
ANALYSIS OF THE EFFECT OF MISTUNING ONTURBOMACHINERY AEROELASTICITY
SERGIO CAMPOBASSO AND MICHAEL GILESOxford University Computing LaboratoryOxford OX1 3QD, United KingdomAbstrat. This paper looks at the e�et of alternate and random mis-tuning on utter and fored response in turbomahinery. Two levels ofasymptoti analysis are used, and their auray is assessed by omparisonwith the exat solution obtained by diret numerial omputation. MonteCarlo simulations are used to assess the e�ets of random mistuning. Theresults demonstrate the e�etiveness of mistuning in improving utter sta-bility, and the dependene of the maximum amplitude of fored responseon the mistuning pattern, the ratio of mistuning to oupling, and the modenumber of the exitation.1. IntrodutionBlade utter and fored response may lead to dangerous mehanial fail-ures if not properly aounted for in the design phase of an engine. Theaeroelasti analysis of bladed rotors is dramatially simpli�ed by the as-sumption of yli symmetry, whih allows one to investigate this problemby onsidering a single blade with a suitable periodi boundary ondition,rather than the whole bladed disk. However, probabilisti fators like manu-faturing toleranes make questionable the validity of tuned analyses. Thestruturally tuned and mistuned assemblies an behave in a remarkablydi�erent fashion. There is evidene that (a) mistuning improves the ut-ter boundary [6, 8℄, (b) mistuning an either inrease or redue the bladefored response [6, 3℄. The use of perturbation tehniques for turbomahin-ery aeroelastiity [1℄ has proved that both e�ets are inuened by the ratiobetween the level of mistuning and the inter-blade oupling, whih an beaerodynami [8℄, mehanial [10, 11℄ or both [7℄. The partiular mistun-ing pattern also plays a signi�ant role [2℄. One is interested in mistuningfor (a) aounting for the e�ets of stohasti fators like manufaturingtoleranes on the utter boundaries [9℄, (b) assessing the appliability of



2 SERGIO CAMPOBASSO AND MICHAEL GILESseleted mistuning patterns as a measure of passive utter ontrol and ()understanding its side-e�ets on the blade fored response.In this paper, the mehanisms through whih alternate and randommistuning a�et the free and fored response are enlightened by means ofasymptoti expansions, matrix perturbation theory, exat numerial solu-tion of the aeroelasti equations and Monte Carlo simulations.2. Model problemTo simplify the analysis, we onsider a model problem with N blades eahwith a single degree-of-freedom uj(t); j = 1; 2; :::; N . After a suitable non-dimensionalisation, the equations of motion in the absene of any externalforing are assumed to be of the form�uj + (1+� �mj) uj = � ( a�1uj�1 + a0uj + a1uj+1+ b�1 _uj�1 + b0 _uj + b1 _uj+1 ) : (1)with the blade indies being modulus N so that u0 � uN and u1 � uN+1.The left-hand side of the equation has the strutural inertial and sti�nessterms, with ��mj being the strutural mistuning whih is assumed to havezero mean and r.m.s. variation ��. The right-hand side has the fores due toaerodynami oupling, with it being assumed that a blade only experienesfores due to its motion and its two neighbours, and the unsteadiness is ofa low frequeny so the motion is well represented by the displaement andveloity of eah blade.Looking for eigenmodes with uj(t) being the jth element of the vetorexp(st)u gives the equation�(s2+1)I + � (�M�A�sB)�u = 0; (2)in whih M is a diagonal matrix, and A and B are tridiagonal irulantmatries. By de�ning u0=u; u1=su; this an also be written ass� u0u1 � = � 0 I�I � �(�M�A) �B �� u0u1 � :In this form, one an use standard mathematial software suh as MATLABto obtain the 2N eigenvalues. When � is small, these ome in omplexonjugate pairs, with N eigenvalues near i and N ounterparts near �i. Ofpartiular interest is the pair of eigenvalues with the largest real omponentR(s) sine these give the omponent of the general solution whih growsfastest in time (if R(s) > 0) or deays to zero most slowly (if R(s) < 0).



