
Stabilization of a Linearized Navier-StokesSolver for Turbomahinery AeroelastiityM. Sergio Campobasso1 and Mihael B. Giles21 DIMEG, Politehni of Bari, Via Re David 200, 70125 Bari, Italy2 Oxford University Computing Laboratory, Parks Road, OX1 3QD Oxford, UKAbstrat. The linear analysis of turbomahinery aeroelastiity relies on the assump-tion of small level of unsteadiness and requires the solution of both the nonlinearsteady and the linear unsteady ow equations. The objetive of the analysis is to om-pute a omplex ow solution whih represents the amplitude and phase of the unsteadyow for the frequeny of unsteadiness of interest. The solution proedure of the lin-ear harmoni Euler/Navier-Stokes solver often onsists of a preonditioned �xed-pointiteration whih in some irumstanes may beome numerially unstable. The papersummarizes the use of the Reursive Projetion Method and the Generalized MinimumResiduals algorithm to provide stabilization and presents a realisti appliation of bothapproahes.1 IntrodutionBlade utter and fored response of turbomahinery rotors [1℄ are aeroelastiphenomena whih may both lead to dramati mehanial failures if not properlyaounted for in the design of the engine. Flutter ours if the working uid feedsenergy into the vibrating blades, while fored response vibrations are due to anexternal soure of exitation suh as the wakes shed by an upstream blade-row.The estimate of both the mean energy ux between uid and struture in theutter ase and the unsteady fores ating on the blades in the fored responseproblem requires knowledge of the unsteady ow �eld. A number of methods havebeen developed to arry out the analysis of turbomahinery aeroelastiity [9℄,ranging from unoupled linearized potential ow solvers [4℄ to fully-oupled non-linear three-dimensional unsteady visous methods [5℄ and within this range theunoupled linear harmoni Euler and Navier-Stokes (NS) methods have provedto be a suessful ompromise between auray and ost. This approah relieson the fat that the level of unsteadiness in turbomahinery ows is small andhene views it as a small perturbation of a spae-periodi mean steady ow.The unsteady ow �eld an be linearized about the steady one and due to lin-earity an be deomposed into a sum of harmoni terms, eah of whih an beomputed independently. The analysis onsiders a single blade passage ratherthan the whole blade-row thanks to the yli periodiity of both the steadyand unsteady ows, thus leading to a great redution of omputational osts.The periodi boundary ondition of the linear harmoni equations introdues aphase-shift between the two periodi boundaries, known as Inter-Blade PhaseAngle (IBPA). The small amplitude of the unsteady aerodynami fores with



2 M.S. Campobasso and M.B. Gilesrespet to the mehanial fores often allows one to neglet the aerodynamioupling of strutural modes and the investigation an be arried out onsid-ering one mode at a time. The omplete analysis [2℄ onsists of two phases: a)alulation of the nonlinear steady ow �eld about whih the linearization isperformed and b) solution of the linear harmoni equations.The HYDRA suite of parallel odes developed at the Oxford UniversityComputing Laboratory inludes both a nonlinear (hyd) [6℄ and a linear harmoni(hydlin) [3℄ solver of the invisid and visous equations and the solution proe-dure of both odes is a preonditioned �xed-point iteration. Usually the linearode onverges without diÆulty, but numerial instabilities have been enoun-tered in situations in whih the steady ow alulation itself failed to onverge toa steady state but instead �nished in a low-level limit yle, often related to somephysial phenomenon suh as orner stalls. The main objetives of this paperare to: 1) investigate the numerial instabilities of hydlin and 2) demonstrateits stabilization ahieved by means of two methods: the Reursive ProjetionMethod (RPM) and the Generalized Minimal Residuals (GMRES) algorithm.2 Linear equationsThe disrete linear harmoni Euler and NS equations [2℄ an be viewed as aomplex linear system Ax = b of dimension k equal to the produt of the numberof grid nodes and ow variables. The matrix A depends on the sensitivity of thenonlinear residuals to ow perturbations and the right-hand-side vetor b isdue to inoming perturbations through the inow or outow boundary in thefored response ase and to the harmoni deformation of the grid in the utterproblem. The unknown omplex vetor x represents the amplitude and phase ofthe unsteady ow for the frequeny of unsteadiness of interest. The linear solverhydlin an be regarded as the �xed-point iteration:xn+1 = (I �M�1A)xn +M�1b (1)in whih M�1 is the preonditioning operator resulting from the Runge-Kuttatime-marhing algorithm, the Jaobi preonditioner and the multigrid sheme [3℄.It should be noted that M�1 depends on several numerial parameters suh asthe number of iterations on eah grid