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This paper addresses the widely observed breakdown in multigrid performance for turbu-
lent Navier-Stokes computations on highly stretched meshes. Extending previous work in
two dimensions, two alternative preconditioned multigrid methods are proposed based on
an examination of the analytic expressions for the preconditioned Fourier footprints in an
asymptotically stretched boundary layer cell. These methods provide for efficient multigrid
performance by ensuring that all error modes are effectively damped inside the boundary
layer. The schemes also strive to balance the trade-offs between operation count, stor-
age overhead, and parallel scalability. The first of these methods is implemented for the
present work and is shown to dramatically accelerate convergence for three-dimensional

turbulent Navier—Stokes calculations.

1 Introduction

The development of efficient numerical methods for
solution of the Navier—Stokes equations remains one
of the enduring challenges in the field of computa-
tional fluid dynamics. The difficulty stems from the
need to use a computational mesh that is highly re-
solved in the direction normal to the wall in order
to accurately represent the steep gradients in the
boundary layer. This requirement proves problem-
atic in two regards: a) the resulting high aspect ratio
cells greatly reduce the efficiency of existing numer-
ical algorithms, b) the overall increase in the num-
ber of mesh points stretches the capability of exist-
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ing computational hardware for problems of practical
aerodynamic interest. The first difficulty suggests
that the design of an appropriate numerical algo-
rithm must be based on a careful assessment of the
interaction between the discrete method, the com-
putational mesh and the physics of the viscous flow.
The second difficulty places a premium on strik-
ing the right balance between the operation count,
storage requirements and parallel scalability of the
method.

Since the relevant number of mesh points is al-
ready O(108-107) and will continue to increase as
fast as hardware constraints will allow, it is criti-
cal that the convergence rate of the method should
be insensitive to the problem size. The general so-
lution strategy that appears most promising in this
regard is multigrid, for which grid-independent con-
vergence rates have been proven for elliptic operators
[1, 2, 3, 4]. Although no rigorous extension of this
theory has emerged for problems involving a hyper-



bolic component, methods based on multigrid have
proven highly effective for inviscid calculations with
the Euler equations [5, 6, 7] and remain the most at-
tractive approach for Navier—Stokes calculations de-
spite the widely observed performance breakdown in
the presence of boundary layer anisotropy.

Obtaining a steady state solution by time-
marching the unsteady Euler or Navier—Stokes equa-
tions requires elimination of transient error modes
either by damping or by expulsion from the com-
putational domain. Classical multigrid techniques
developed for elliptic problems transfer the low fre-
quency errors in the solution to a succession of
coarser meshes where they become high frequency
errors that are more effectively smoothed by tra-
ditional relaxation methods. For the unsteady Eu-
ler and Navier—Stokes equations, which exhibit both
parabolic and hyperbolic properties in their discrete
formulations, the coarse meshes in the multigrid cy-
cle serve the dual role of enhancing both damping
and propagation of error modes [8]. Efficient multi-
grid performance hinges on the ability of the relax-
ation scheme to eliminate on the current mesh all
modes that cannot be resolved without aliasing on
the next coarser mesh in the cycle [9].

The choice between an explicit or an implicit re-
laxation scheme to drive the multigrid algorithm re-
quires consideration of the computational trade-offs
in addition to determination of the relative damp-
ing and propagative performances of the approaches.
Explicit schemes offer a low operation count, low
storage requirements and good parallel scalability
but suffer from the limited stability imposed by the
CFL condition. Alternatively, implicit schemes theo-
retically offer unconditional stability but are compu-
tationally intensive, require a heavy storage overhead
and are more difficult to parallelize efficiently. In
practice, direct inversion is infeasible for large prob-
lems due to a high operation count, so that some
approximate factorization such as ADI or LU must
be employed. The resulting factorization errors effec-
tively limit the convergence of the scheme when very
large time steps are employed so that it is not possi-
ble to fully capitalize on the potential benefits of un-
conditional stability. For large problems, it therefore
seems advantageous to adopt an explicit approach if
a scheme with suitable properties can be designed.
Alternatively, if efficiency proves elusive using an ex-
plicit approach, then a scheme incorporating some
implicit properties may appear more attractive.

A popular explicit multigrid smoother is the semi-
discrete scheme proposed by Jameson et al. [10]
which uses multi-stage Runge-Kutta time-stepping
to integrate the o.d.e. resulting from the spatial dis-

cretization. In accordance with the requirements for
efficient multigrid performance, the coefficients of the
Runge-Kutta scheme are chosen to promote rapid
propagation and damping of error modes [6, 11].
This is accomplished by providing a large stability
limit and a small amplification factor in the region of
Fourier space where the residual eigenvalues of high
frequency modes are concentrated. Explicit multi-
grid solvers based on this approach represent an im-
portant schematic innovation in enabling large and
complex Euler calculations to be performed as a rou-
tine part of the aerodynamic design procedure [6, 7].
However, despite the favorable convergence rates ob-
served for Euler computations, this approach does
not satisfy all the requirements for efficient multigrid
performance. These shortcomings become far more
evident when the approach is applied to Navier—
Stokes calculations.

