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Abstract—Common parallel computer microarchitectures of-
fer a wide variety of solutions to implement numerical algorithms.
The efficiency of different algorithms applied to the same problem
vary with the underlying architecture which can be a multi-
core CPU, many-core GPU, Intel’s MIC (Many Integrated Core)
or FPGA architecture. Significant differences between these
architectures exist in the ISA (Instruction Set Architecture) and
the way the compute flow is executed. The way parallelism
is expressed changes with the ISA, thread management and
customization available on the device. These differences pose
restrictions to the implementable algorithms. The aim of the
work is to analyze the efficiency of the algorithms through the
architectural differences. The problem at hand is the one-factor
Black-Scholes option pricing equation which is a parabolic PDE
solved with explicit and implicit time-marching algorithms. In the
implicit solution a scalar tridiagonal system of equations needs
to be solved. The possible CPU, GPU implementations along with
novel FPGA solutions with HLS (High Level Synthesis) will be
shown. Performance is also analyzed and remarks on efficiency
are made.

I. INTRODUCTION

The aim of the present paper is to further examine the
architectural, programmability and development issues regard-
ing novel CPU, GPU and FPGA architectures in the case
of one dimensional finite difference problem like the one-
factor Black-Scholes (BS) PDE. The BS PDE is a parabolic
type defined with Dirichlet boundary conditions. Therefore
the solution of this problem is similar to the solution of
the heat equation in one dimension. The problem can be
solved using explicit and implicit time marching. Although the
explicit solution is programmatically much simpler, it requires
significantly more time step computations than the implicit
method, due to stability limit of the explicit method. Besides,
the implicit method doesn’t pose such restrictions on the grid
resolution which is defined by the convergence criteria of the
explicit method.

The balance of computational speed, programming effort
and power efficiency are the key factors that decide where
a certain architecture will be used in the engineering and
research practice. Therefore, in the current study the following
architecture-parallelisation tool combinations were chosen:

• Intel Xeon 2 socket server CPU with Sandy Bridge

architecture: algorithms implemented using AVX ISA
(Instruction Set Architecture) intrinsics in C/C++.

• NVIDIA Tesla K40 GPU with Kepler architecture:
algorithms implemented with CUDA C programming
language

• Xilinx Virtex7 FPGA: algorithms implemented with
Vivado HLS (High Level Synthesis) C/C++ language.

The way parallelism is executed and implemented on these
hardware platforms is usually very diverse. This is especially
true in the case of the FPGA where the implementation of
parallelism uniquely depends on the problem at hand and
the effort of the developer. Although the standard way of
FPGA development is through the use of VHDL or Verilog
hardware description languages, the development effort with
these approaches are not comparable with the C/C++ and
CUDA C development efforts, as hardware description lan-
guages are more fine-grained. Therefore, Vivado HLS (High
Level Synthesis) has been chosen to create a high performing
FPGA implementation from C/C++ source code.

The literature on the finite difference solution of the Black
Scholes PDE is abundant, but only a few papers provide a
thorough comparison of solvers on novel CPU, GPU and
FPGA architectures. See [1] for efficient algorithms on CPUs
and GPUs, [2] for comparison between GPU and FPGA
implementations. FPGA implementations of the explicit solver
are studied in [3] and [4], while implicit solution is considered
in [5].

II. BLACK-SCHOLES EQUATION AND ITS NUMERICAL
SOLUTION

The Black-Scholes (BS) PDE for derivative security pricing
is a celebrated tool of the Black-Scholes theory [6]. The one-
factor BS in the case of European call options is shown on
Eq. (1).
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The BS equation is a second order, parabolic, convection-
diffusion type PDE sharing common numerical features with
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the heat equation. Solving these equations with explicit or
implicit time-marching is feasible in 1 dimension (one-factor
form). In higher dimensions the cost of the implicit solution
increases greatly which can be avoided by more sophisticated
numerical methods. Such methods are not the scope of the
present paper. Both explicit and implicit solutions iterate in
time backwards, since the problem is a final value problem
rather than an initial value problem. After explicit (backward
time differentiation) discretization of Eq. (1) the BS PDE boils
down to the algebraic expression shown in Eq. (2). Evaluating
this expression gives the price curve in the next time-step.
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where (n) = 0, ..., N − 1 superscript is the time coordinate
with ∆t time step, k = 0, ...,K − 1 subscript is the price
coordinate with ∆S price step (price step is factorized out), σ
is the volatility of the underlying (risky) asset, r is the risk-free
interest rate.