level and neither M�1 nor A are builtexpliitly, as hydlin only uses the matrix-vetor produts M�1Ax. Linear sta-bility analysis of (1) shows that neessary ondition for its onvergene is thatall the eigenvalues of M�1A lie in the unit dis entred at (1; 0) in the omplexplane. For most aeroelasti problems of pratial interest, this ondition is ful-�lled and hydlin onverges without diÆulty. However an exponential growthof the residual has been enountered for some turbomahinery test-ases ausedby a few omplex onjugate eigenvalues lying outside the unit dis (outliers). Inthese irumstanes the steady ow alulation itself usually failed to onvergeto a steady-state but instead �nished in a small-amplitude limit yle, relatedto some physial instability suh as ow separations or vortex shedding. Thesolution proedure of hyd is not time-aurate but it nevertheless reets some



Stabilization of a Linearized Navier-Stokes Solver 3physial properties of the ow �eld due to the pseudo time-marhing strategyassoiated with the Runge-Kutta algorithm. Small-amplitude limit yles do notprevent the steady solver from onverging (their e�et is sometimes visible insmall osillations of the residual around a onstant low level), but they resultin a small number of omplex onjugate outliers ausing the exponential growthof the residual in the linear alulation. Two di�erent solutions to this problemhave been ahieved implementing RPM and GMRES in hydlin.3 RPMRPM is an iterative algorithm for the solution of linear and nonlinear systems [8℄and is based on the projetion of M�1A onto the orthogonal subspaes P andQ of Rk assoiated respetively with the subset of mout outliers and that of theremaining (k�mout) eigenvalues lying in the unit dis. At eah RPM iteration theprojetion of the linear equations on the low-dimensional subspae P is solvedwith Newton's method and that on the subspaeQ with the standard �xed-pointiteration (1). Denoting by Z an orthonormal basis of P , the orthogonal projetorsP and Q on the subspaes P and Q are de�ned respetively as P =ZZT andQ=I�P . The basis Z is augmented with the urrent dominant eigenmode eahtime the alulation is diverging or onverging very slowly. The projetions fand g of (1) on P and Q are de�ned respetively asf = P [(I �M�1A)x+M�1b℄ g = Q[(I �M�1A)x+M�1b℄and the outline of the RPM loop is:pinit = Pxinit; qinit = QxinitDo until onvergene:i: p�+1 = p� + (I � fp)�1(f(p� ; q�))� p�)ii: q�+1 = g(p� ; q�))x� = p� + q� = p�final + q�finalwhere p = Px, q = Qx and fp = P (I �M�1A)P . It is easily veri�ed that(I � fp)�1 = Z[I � ZT (I �M�1A)Z℄�1ZT = ZH�1ZTwhere H is a small matrix of size mout, whose inversion requires minimum om-putational e�ort. The stability analysis of this algorithm shows that its spetralradius is smaller than 1, that is the stabilized RPM iteration is stable. The im-plementation of RPM in hydlin has required only minor hanges to the existingode, as q is determined using the ore-part of the ode performing the standard�xed-point iteration (1) and the remaining omputationally heap operationsare performed at the top routine-level.4 GMRESGMRES is an iterative method for the solution of linear systems whih belongs tothe family of Krylov subspae methods [7℄ and is guaranteed to onverge even in



4 M.S. Campobasso and M.B. Gilesthe presene of outliers. The Krylov subspae of dimensionm generated byM�1Aand b is the vetorial spae spanned by the powers ((M�1A)jb; j = 0; : : :m�1),that is Km =< b;M�1Ab; : : : ; (M�1A)m�1b > :The GMRES algorithm is based on the progressive redued Arnoldi fatoriza-tion [7℄ of M�1A: M�1AQm = Qm+1 ~Hm (2)where ~Hm is a Hessemberg matrix of size ((m+ 1)�m), Qm is a matrix whosem olumns form an orthonormal basis for Km and Qm+1 is Qm augmentedwith a new Krylov vetor. The length k of eah olumn of Qm is equal to thatof the omplex linear ow �eld. At the mth GMRES iteration the solution x isapproximated by the linear ombination of the available m Krylov vetors whihminimizes the 2-norm of the residual.The preonditioned GMRES algorithm implemented in hydlin uses its orepart as a blak-box to determine the Krylov vetors whih are preonditionedin the existing way (multigrid+Runge-Kutta+Jaobi preonditioner) and theomputationally heap optimization is arried out at the top routine level. Therestart option [7℄ is used in order to limit the required memory. Using between 10and 30 GMRES iterations per restarted yle makes the omputation a�ordableeven for large problems and a good onvergene level is usually ahieved within20 restarted yles.5 ResultsThe onsidered test-ase is a three-dimensional fan rotor whose geometry andsurfae grid are shown in �g. 1-a. This grid has only 157441 nodes and is quiteoarse, but all the phenomena disussed in this setion have been also observedwith �ner omputational meshes and for other test-ases. The omplete utteranalysis of this rotor is reported