MISTUNING IN TURBOMACHINERY AEROELASTICITY 33. First level asymptoti analysisA key feature of aeroelastiity in turbomahinery is that �, a onstant repre-senting the order of magnitude of the strutural mistuning and aerodynamie�ets, is very small. A representative value of 0.01 will be used for all nu-merial results in this paper. As a result, it is appropriate to use asymptotianalysis with the N eigenvalues near i having an expansion of the forms = i+ � s(1) +O(�2):Substituting this into Eqn. (2) and negleting higher order terms yields�s(1)I � 12 i (�M�A�iB)�u = 0: (3)What this equation shows is that s(1), whih determines the stability of theaeroelasti system, depends ruially on the value of � whih represents therelative level of strutural mistuning ompared to aeroelasti oupling.For any matrix, the average of its eigenvalues is equal to the average ofits diagonal terms. Hene, the average value of the real part of the eigen-values R(s(1)) is equal to b0=2, whih must be negative for stability. Thebest that an be ahieved through mistuning is that all of the eigenvalueshave this same negative real part.Another simple observation is that in the absene of any aerodynamioupling eah blade vibrates at its own natural frequeny, so the eigen-values are s(1)j = 12 i �mj ; and the jth element is the only non-zero in theorresponding eigenvetor. It is the o�-diagonal terms in A and B whihintrodue oupling between the blades and ause more than one blade tovibrate in eah eigenmode.4. Travelling wave representationWhen analysing periodi systems, it is ommon to use a Fourier seriesrepresentation in whih the displaement of eah blade and the struturalmistuning are both expressed as a sum of irumferential Fourier modes,uj = N�1Xk=0 eij�k buk; mj = N�1Xk=0 eij�k bmk; �k = 2�kN :The blade equations an be expressed olletively as u=F û. Inserting thisinto Eqn. (3) and pre-multiplying by F�1 gives the transformed equation�s(1)I � 12 i��M � bA� i bB�� û = 0; (4)



4 SERGIO CAMPOBASSO AND MICHAEL GILESin whih it an be shown [4℄ that the matrix M = F�1MF is a irulantmatrix with Mkl = bmk�l, while bA = F�1AF and bB = F�1BF are bothdiagonal matries, with their diagonal elements beingbAkk = e�i�ka�1 + a0 + ei�ka1 bBkk = e�i�kb�1 + b0 + ei�kb1:Beause bA and bB are diagonal matries, the tuned eigenvalues in theabsene of any strutural mistuning are s(1)k =�k where�k = 12 ( bBkk � i bAkk) = 12 �b0 + (b1+b�1) os �k + (a1�a�1) sin�k�� 12 i �a0 + (a1+a�1) os �k � (b1�b�1) sin�k� ;and the kth element of the orresponding eigenvetor is the only non-zero el-ement, so the eigenmode is a travelling wave in whih all blades vibrate withan equal amplitude and inter-blade phase angle �k. It is the o�-diagonalterms in M whih introdue oupling between the Fourier modes.5. Alternate mistuningIn alternate mistuning with an even number of blades, every seond blade isidential. bmN=2 is the only non-zero term in the Fourier representation forthe mistuning, and so the o�-diagonal term Mk k+N=2 auses oupling be-tween the Fourier modes k and k+N=2. Isolating the eigenvalue/eigenvetorequations for these two modes alone, we have0� s(1) � �k �12 i � bm�12 i � bm s(1) � �k0 1A v̂kv̂k0 ! = 0; (5)where for simpliity in notation we have omitted the subsriptN=2 in bmN=2,and have de�ned k0 � k+N=2. Equating the determinant to zero yieldss(1) = 12 ��k + �k0 �q(�k��k0)2 � �2 bm2� : (6)When � is very small, asymptoti approximation of the square root termyields the approximate rootss(1)k � �k � �2 bm24(�k��k0) ; s(1)k0 � �k0 + �2 bm24(�k��k0) : (7)If R(�k)>R(�k0), so mode k is less stable than mode k0, then these equa-tions show that the e�et of the mistuning is to improve the stability of
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Re( s )Figure 1. E�et of alternate mistuning.mode k, while at the same time dereasing the stability of mode k0 by anequal amount.When � is very large, asymptoti analysis yieldss(1) � �12 i � bm+ 12 (�k+�k0)� (�k��k0)24 i � bm : (8)To leading order, the two roots have the same real omponent, whih isequal to 12R (�k+�k0) = 12b0.Figure 1 shows the eigenvalues for inreasing levels of mistuning. Thevalues of the aerodynami onstants are N = 20, � = 0:01, a�1 = �0:4443,a0 = �0:3587, a1 = 0:5296, b�1 = �0:0054, b0 = �1:7000, b1 = 1:5688, or-responding to the �rst bending mode of an LP turbine. The �rst two plotsdemonstrate the stabilising e�et ahieved through the oupling of modesk and k0. As � inreases further, the eigenvalues split into two groups, lus-tered around the frequenies of the weaker and sti�er blades, with nearlyonstant aerodynami damping for all modes, as predited. The stabilityparameter Æ = maxR(s)=� = maxR(s(1)) determined from the exat aeroe-lasti eigenvalue problem, Eqn. (2), the �rst level approximation, Eqn. (6),and the seond level approximations, Eqns. (7) and (8), is plotted versus� in Fig. 2. The exat urve shows that the system beomes stable whenthe oupling and mistuning are of the same order (� � 1). For � � 6:0 thesystem has nearly ahieved its maximum theoretial stability (12b0) and fur-ther inreases in mistuning have little e�et on stability. The exat resultsare well predited by the �rst level asymptoti analysis, whereas the twoseond level approximations are in good agreement for ��1 and ��1, asappropriate.