Eq. (3) shows the implicit form of the solution of BS PDE,
which requires the solution of a tridiagonal system of equa-
tions.
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Since many options need to be calculated in a real-world
scenario, a natural parallelism arises in computing these op-
tions in parallel.

III. MULTI AND MANYCORE ALGORITHMS

The problem of solving the explicit and implicit time-
marching is done using stencil operations in the explicit case
and using the Thomas algorithm for solving the tridiagonal
system of equations arising in the implicit case. In depth details
and comparison of the CPU and GPU implementations can be
found in [1].

A. Stencil operations for explicit time-marching

The one dimensional, stencil-based computations required
for the one-factor application can be efficiently implemented
on both CPUs and GPUs.

The system specification of the CPU system used in our
work consists of a two socket Intel Xeon E5-2690 (Sandy
Bridge) 8 core/socket server processors. Each core has 32KB
L1 and 256KB L2 cache and all the cores in a socket share
a 20MB of L3 shared cache. Each socket has a 51.2GB/s
bandwidth to RAM memory and a total 66GB/s bandwidth
is measured for the two sockets by the STREAM benchmark

[7]. The theoretical maximal floating point computational limit
of a single socket is 318 GFLOPS for single and 171 GFLOPS
for double precision. The total maximal dissipated power of
the two socket is 270 W.

The GPU used in the current comparison is an NVIDIA
Tesla K40 card with the GK110b micro architecture. The
theoretical maximal bandwidth of the system towards the main
memory is 288 GB/s. The maximum bandwidth achieved with
the CUDA toolkits memory bandwidth test program is 229
GB/s. The theoretical maximal floating point computational
limit 5.04 TFLOPS for single and 1.68 TFLOPS for double
precision. The total maximal dissipated power of the GPU card
is 235 W.

a) CPU implementation: Stencil based computations
can be efficiently implemented on CPUs equipped with vector
instructions sets such as AVX or AVX2. Due to the efficient
and large L1 cache (32KB) these problems on CPUs tend to be
compute limited rather than bandwidth limited. On a typical
CPU implementation the computations are parallelized over
the set of options. Smaller subsets of options are solved using
multithreading with OpenMP and options within a subset are
solved within the lanes of CPU vectors.

b) GPU implementation: GPUs, due to the imple-
mented thread level parallelism and compile-time register
allocation give more freedom for better vectorization and opti-
mization and therefore the achievable computational efficiency
is very high. Among the many possible efficient algorithms
discussed in [1] the best performing utilizes the new register
shuffle instructions to share the work-load of computing a
single timestep. The shuffle instruction (introduced in the
Kepler architecture) makes communication possible between
the threads inside a warp, ie. shuffle allows data to be passed
between lanes (threads) in a vector (warp).

B. Thomas algorithm for implicit time-marching

The solution of the implicit form of the discretized BS
equation requires the solution of a tridiagonal system of
equations. The solution of the system is essentially the Gauss-
Jordan elimination process of the matrix equation Eq. 4 with
the Thomas algorithm shown in Alg. 1.
b0 c0 0 0 · · · 0
a1 b1 c1 0 · · · 0
0 a2 b2 c2 · · · 0
...

...
...

...
. . .

...
0 0 0 · · · aK−1 bK−1
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d1
d2
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dK−1


(4)

a) CPU implementation: The CPU implementation re-
lies on L1 cache performance and vectorization over options
with either auto vectorization or explicit vectorization with
instrinsic functions. Due to vectorization, 4 options with dou-
ble precision or 8 options with single precision are solved
in parallel with AVX or AVX2 instructions. The workload
of the complete set of options is then parallelised using
multithreading with OpenMP.

b) GPU implementation: Just as in the case of the
explicit solver, the GPU solver allows for more optimization.
The discussion of these novel, optimized algorithms can be
found in [1]. Beside the Thomas and the PCR (Parallel Cyclic
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ALGORITHM 1: Thomas algorithm
Require: thomas(a,b, c,d)

