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1 Introduction

In an effort to avoid the geometric limitations of structured, logically rectangular meshes,
much work is now being done using unstructured meshes for flow calculations around
complex geometries. In particular, triangular meshes are becoming popular for two-
dimensional problems with multiple components [1] or grid adaptation [2], and tetrahe-
dral cells are being used for three-dimensional aircraft calculations [3]. It is clear that

these unstructured meshes will be of increasing importance in computational methods.

During this period of rapid development the development of methods for numerical
analysis has lagged behind. Questions about the maximum stable time step for explicit
methods have been resolved by ad hoc procedures which are based upon the results
for structured meshes and a clear understanding of the physical domain of dependence
restrictions which are the underlying origin of these limits. The lack of rigorous analysis
tools however leads to concerns that current methods may be overly conservative in order
to ensure stability in all possible cases. As more three-dimensional calculations are being
performed for engineering design and analysis, larger time steps and faster convergence
rates can lead to significant savings in time and money. Thus it is important to develop

new methods of analyzing numerical methods on unstructured meshes.

The standard approach for analyzing methods on structured grids is to use Fourier
analysis, by considering a general solution to be a sum of Fourier modes, and then
separately analyze each one [4]. The key point is that on a regular infinite grid the
eigenmodes are always Fourier modes. On irregular unstructured grids this is clearly
not the case and so a different approach is needed. The answer is to turn to another clas-
sic analysis method, the energy method [4]. This technique defines an energy associated
with a solution and then proves stability by showing that the energy is non-increasing.
For structured meshes this approach can be much more cumbersome than Fourier anal-
ysis, particularly for systems of equations where it can be difficult to pick the correct

energy definition, but it is very suitable for unstructured meshes.

In this paper we demonstrate the use of the energy method to analyze multi-stage
methods for solving the model convective equation on unstructured meshes, using cell-
based and node-based spatial differencing, both of which were developed by Jameson
[5, 3]. Cell-based differencing (in which the variable is assumed to be constant within
each cell) was the first developed, but is only first-order accurate in an integral sense on
irregular meshes. In node-based methods the variable is defined at each node, and in

general the solution is second order accurate. In performing the energy stability analysis



we will assume that all functions (and their derivatives where necessary) are zero on
the boundaries, to avoid the complications introduced by boundary contributions. The
inclusion of the boundary terms in the analysis would bring us into the subject of the
stability analysis of numerical boundary conditions which is an additional subject in its
own right and is beyond the scope of this present paper. Here we are simply concerned

with finding the requirements for the interior numerical scheme to be stable.

A few comments are appropriate on the organization of this paper, since it may
seem strange that unstructured grids and spatial differencing are not discussed until
the fifth section. Section 2 presents the use of the energy method to prove stability
for the analytic convective equation and introduces the ideas and formalism which will
be used for the discrete methods. Section 3 analyzes semi-discrete methods (spatially
discrete but continuous in time) in a very general form and section 4 extends this to
fully discrete equations. These two sections assume that the spatial discretization has
certain properties, and then the next two sections prove that the cell-based differencing
and the triangular/tetrahedral node-based differencing do in fact have these properties.
The reason for this approach is to emphasize the importance of these properties, in that
any scheme satisfying these conditions will be stable. Finally, the last section extends

the analysis to systems of equations and analyzes the Euler equations in particular.



2 Energy Analysis of Convection Equation

The model convection equation is

ou Ou
2422 —0. 1
o "oz 0 (1)

The ‘energy’ of u(Z,t) in a three-dimensional volume V' is defined by

B(t) = / W2(F, 1) dV. 2)
v
The rate of change of energy is given by
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The last integral is over the surface of the volume with n, being the z-component of
the outward pointing normal. If 4 =0 on dV then the boundary contribution disappears

and we are left with p
_ = 4
=0, 4

proving that the convection equation is energy-preserving and thus stable.