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Figure 2. Aeroelasti stability with alternate mistuning. Exat and asymptoti analyses6. Random mistuningWith random mistuning, we an also perform asymptoti analyses when�� 1 or �� 1. This is a seond level of asymptoti analysis sine we areapplying it to Eqn. (3) (or Eqn. (4), its Fourier transform ounterpart)whih itself omes from an asymptoti approximation to Eqn. (2) for ��1.When �� 1 we use Eqn. (4) with �M being regarded as a small per-turbation to the tuned system with eigenvalues �k. Using seond orderperturbation theory [4℄, one obtainss(1)k � �k � �24 Xl 6=k MklMlk�k��l : (9)Now, MklMlk = j bmk�lj2, and hene,R(s(1)k ) � R(�k)� �2Xl 6=k j bmk�lj24 R(�k)�R(�l)j�k��lj2 :Considering the index k for whih R(�k) is greatest, this result shows thatthe e�et of mistuning is always stabilising for the least stable mode.An interesting situation arises if the tuned eigenvalues �l form a irlein the omplex plane and so an be written as �l = �0 + rei�l with �=0orresponding to the least stable mode. In this ase,1�k � �l = 1r 1� os �l + i sin �l(1� os �l)2 + sin2 �l = 12r �1 + i ot �l2 � :and hene, R(s(1)k ) � R(�k)� �28r Xl 6=k j bmk�lj2:
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Figure 3. E�et of random mistuning.Sine the average level of mistuning is assumed to be zero, Parseval's the-orem [4℄ states that Xl 6=k j bmk�lj2 = 1N Xj m2j :Thus, the amount by whih the mistuning stabilises the least stable modeis independent of the pattern of mistuning in the partiular ase when theeigenvalues of the perfetly tuned system form a irle in the omplex plane.When ��1 we use Eqn. (3) with A+ iB being regarded as a small per-turbation to �M . The unperturbed eigenvalues are 12 i �mj , and applyingseond order perturbation theory givess(1)j � 12 i �mj + 12 (b0 � ia0) + i2� Xk=j�1 (a�1 + ib�1)(a1 + ib1)mj �mk : (10)Considering only the real part of this, one obtainsR(s(1)j ) � 12 b0 � 12� Xk=j�1 a�1b1 + a1b�1mj �mkThis shows that at very high levels of mistuning the system is stable be-ause of the dominane of the b0 term whih is negative in real appliations.The physial interpretation of this is that at high levels of mistuning eahblade vibrates on its own at its own natural frequeny. The fores it ex-perienes are due solely to its own motion, and these self-indued foresare always stabilising. As the level of mistuning dereases, or equivalently
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Figure 4. Aeroelasti stability with random mistuning; exat and asymptoti analyseswith Monte Carlo simulationsthe aerodynami terms inrease in strength, the aerodynami fores ausethe neighbouring blades to vibrate as well. The additional fores that thisgenerates on the entral blade may be stabilising or destabilising.Using the same aerodynami oeÆients as before, Figure 3 shows thehange in the eigenvalues for a partiular random pattern of mistuning.Again the mistuning stabilises the unstable eigenvalues, but there is now aloss of regularity in the eigenvalue louds during the transition from travel-ling wave to individual blade eigenmodes. To make the results independentof the partiular hoie of mistuning pattern, a Monte Carlo simulation hasbeen arried out with 1000 di�erent random patterns. Figure 4 has stabil-ity bands for the middle 80%, omitting the results for the best and worst10%. We make the following observations: (a) the e�et of random mistun-ing is always stabilising, (b) the agreement between exat and �rst levelasymptoti stability is very good (the di�erenes annot be distinguishedin the plot), () the seond level asymptoti analysis for ��1 is auratein prediting the stabilising e�et of low levels of mistuning, (d) the seondlevel asymptoti analysis for � � 1 gives poor results unless the level ofmistuning is unrealistially high.7. Fored responseIn fored response, equation (1) is modi�ed through the addition of a pre-sribed aerodynami foring term�uj + (1+� � mj) uj = � ( a�1uj�1 + a0uj + a1uj+1+ b�1 _uj�1 + b0 _uj + b1 _uj+1 ) + � fj(t): (11)