1: d∗0 := d0/b0
2: c∗0 := c0/b0
3: for i = 1, . . . ,K−1 do
4: r := 1 / (bi − ai c

∗
i−1)

5: d∗i := r (di − ai d
∗
i−1)

6: c∗i := r ci
7: end for
8: uK−1 := d∗K−1

9: for i = K−2, . . . , 0 do
10: ui := d∗i − c∗i ui+1

11: end for
12: return u

Reduction) algorithms, a new hybrid Thomas/PCR algorithm
is also introduced in [1]. The efficiency of the latter algorithm
relies on the aforementioned register shuffle instruction and
compile-time register allocation. The algorithm works on a
work-sharing basis in three steps: 1) the system of size N is
split into 32 pieces which are partially solved and results in a
reduced system of size 64; 2) threads cooperate to solve the 64
size system with PCR; 3) the solution of the reduced system
is used to solve the partially computed systems in step 1).

IV. FPGA IMPLEMENTATION WITH VIVADO HLS

For many years there has been no breakthrough for FPGAs
in the field of HPC (High Performance Computing). Over the
years, research has been carried out to create tools to support
development for FPGAs in C language. Recently syntheser
tools with OpenCL (Open Computing Language) support
appeared for Altera and Xilinx FPGAs. Xilinx in its Vivado
HLS (High Level Synthesis) suite started a new software-based
syntheser for the C,C++ and System C languages. These tools
appeared as a response to the need of faster system realization.
The Vivado HLS support for C with its customized support for
the Xilinx FPGA is a potentially efficient solution.

A. Stencil operations for explicit time-marching

Stencil operations are a widely studied area of FPGA algo-
rithms, see [8]. Many signal and image processing algorithms
implemented on FPGAs utilize similar solutions to that used
in explicit solution of one dimensional PDEs with stencil
operations.

One of the key optimizations in FPGA circuit design is
the maximization of the utilization of processing elements.
This involves careful implementation that allow for pipelining
computations to keep the largest possible hardware area busy.
In HPC terminology this optimization is similar to cache-
blocking, although the problem is not the data movement but
rather keeping the system busy.

One way to create such a (systolic) circuitry is to create
multiple interleaved processing elements with simple structure
to allow low latency and high throughput. Each processing
element is capable of handling the computation associated
with three neighboring elements f(u

(n)
k−1, u

(n)
k , u

(n)
k+1) within

a single timestep n, where f is the stencil operation. One
may stack a number of such processing elements to perform
consecutive timestep computations by feeding the result of

TABLE I. FPGA RESOURCE STATISTICS FOR A SINGLE PROCESSOR

# BRAM # DSP slice Clock [ns] ×106 Ticks

SP DP SP DP SP DP SP DP

Explicit 24 64 1200 3570 4.09 4.01 334 315

Implicit 256 512 37 94 4.26 4.3 14.2 12.6

Note: SP - Single Precision, DP - Double Precision

processor p = 1 to p = 2 as shown on Figure 1. The result
u
(1)
k+1 of f(u

(0)
k , u

(0)
k+1, u

(0)
k+2) is fed into the third input of the

element processing element p = 2. This way the processing
elements stay busy until they reach the end of the system.
There are a number of warm-up cycles until all the processors
get the data on which they can operate. This introduces
an insignificant run-up delay if the size of the system to
be calculated is larger than the number of the processors.
Each processing element needs 2 clock cycles to feed in the
necessary 2 elements in their FIFO. For the third clock cycle
the third element is also available and the computation can be
executed. Since there are P number of processing elements that
need to be initialized to perform the lock-step time iteration
on a given system, the total delay of the system is 2P , ie. the
P th processor starts executing a stencil operation after 2 ∗ P
clock cycles of the start of the simulation.

Larger units, called processors are composed of 80 and 85
processing elements in the case of single and double preci-
sion solutions. Resource requirements of these processors are
shown in Table I. For single and double precision respectively
3 and 1 such processors can be crammed onto the FPGA used
in the study.

u0(0)	   …	   uk-‐2(0)	   uk-‐1(0)	   uk(0)	   uk+1(0)	   uk+2(0)	   …	   uK-‐1(0)	  

uk(0)	   uk+1(0)	   uk+2(0)	  

uk-‐1(1)	   uk(1)	   uk+1(1)	  

uk-‐2(2)	   uk-‐1(2)	   uk(2)	  
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m
e	  
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Processing	  Element	  #3	  

Ini6al	  state:	  

Fig. 1. Stacked FPGA processing elements to pipeline stencil operations in a
systolic fashion. The initial system variables u

(0)
0 , ..., u

(0)
K−1 are swept by the

first processing element. The result u(1)
k+1

is fed into the second processing
element.