The hierarchy of factors leading to multigrid ineffi-
ciency are illustrated in Fig. 1. The two fundamental
causes of degraded multigrid performance for both
the Euler and Navier—Stokes equations are stiffness
in the discrete system and decoupling of modes in one
or more coordinate directions. These two problems
manifest themselves in an identical manner by caus-
ing the corresponding residual eigenvalues to fall near
the origin in Fourier space so that they can be neither
damped nor propagated efficiently by the multi-stage
relaxation scheme. For Euler computations, discrete
stiffness results primarily from the use of a scalar
time step, which is unable to cope with the inher-
ent disparity in the propagative speeds of convective
and acoustic modes. This problem is relatively lo-
calized since the stiffness is only substantial near the
stagnation point, at shocks and across the sonic line.
Directional decoupling in Euler computations results
primarily from alignment of the flow with the compu-
tational mesh, which causes some convective modes
to decouple in the transverse direction. Although im-
provements are possible, these shortcomings have not
prevented the attainment of sufficiently rapid con-
vergence to meet industrial requirements for inviscid
flow calculations [12], and do not represent a sub-
stantial concern to the CFD community.

For Navier—Stokes computations, the problems re-
sulting from the disparity in propagative speeds and
from flow alignment still persist, but a far more se-
rious source of difficulties is introduced by the high
aspect ratio cells inside the boundary layer. These
highly stretched cells increase the discrete stiffness
of the system by several orders of magnitude so that
the entire convective Fourier footprints collapse to
the origin while decoupling the acoustic modes from
the streamwise coordinate direction. Under these cir-
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Figure 1: Diagnosis of Multigrid Breakdown for the Euler and Navier—Stokes equations.

cumstances, the multigrid algorithm is extremely in-
efficient at eliminating a large fraction of the error
modes which could potentially exist in the solution.

Convergence problems for Navier—Stokes applica-
tions are also compounded by the need to incorporate
a turbulence model. Popular algebraic models are
notorious for introducing a disruptive blinking phe-
nomenon into the convergence process as the refer-
ence distance migrates back and forth between neigh-
boring cells. Alternatively, adopting a one or two-
equation model requires solution of turbulent trans-
port equations that incorporate production and de-
struction source terms that are both temperamental
and stiff. However, recent efforts have demonstrated
that turbulent transport equations can be success-
fully discretized using a multigrid approach without
interfering with the convergence process of the flow
equations [13, 14].

For three-dimensional calculations, mesh quality
can also play a substantial role in determining the
convergence rate of a calculation. In particular, sin-
gle block wing meshes invariably have a topological
singularity at the wing tip which can adversely af-
fect both convergence and robustness. Unlike the
previously mentioned problems, this difficulty arises
not from a property of the governing flow equations
but from the geometric complexity of the engineering
application. The pragmatic challenges of obtaining
solutions in the face of poor mesh quality will there-
fore not be considered in the present work.

One means of combatting discrete stiffness in the
Euler and Navier—Stokes equations is the use of a

matrix time step or preconditioner [15, 16, 17] that
is intended to cluster residual eigenvalues away from
the origin into a region of Fourier space for which the
multi-stage scheme can provide rapid damping and
propagation. In certain cases, preconditioning meth-
ods can also be used to alleviate the problem of di-
rectional decoupling [17, 14, 9]. Another method for
countering directional decoupling is the use of direc-
tional coarsening multigrid algorithms [18]. The in-
teraction between the preconditioner and the multi-
grid coarsening algorithm is critical, making it im-
perative that the two components of the scheme are
considered simultaneously when attempting to de-
sign efficient preconditioned multigrid methods.

Allmaras provided a systematic examination of the
damping requirements for relaxation methods used
in conjunction with both the traditional full coars-
ened multigrid and for the semi-coarsening multigrid
algorithm of Mulder [9, 18]. Using full coarsened
multigrid in two dimensions, only modes which are
low frequency in both mesh directions can be re-
solved on the coarser grids, so that the relaxation
scheme must damp all high frequency modes, and
also those modes that are high frequency in one
mesh direction and low frequency in the other. For
use in conjunction with an explicit Runge-Kutta
scheme, Allmaras recommends an implicit ADI pre-
conditioner because explicit methods are notoriously
poor at damping modes with a low frequency com-
ponent [9].

Alternatively, the semi-coarsening algorithm pro-
posed by Mulder [18] coarsens separately in each



mesh direction and therefore reduces the region of
Fourier space for which the relaxation scheme on
each mesh must successfully damp error modes. To
obtain an O(N) method for a three-dimensional cal-
culation in which IV is the cost of a single fine mesh
evaluation, Mulder defined a restriction and prolon-
gation structure in which not all grids are coars-
ened in every direction. For two-dimensional grids
that are coarsened separately in both directions, only
those modes that are high frequency in both mesh di-
rections need be damped by the relaxation scheme.
For this purpose, Allmaras suggests a point-implicit
block-Jacobi preconditioner that has previously been
demonstrated to be effective in clustering high fre-
quency eigenvalues away from the origin [16]. For
grids that are not coarsened in one of the mesh direc-
tions, Allmaras proposes using a semi-implicit line-
Jacobi preconditioner in that direction [9].