MISTUNING IN TURBOMACHINERY AEROELASTICITY 9The foring term fj(t) an be deomposed into a sum of omponents eah ofwhih has a partiular frequeny ! and inter-blade phase angle �. Beauseof linearity, the e�et of eah of these an be superimposed, so from hereonwards we onsider a single suh omponent.Writing the foring terms olletively as � ei!tf , the response of theblades is ei!tu, where u is given by�(�!2+1)I + � (�M �A� i!B)�u = �f : (12)A Fourier series transformation of this equation yields�(�!2+1)I + � (�M � bA� i! bB)� û = � f̂ ; (13)in whih only a single omponent of f̂ is non-zero, orresponding to thepresribed inter-blade phase angle.If j1�!2j � �, the e�et of the O(�) terms is negligible, and the approx-imate solution is u � �1�!2 f :On the other hand, if the foring frequeny is lose to the natural fre-queny of the blades, so 1�!2 = O(�), then the other O(�) terms be-ome signi�ant. In this ase it is appropriate to make the substitution! = 1 + �!(1), and then ignoring terms whih are O(�2) yields��2!(1)I + �M �A� iB�u = f : (14)and ��2!(1)I + �M � bA� i bB� û = f̂ : (15)If there is no mistuning then equation (15) an be solved to obtainbuk = f̂k�2!(1) � bAkk � i bBkk = f̂k�2 (!(1) + i�k) :If !(1) is treated as a variable, the peak response isjbukj = jf̂ j�2R(�k) = jf̂ j�(b0 + (b1+b�1) os �k + (a1�a�1) sin�k) ; (16)when !(1) = I(�k) = �12 �a0 + (a1+a�1) os �k � (b1�b�1) sin�k� :At the opposite extreme, if the aerodynami fores are weak, then theo�-diagonal terms in matries A and B an be ignored, to leading order,and so the approximate solution to Eqn. (14) isuj = fj�2!(1) + �mj � a0 � ib0 ;
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Figure 5. Blade response of alternately mistuned assembly for two engine orders andfor di�erent levels of mistuning. (|: exat, ��: asymptoti)and hene the peak response of blade j, when !(1) = 12 (�mj�a0); isjuj j = jf̂ j�b0 : (17)Figure 5 shows the exat and asymptoti blade response of the tunedand alternately mistuned assembly versus the exiting frequeny ! for twoexitations with inter-blade phase angle �12 = 216o and �2 = 36o, orre-sponding to the most and least damped modes of the tuned rotor, respe-tively. All ordinates are normalised by the maximum peak response of thetuned assembly. We make the following observations: (a) the agreementbetween exat and asymptoti analysis is exellent; (b) the maximum peakresponse of the tuned assembly ours when the least damped harmoniis exited; () with alternate mistuning there are two peaks and a widerfrequeny range over whih there is a signi�ant response; (d) mistuninginreases the maximum peak response when the most damped travellingwave is exited, but dereases the peak response when the least dampedmode is exited; (e) the response beomes inreasingly independent of theinter-blade phase angle of the foring high �0s.E�et (d) is due to the oupling of travelling waves k and k0. If theexited harmoni k has high damping, the mistuning transfers energy tothe lightly damped harmoni k0 produing a signi�ant response. On theother hand, if the exited harmoni k has low damping, then the mistuningredues the response by transferring energy to the more heavily dampedharmoni k0. E�et (e) is in agreement with Eqn. (17).
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Figure 6. Blade response of randomly mistuned assembly for two engine orders and fordi�erent levels of mistuning. (|: blade 7, ��: blade 19, � � �: blade 13, -.-.-: blade 10)Observations (b) ! (e) remain true for the randomly mistuned assem-bly, for whih results are presented in Fig. 6 for a partiular random mis-tuning pattern. The leftmost plots are the same as those in Fig. (5). Theothers show the response of four seleted blades. Eah peak orresponds tothe resonane of a partiular blade, eah of whih has a di�erent naturalfrequeny. Note that for �=4 the maximum peak response for both engineorders is not that of the weakest blade (blade 7).8. ConlusionsThe theoretial and numerial analyses presented in this paper on�rm thestabilising e�et of mistuning on blade utter, and show that it dependson both the tuned eigenvalues and the ratio of mistuning to aerodynamioupling. When the strutural mistuning is lower than the aerodynamioupling, eah mode is best viewed as a ombination of travelling waves andmistuning enhanes the stability of the least stable mode by transferringenergy to the more stable harmonis in whih it is dissipated. When thestrutural mistuning is large, eah mode is highly loalised, orrespondingprimarily to the osillation of a single blade, and to a lesser extent itsneighbours, with the aerodynami fores providing damping.Alternate mistuning is partiularly e�etive in improving utter stabil-ity and this suggests its use as a measure for passive utter ontrol. Randommistuning is also stabilising, but its e�etiveness depends on the partiularmistuning pattern. Monte Carlo simulation, onsidering multiple randomperturbations, is e�etive in assessing this.
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