We now repeat this analysis using the formalism which will simplify our later anal-
yses. We begin by defining a scalar product, which is a generalized dot product of two

functions, and a norm, which is a generalized magnitude of a function [6].

(u,v) = /Vuv av (5)

Jull =/ (uu) (6)

A scalar product and norm have a number of basic properties.



linearity (u,v + w) = (u,v) + (u, w)
symmetry (u,v) = (v,u)
7€ro norm u=0 = Jul|=0 (7)

positive norm  u#0 = ||ul| >0

triangle inequality ||u + v|| < ||ul/+]v]|

In addition this particular scalar product also has the following property.
0 0
Property 1 <u, —U> + (—u, v) =0
ox ox

This comes from the divergence theorem with an assumption that u and/or v is zero

on dV so that we can ignore the boundary contributions as discussed in the introduction.

An immediate deduction from Property 1 is that
ou 1 ou ou
(3) =5 (a) + (Ge)| o ®
With the energy defined by E=||u||?, the energy analysis is now almost trivial.
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3 Semi-discrete Analysis

In this section we consider a function u;(¢) which is spatially discrete but continuous in

time. We assume that we have some discrete spatial differencing operator 9, so that d,u

is a discrete approximation to %. The semi-discrete approximation to the convection

equation is then given by

ou;
dt

+(axu)i =0 (10)
To perform the energy stability analysis we assume that we also have a scalar product
(u,v) which has the property

Property 1 (u, 0pv) + (Opu,v) =0

As with the analytic version of Property 1, an immediate corollary is

(u,0yu) =0 (11)

The stability proof is now exactly the same as for the analytic equation.
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= —2(u,0yu)
=0 (12)

The proof is so simple because all of the hard work is hidden in determining the

properties of the differencing scheme, which is particularly involved on irregular grids.



4 Fully Discrete Analysis

4.1 Two-stage time discretization

The two-step predictor/corrector method is given by

u; = up —Atdyuy (13)
't = ul — Atdul
=y —AtOu; +At0, Atdyuy (14)

The reason that the ordering of At and J, is kept as it is in the last equation, is
because a very useful technique for accelerating convergence to steady state solutions is
to use ‘local time steps’ in which At varies over the domain. In order to analyze this
possibility At and 0, cannot be interchanged because the ordering produces different

results.

Because of the variable time steps we define a new generalized energy
E" = At (15)

Note: m is an exponent whereas n is a superscript denoting an iteration time level.

We also need to assume an additional property.

Property 2 (€i,ej) =0 if i#j, where e; is a function which has value 1 at node i

(or in cell i) and value 0 elsewhere.

There are two important corollaries that arise from this assumption. If s is a scalar

function then using the linearity of the scalar product it follows that
(su,0) = D siuivj (e, e;)
i,j
= > siuiv; (e, €)
i
= > uisivi (e €)
i
= Z Ug Sj’l)j (6i, ej)
i,
= (u,sv). (16)

The reason that this refers to s; being scalar is that we are leaving open for the future

the possibility that u; and v; are vectors, in order to analyze systems of equations.



The second corollary is similar to the first. If s and ¢ and two scalar functions, and

|si| < |ti] for each i, then
lsul| = ZSiUz’ sjuj (€i,e;)
(]
= ZSZQULQ (61;,67;)
7
< thuf (eiyei)
7
= Ztiuitjuj (6i,€j)

ij
= ltull. (17)

We now proceed with the stability analysis as before.

2
HAtmun+lH _ ||Atmun||2
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—2 (At1+2mu", 8Iu") —2 (At1+2m (Atdyu™), 0y (At@xu")) (18)

The first corollary was used in the above equation to ‘switch’ the time step terms

from one side of the scalar product to the other. In order to eliminate the last two terms

using Corollary 1, we now choose m = —%. The third term can be rearranged using

Property 1 to obtain

oot S v = [

? + H\/EazAtarun ?