in [2℄ and shows that the rotor is aeroelas-tially stable for all onsidered steady working onditions for IBPA = 1800.However all linear alulations using the standard �xed-point iteration (1) donot onverge. Figure 1-b provides the residual histories of hydlin for the near-stall mean steady onditions and for IBPA=1800 obtained using the RPM andthe GMRES solvers with di�erent numerial parameters. The solid line refers tothe RPM solver whih adds the urrent dominant eigenmode to the subspae Ponly if the alulation diverges. The iterations at whih a new partitioning ofM�1A is arried out are labelled from 1 to 4. Before the �rst dominant modeis added to P this onvergene history is that of the standard preonditionediteration (1) whih therefore does not onverge. Conversely the stabilized RPMiteration onverges (branh 40�E0) one all the unstable modes have been in-luded in P . The subset of the spetrum of M�1A with the �rst 150 dominanteigenvalues is provided in �g. 2, whih reveals the presene of 4 omplex onju-gate outliers (eigenvalues labelled from 1 to 4). The omplex onjugate eigenpairin the unit dis labelled with 5 determines the asymptoti onvergene rate of



Stabilization of a Linearized Navier-Stokes Solver 5RPM (slope of the branh 40�E0). The dotted line in �g. 1-b refers to theonvergene of RPM obtained adding to P also the eigenpair 5 at the iterationlabelled with 5. The slope of the branh 5�E1 is steeper than that of 40�E0,sine in the former ase the asymptoti onvergene rate is determined by theeigenpair 6, whih is loser than 5 to the entre of the unit dis. The residualof the alulation with restarted GMRES performing 10 iterations per restartedyle and one multigrid yle per GMRES iteration stagnates (dashed line in�g. 1) and an aeptable onvergene rate an be retrieved only by using 30GMRES iterations per restarted yle and three multigrid yle per GMRESiteration (dashed-dotted line). The analysis of the dominant eigenmodes [2℄ hasshown that these numerial instabilities are due to small physial unsteadinessof the nonlinear ow �eld suh as the hub orner stall.
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(a) (b)Fig. 1. (a) Fan geometry and surfae mesh and (b) onvergene plots of hydlin6 ConlusionsThe implementation of the RPM and GMRES algorithms in the existing linearsolver based on a preonditioned �xed-point iteration has stabilized the ode.This allows one to arry out the aeroelasti analysis even in the presene of smallunsteady phenomena in the mean ow, whih are believed not to a�et signi�-antly the aeroelasti behaviour of the omponent. The asymptoti onvergenerate of the restarted GMRES algorithm depends on the spetrum of the linearoperator, on the number of GMRES iterations per restarted yle and the num-ber of multigrid yles per GMRES iteration. The extra memory alloation forstoring the Krylov vetors depends only on the number of GMRES iterations perrestarted yle and not on the number of outliers. The asymptoti onvergenerate of RPM depends on the spetral radius of the projetion of the linear op-erator onto the stable spae Q. The required extra memory alloation depends
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Fig. 2. First 150 eigenvalues of M�1Aon the number of outliers and is omparable with that of the restarted GMRESwith 10 iterations per restarted yle if the linear operator has not more than 4omplex onjugate pairs of outliers. Therefore the overall CPU-time and extramemory alloation using either solver is onsiderably ase-dependent.Referenes1. M.S. Campobasso, M.B. Giles: `Analysis of the e�et of mistuning on turbomahin-ery aeroelastiity'. In: Unsteady Aerodynamis, Aeroaoustis and Aeroelastiityof Turbomahines, 2nd International Symposium in Lyon, Frane, september 4-8,2000, ed. by Pasal Ferrand, Staphane Aubert (Presses Universitaires de Grenoble)pp. 885-8962. M.S. Campobasso, M.B. Giles: `E�et of Flow Instabilities on the Linear Analysisof Turbomahinery Aeroelastiity', AIAA paper 2002-4085, Indianapolis 20023. M.C. Duta: The use of the Adjoint Method for the Minimization of Fored Re-sponse, PhD Thesis, Oxford University, Oxford (2001)4. K.C. Hall: Deforming grid variational priniple for unsteady small disturbane owsin asades, AIAA J. 5, 31 (1993)5. J.G. Marshall and M. Imregun: A review of aeroelastiity methods with emphasison turbomahinery appliations, J. of Fluid and strutures 3, 10 (1996)6. P. Moinier: Algorithm developments for an unstrutured visous ow solver, PhDThesis, Oxford University, Oxford (1999)7. Y. Saad: Iterative methods for sparse linear systems (PWS Publishing Company,Boston 1996)8. G.M. Shro� and H.B. Keller: Stabilization of Unstable Proedures: the ReursiveProjetion Method, J. of Applied Mathematis 4, 30 (1993)9. J.M. Verdon: Review of Unsteady Aerodynami Methods for Turbomahinery Aeroe-lasti and Aeroaousti Appliations, AIAA J. 2, 31 (1993)


