state Euler equations in onservation form are��xFx(U) + ��yFy(U) = 0;
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17omputed with 3�3 Gaussian quadrature on eah mesh ell.Figure 8 demonstrates that the error orretion approah provides a substantial im-provement in the auray of the funtional estimate relative to the baseline lift value.However, sine the analyti solution to this problem is not available, it is not possibleto determine the order of auray as for the previous test ases.
6 ConlusionsIn this paper we have presented a method of doubling the order of auray of integralquantities derived from CFD alulations. Doing so requires a solution of the adjointow equations, whih are the same equations used in the optimal aerodynami designapproah of Jameson [9, 10℄. Beause of the importane of design, many adjoint solversare urrently being developed for the Euler and Reynolds-averaged Navier-Stokes equa-tions [1, 5, 11℄, failitating rapid exploitation of the error orretion ideas desribed inthis paper.The theory has been fully developed for both linear and nonlinear p.d.e.'s, and thispaper presents for the �rst time the extensions required to treat boundary integral fun-tionals and trunation errors in the numerial approximation of boundary onditions.The numerial results for the 2D Poisson and Laplae equations on�rm the abilityof the error orretion to give superonvergene for domains with urved boundaries andeven singularities in the geometry and solution, provided there is adequate grid resolu-tion. The results for the quasi-1D Euler equations also show an unambiguous doublingof the order of auray for the integrated pressure, on�rming that the theory orretlytreats nonlinear problems. Thus, these model problems test all of the omponents of thetheory needed for real engineering appliations.The numerial results for the 2D Euler equations are very preliminary in nature.They show a quite signi�ant improvement in the auray of the funtional but it isnot possible to infer the preise order of auray of the orreted funtional. Also, thetest ase is very simple, involving a onverging-diverging dut with a very mild areaontration. Future work will address muh more hallenging problems, suh as the owover airfoils and wings.There are two other issues to be addressed in future researh. The urrent workinvolves ubi spline interpolation of CFD data on strutured grids. On unstruturedgrids, the onstrution of a smooth interpolation is a muh more diÆult task. The useof unstrutured grids also introdues the whole topi of optimal grid adaptation [4, 13℄.The magnitude of the adjoint error orretion term (vh; fh�f) an be redued by adaptingthe grid in the regions in whih the produt vTh (fh�f) is largest. Alternatively, if gridadaptation is to be used in onjuntion with adjoint error orretion then the remainingerror is perhaps best minimized by adapting the grid where the residual errors fh�fand gh�g are largest.
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