B. Thomas algorithm for implicit time-marching

The optimization of the implicit solver relies on the
principle of creating independent processors to perform the
calculation of independent options. Each of these processors
is capable of pipelining the computation of more options
into the same processor with the associated cost of storing
the temporary (c∗, d∗) arrays of each option. The number
of options that can be pipelined is defined by the depth of
the forward sweep of the Thomas algorithm, which is 67
clock cycles in the present case. The temporary storage is
implemented in the available Block RAM memories, but due
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TABLE II. PERFORMANCE - SINGLE PRECISION

ps/element GFLOPS GFLOPS/W

C G F C G F C G F

Explicit 15.2 2 17.4 394 3029 344 1.46 12.9 8.6

Implicit 142.7 14.5 766 139 1849 26 0.51 7.9 0.65

Note: C - 2 Xeon CPUs, G - Tesla K40 GPU, F - Virtex 7 FPGA

TABLE III. PERFORMANCE - DOUBLE PRECISION

ps/element GFLOPS GFLOPS/W

C G F C G F C G F

Explicit 29.8 4.1 48.2 201 1463 124 0.74 6.2 3.1

Implicit 358.8 43.5 1748 48 892 9.8 0.18 3.8 0.24

Note: C - 2 Xeon CPUs, G - Tesla K40 GPU, F - Virtex 7 FPGA

to the deep pipeline the BRAM memory requirement limits
the number of deployable processors.

The current HLS compiler fails to recognize that no data
hazard exist between c∗i and c∗i−1 in the two consecutive
iterations of the forward pass in the tridiagonal algorithm and
therefore refuses to properly pipeline the loop. A secondary
temporary array is used to store a copy of the temporary arrays
– this changes the data flow and guides the compiler towards
pipelining.

A single processor unit for the implicit solver has resource
requirements specified on Table I. For single and double
precision respectively 11 and 5 of these units can be crammed
onto the utilized FPGA.

V. PERFORMANCE COMPARISON

FPGA performance is compared to highly optimized CPU
and GPU code. Estimations based on the Xilinx Vivado toolset
are made to predict the achievable clock frequency on a
Xilinx Virtex 7 VX690T. Performance metric is calculated on
a grid element basis to eliminate the effects of architectural
differences, ie. the total execution time is divided by the
number of system elements K and total N time steps made.
To mimic a real-world scenario the ak, bk, ck coefficients
of the explicit and implicit methods are set up in the first
phase of the computation and stored in a,b, c arrays for each
option independently. Every implementation uses these arrays
to perform the computation.

The chosen FPGA is equiped with 108k slices, 3600 DPS
slices and 3000 BRAM of size 18Kb. The total maximal power
dissipation allowed by the packaging is expected to be less then
40 W.

The results of measurements are present on Table II and III.
Based on the figures it can be stated that the proposed FPGA
implementation is slower than the highly optimized CPU
implementation, but it is significantly more power efficient.
Compared to the GPU version the FPGA is significantly slower
and even if the power dissipation of the GPU is higher than
the FPGA the overall power efficiency is higher for the sake
of the GPU.

VI. CONCLUSION

In the current paper a well studied finite difference problem
– the solution of the Black-Scholes PDE – is chosen to com-
pare novel CPU, GPU and FPGA architectures. Efficient FPGA

based implementation of the explicit and implicit BS solvers
have been created using Vivado HLS. The relatively low
programming effort and the achieved efficiency of the resulting
circuitry shows a promising step towards the applicability
of FPGAs in an HPC environment and more specifically in
finite difference calculations. Although the overall performance
is not significantly higher than the CPU, the higher power
efficiency makes this approach viable in power constrained
system and solutions. The results on the other hand clearly
show the superior performance of GPUs both in terms of
computational efficiency and power efficiency.
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