(19)

Thus the method is stable provided
|Vata:vAto| < o] (20)

for all v. We now introduce the last assumed property for the spatial discretization.

Property 3  There ezists a function (Atmax); such that |v/Atmax 0x v/ Atmax v| < ||

for all v.



Given this property, then provided At; < (Atpyax); it follows that

H\/A_taxx/A_th < maxm—tvu
= \/Atmax 81\/Atmax( i“) H

Atmax

At
Atmax

< ol (21)

IN

v

and so the two-step method is stable. The second corollary of Property 2 was used to

obtain two of the inequalities in the above equation.

To obtain steady state solutions as quickly as possible one would use At; = (Atmax);
but for time accurate calculations requiring a uniform time step one would have to use
At=min (Atmax);-

12

4.2 Jameson’s four-step method

Jameson’s four-step method is

u) = - %At&ru"
u® = - %At&ru(l)
u® = - %At&ru@)
ut = u = Atdu®) (22)
= "t = WAt + S A0, AtDpu"
— S A0, At At + o AtO, AtD, AtDy Atdyu” (23)

Substitution of this into the energy norm, and using the usual methods to eliminate

and reduce terms, leads to

ot BT o se]

2

~L H\/ﬂ O At At u"

2
+5t || VAL 9, AtD, ALD, AtD, "

= e {810l - [VatovEL[T} (2

where v = VAt 9, Atd, Atd,u". Thus it is stable provided At < 2v/2 Atmax. The same

procedure can be used to analyze other multi-stage schemes.



5 Cell-based Differencing

5.1 Basic definitions

Consider a two-dimensional, infinite, irregular grid which is composed of polygonal cells
C;. Variables are defined to be constant in each cell, so u; is the value of a function u
in C;. On the cell face separating cells C; and C}, @ is defined to be the average of the
values on either side, %(ui-l-uj) and 7i;; is the unit vector normal to the face pointing

outwards from Cj, so 7i;; = —1,;;. Figure 1 illustrates all of these definitions.

If u(x,y) is a continuous differentiable function, then the mean value of % in a cell

C; is given by

Oou 1 ou
<%>z A %dA
1

= — ung dl 25
A; Joc, " (25)

where A; is the area of the cell, and the latter integral is around the boundary of C;
with n, being the z-component of the outward normal. Hence we define the discrete

differential operator 0, to be

(Ogu); = Ai ZﬂnxAl (26)
v ac

The integral has been replaced by a summation over the faces forming 0C; with Al

being the length of the face. This definition is equivalent to that used by Jameson et al
[5].

The scalar product for this spatial discretization is defined by

(u,v) = ZAiUz'vi (27)

It is obvious that this definition satisfies the basic requirements for a scalar product

and Property 2. The hard part is to demonstrate that it satisfies Properties 1 and 3.

10



5.2 Property 1

By linearity,
(u, Opv) + (Opu,v) = Zuivj [(es, Ozej) + (Oxe€i,€5)] (28)
i!j
where e; is again the function which is 1 in cell 2 and 0 elsewhere. Thus it is necessary
and sufficient to prove that

(ei, 8Iej) + (8Iei, ej) =0 (29)

for all 7, 5.

There are three cases to consider, depending whether 7 is equal to j, and if not
whether i belongs to the set N; of nodes which are neighbors to j (meaning that C; and

C; share a common face).
a)i=1j
(0zei, ;) = (ej, 0ze;) = %anAl
oC,

= %/ nzdl

oC,
)
1 -
Q/Ci —(1)dA
0

= (30)
The fact that anAl = 0 will be used several times later on in other proofs.
oC;
b)i#j, ifN
(Ozei, €5) = (i, Opej) =0 (31)
since O,e; is only non-zero on the cells neighboring C;.
c)i#j, ieN;
(€i, 0zej) + (Ozei, €5) = %nzij-l-%nxji =0 (32)

since the outward normals to each cell are in opposite directions.

This completes the proof that cell-based differencing satisfies Property 1.

11



5.3 Property 3

We need to prove that there exists a function At such that

|Vato.vats| < o (33)
for all v.
Let
(AL); =24;/ ) Ing| Al (34)
aC;
Then
|VatavaL| = Y AuA; (0,vEE0)
[
At; —— ’
= X7 (Z \/EvnzAl> (35)
[ v aC;

On the face shared by cells C; and C}, VAtv = % {(\/Atv) -+ (\/At v) ] Hence
i j

S° VAton,Al = 4 (VALv), anAlJr > (VAtv), (nsAl); (36)
oC;

JeN;

The first sum is zero because ZnIAl = (0. Substituting this equation into Equa-
oC;
tion (35) we find that the contribution due to cell Cj is

2
At; (Z \/_tvnxAl) = Atl Z Z ( ) i (\/A_tv)  (ngAl)ij, (ngAl)ij,

2
Jj1 Jo J

< AtlZZ‘v tv‘ ‘v tv‘ [AVATFR TP AVIFPA
J1 92
2
< ZZ {( )Jl-l-(\/Atv)jJ g Allij, [ngAlliz,
Z Jj1 J2
— 120 IS Al Z(Ath)jl Ins Allij,
J2 Ji
— %Z(Ath)jhle”ij (37)
JeN;

The key result which is used in establishing the inequality in the above equation, is

that for any pair of real numbers f and g, (f£g)?>0 = |f||g|<3(f*+¢*). Summing

12



over all of the cells we finally get

v,

IN

% Z Z (At ’02)j |nxAl|ZJ

i jeN;
= % ‘ (Atv2)j2|nzAl|z’j

7 ’iENj
_ 2
= ZAij
J

= ol (38)

This completes the proof that the cell-based differencing satisfies Property 3, with

(Atmax); = 24;/ Y |na| Al (39)
aC;

Not only does this give a sufficient condition for stability (when combined with the
theory of the last section); it also gives the necessary condition for regular quadrilateral.
Using Fourier analysis it can be shown that for a uniform grid of parallelograms the
stability limit is

At < Mtpax (40)

where
_ { 1 two-step method

2v/2  four-step method
and Atmax = A/Ay where A is the area of the cells and Ay is defined in Figure 2. This

equation for Atyax is exactly the same as is given by the present theory.

5.4 Extension to 3-D

The extension to three-dimensional grids is actually very straightforward. All that
changes is that cell areas A; become cell volumes V;, and face lengths Al become face
areas A. With these minor changes all of the theory and the proofs carry over directly
(although it becomes much harder to visualize some of the steps involved). The discrete

differential operator and maximum time step are

(o), = %meA (41)
L ac;

(Atmax); = 2VZ/Z|nx|A (42)
aC;

13



6 Node-based Differencing with Triangular/Tetrahedral Cells

6.1 Basic definitions

In node-based schemes the variables are defined at the nodes of the computational cells,
and because of a critical step in the proofs to be presented we only consider triangular
cells. Associated with each node 7 is the ‘supercell’ C! formed by the union of the

triangles with node %, as shown in Figure 3.
The discrete differential operator 0, is defined by
1
(Opu); = o Zﬂ'n;Al' (43)
i aC!
with %' on a face defined as the average of the values at the two nodes at either end.

The scalar product is defined by associating % of the area of each triangular cell with

each of its nodes.

(u,v) = Z %Aiuivi (44)

Again it is obvious that this definition satisfies the basic requirements for a scalar

product and Property 2.

6.2 Equivalence to cell-centered differencing

To prove that the node-based differencing satisfies properties 1 and 3, we will show that
the node-based differencing is equivalent to a cell-based differencing on an alternative
cell with a modified area, and hence the proofs of the last section are equally applicable

to node-based differencing.

Figure 3 shows the alternative cell C; for the cell-based differencing, which is formed

by joining the centroids of the triangles surrounding node ;.

The important geometric relation is that
Lo = %(fj‘l‘fj‘l‘fk), Ty = %(fi‘l‘fj‘i‘fl) (45)

= () = § (Al + (Al ;| (46)

Thus the contribution of node j to (0,u); is

1

LA+ (Al) ] uy (Alny),; 1u; (47)

&\|
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1
= (Opu); = 73 Z Tu; (nzAl),;
v jeN;
1 1
= > 5 (uituy) (ngAl),;
A;,/g jeN; "
1
= —— Y un;Al 4
A3 I;un (48)

since

Z u; (nIAl)Z.j = u; ZnIAl =0 (49)

jeN; aC;
Thus the definition of d,u for node-based differencing on C! is identical to the
definition of d,u for cell-based differencing on Cj, except that it uses %A; instead of A;.
For regular grids these two are equal but in general for irregular grids they will not be

equal.

Examining all of the proofs in the last section on cell-based differencing, the fact
that A; is the area of the computational cell is not required in any of the proofs, and so
any value for A; can be used provided that value is consistently used in the definition

of 9,, the scalar product and Aty ax.

Also interesting is that when using local time-steps the important expressions are
||\/Atm&xu||2 and Atmax0zu, and in both cases the area terms cancel out leaving only

Zuf Z |ng|Al and 2ZﬂnxAl/Z |ngz|Al respectively. Thus the cell area plays a
i aC; aC; oC;
very minor role and the important terms are due to the faces.
Returning to the node-based differencing, all of the proofs for properties 1 and 3
apply directly with

Atmax =2 (347) /'3 [nalAl (50)
oC;

It is interesting that the maximum time step depends on the faces for the equivalent
cell-based algorithm. Tt suggests that in some sense the cell-based differencing is more

natural or more basic.

6.3 Extension to 3-D

The extension to 3-D is quite natural, with the cells for the equivalent cell-based al-
gorithm being constructed by joining the centroids of the tetrahedra. 0, is defined
by

(Opu); o w'n! A" node-based
i acy

15



and

1
= 1 Z ungA cell-based
1Vi 50

i

Atmax = 2 (%V;I> /Z |nCL‘|A
aC,

16



7 Analysis of Systems of Equations

7.1 Analytic equations

To extend the preceding analyses to first order systems of equations we begin by con-

sidering the following vector equation.

— +A—+B— =0 (53)

u 1s now a vector of dimension m and A and B are constant m X m matrices.

The scalar product is now defined as
(u,v) :/ ulvdV. (54)
14

Property 1 is still satisfied since

a’v 3’u _ (9 T
<u,%> + <%,v> = /V%(u v) av

= uw'vn,dA
oV
=0 (55)

provided we ignore boundary contributions.

Also it is clear from the definition of the scalar product that

(u, Av) = (ATu,v) . (56)

Using these results the energy stability analysis proceeds as follows.

£ (o) (2
a - \"a oY

ou ou ou ou
_ (Aa -I-Bay) <A8$+Ba )

o) (0) () ()
_ ( (a-am) ?D ( (B-BT) g“y‘) (57)

For & dt to be zero for all possible u requires that A and B both be symmetric. For
the present purposes we are only interested in hyperbolic, energy-preserving systems

and so we will assume that this is the case.
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7.2 Semi-discrete equations

The semi-discrete analysis assumes that for any symmetric matrix A
(u, Av) = (Au,v), (58)

in addition to the usual basid properties and Property 1. It is clear that these are
all satisfied by the scalar product definitions for both cell-centered and node-centered

differencing in which

(u,0) =3 A v; (59)

The non-bold A; is the cell area as defined earlier. A corollary from this assumption
is that

(u, Adpu) = 3[(u,0,Au)+(Au,du)] =0, (60)
(u, Boyu) = 1i[(u,d,Bu)+(Bu,dyu)]=0. (61)
Hence the stability analysis of the semi-discrete equation,
du
I + A0;u + BOyu = 0, (62)
is simply
g )
dt T dt
= —2(u, Adyu) — 2(u, Boyu)
= 0. (63)

7.3 Discrete equations

The analysis of the fully discrete equations also proceeds almost exactly as before.

Omitting the tedious algebra, the final result for the two-step method is

[t VAL~ |lur VAt =~ |VAE (A8, +Ba) w|

2

+ H\/At (Ad,+Bd,) At (Ad,+Bo,)u"| (64)
and so it is stable provided
H\/At (A0, +Bd,) \/Ath < ||v]| (65)

18



for all v. For the cell-centered differencing, this is true if At; < (Atpax); where

(Atmax); = 24/ Y |Ang+Bny|Al (66)
oC;

The matrix norm |C]| is defined by

Cv|
vl

so that |Cv| < |C||lv|. If C is symmetric then the norm is equal to the absolute

|IC| = max (67)

magnitude of the largest eigenvalue of C. The proof that the given definition of Aty ax

is sufficient is again very similar to the scalar proof.

|Vat (40, + Ba,) VAiw|

2

_ iti S (Ang+Bn,) VAtv Al
i Mlac

2
At;

- Zi:zmi

Z MAtj (An;,;-l—Bny)ij v Alij

JeN;

J1eN; j2eN;

At; T
- Z 4AZ { Z Z( Atjl Anz-l_Bny) j vjl) (\/ At]2 (Anx-l—Bny) ’032) AlilelijQ}

At;
:Z4Z

i

At;
Sy PP ‘ Aty (Ang+Bny);, v | |\ Atj, (Ang+Bny) ;. v, | Alij Alij,
i v | j1eN; jaeN;
At;
= Z 4AZ. Z Z \/ Atjy )i [/ Aty (v, | |Ang+Bny|;; |Ang+Bnyl,;, Alij Alj,
i v j1eN; j2eN;
At;
< Z 4AZ, At]1|v]1|2—|—Ath|v]2| ) |An$+Bny|z’j1 |An1‘+Bny|ij2 Al;j, Alyj,
i tjieN; erN

> |Ang+Bny,; Alm} { Y Atjylvg|*|Ang+ By, Nm}
J1eN;

= 32> Atj|v;]’| Ang+Bny|i; Al

1 jeN;

= 1 ZAt |'v]|2 Z |An;,;—I-Bny|” Aljj

zeN
= ZMWIZ
F

= |lv|f? (68)

t joeN;
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7.4 Euler equations

Abarbanel and Gottlieb [7] have shown that with an appropriate choice of variables the
linearized Euler equations can be written in the above first-order form with symmetric

matrices A and B equal to

o o
s
L
o
o g
ﬁoﬁ
L
)
o Lo
o
o o <

I~

B

o)

o O

o

(4

(@]
ﬁeoﬁ
= o)
o

With these definitions it is a straightforward exercise to show that the eigenvalues
of Ang+Bny are 4.7, 4.7, U.ri—c and 4.7+c, where .77 is the normal flow velocity and
c is the speed of sound. Thus it follows that for the cell-based differencing the time step
limit is given by

(Atmax); = 24;/ Z (|d.7i]+c) Al (70)
aC;

It can be shown that for low Mach number flow over a regular square mesh this
‘maximum time step’ is a factor % smaller than the value obtained by Fourier analysis,
but they are equal in the limit of high Mach number or high cell aspect ratio or high cell
skewing. Thus for practical purposes it is a sufficient and almost necessary condition

for numerical stability.

As before the theory extends easily to three dimensions, and for the Euler equations

the resultant time step limit for cell-based differencing is

(Atmax); = 2Vi/ 3 (|t +c) A (71)
oC;
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Figure 1: Geometric definitions for cell-based differencing

Area A Ay

Figure 2: Definition of Ay for regular skewed mesh
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aC!

Figure 3: Geometric definitions for node-based differencing
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