These strategies for preconditioning in the con-
text of both full and semi-coarsened multigrid are
well-conceived. The drawback to implicit precon-
ditioning for full coarsened multigrid is the associ-
ated increase in operation count, storage overhead
and difficulty in efficient parallelization. The draw-
back to a semi-coarsened approach is that for a three-
dimensional computation, the costs for full coarsened
V and W-cycles are bounded by 2N and 3N, re-
spectively, while for semi-coarsening, the cost of a
V-Cycle is bounded by 8 N and a W-cycle is no longer
O(N) [18].

Seeking a less expensive approach to overcoming
multigrid breakdown in the presence of boundary
layer anisotropy, Pierce and Giles examined the an-
alytic form of the two-dimensional preconditioned
Fourier footprints inside an asymptotically stretched
boundary layer cell [17, 14, 8]. This analysis re-
vealed the asymptotic dependence of the residual
eigenvalues on the two Fourier angles, thus expos-
ing the clustering properties of the preconditioned
algorithm. In particular, it was found that the bal-
ance between streamwise convection and normal dif-
fusion inside the boundary layer enables a point-
implicit block-Jacobi preconditioner to ensure that
even those modes with a low frequency component
in one mesh direction are effectively damped [17].
A simple modification of the full coarsened algo-
rithm to a J-coarsened strategy, in which coarsening
is performed only in the direction normal to the wall,
further ensures that all acoustic modes are damped
[14]. Therefore, it is not necessary to resort to ei-
ther an implicit preconditioner or a complete semi-
coarsening algorithm to produce a preconditioned
multigrid method that effectively damps all modes.

For the computation of two-dimensional turbu-

lent Navier—Stokes flows, this combination of block-
Jacobi preconditioning and J-coarsened multigrid
has been demonstrated to yield computational sav-
ings of roughly an order of magnitude over exist-
ing methods that rely on the standard combina-
tion of full coarsened multigrid with a scalar time
step [8, 14]. The present work will extend both
the theoretical validity and practical demonstra-
tion of this approach to three-dimensional turbulent
Navier—Stokes calculations.

In three dimensions, the use of a J-coarsened strat-
egy substantially sacrifices the desirable cost bounds
of full coarsened multigrid. Therefore, it appears
worthwhile to simultaneously consider a rival com-
bination of preconditioner and coarsening strategy
that strikes a moderately different balance between
cost, storage and scalability demands. Asymptotic
analysis indicates that the combination of a J-Jacobi
preconditioner that is line-implicit in the direction
normal to the wall, together with an IJ-coarsened
multigrid strategy that coarsens in both the nor-
mal direction and the predominate streamwise direc-
tion, will also provide effective damping of all error
modes. Subsequent investigations may even demon-
strate that this assessment is overly conservative and
that full coarsening multigrid may be employed with
impunity. In either case, this scheme has the ad-
vantage that the beneficial multigrid cost bounds
are substantially recovered. The use of an implicit
preconditioner in only one mesh direction need not
inhibit the parallel efficiency of the method since
the approach is only appropriate inside the bound-
ary layer and can therefore be applied in only those
blocks adjacent to the wall. These improvements
are obtained at the cost of increased storage require-
ments and an increased cost of relaxation. Deter-
mination of the approach that best balances all the
conflicting demands must await implementation and
testing on problems of practical aerodynamic inter-
est.

The present paper therefore analyzes the following
two preconditioned multigrid methods:

e point-implicit block-Jacobi preconditioning
with J-coarsened multigrid,

e line-implicit J-Jacobi preconditioning with
[J-coarsened multigrid.

The first of these methods has been chosen for im-
plementation in the present work to capitalize on
previous experience using this approach in two di-
mensions [14, 8]. The scheme is found to provide
essentially the same rate of convergence for both two
and three-dimensional turbulent Navier—Stokes cal-



culations, yielding rapid convergence to machine ac-
curacy and dramatic computational savings over the
standard approach employing scalar time-stepping
and full coarsened multigrid.

The potential benefits from developing an effi-
cient preconditioned multigrid method for three-
dimensional turbulent Navier—Stokes calculations ex-
tend far beyond facilitating computation of steady
state flows to many other areas of research that rely
on a steady state solver as an inner kernel. Notable
beneficiaries would include both viscous design using
adjoint methods [19, 20] and unsteady simulations
based on an inner multigrid iteration [21, 22, 23].

2 Two Dimensions

Before examining the three-dimensional case, the
theoretical justifications for the proposed precondi-
tioned multigrid methods will first be described in
two dimensions. A portion of this analysis has been
documented previously [17, 14, 8] and is included
here to provide a basis for discussing the extension
of the approach to three dimensions.

2.1 Definitions

To assess the properties of the proposed methods,
Fourier analysis is used to decompose the error into
modal components which can then be examined in-
dividually. This analytical approach is based on a
local linearization of the flow on a mesh with con-
stant spacing and periodic boundary conditions. The
validity of the analysis then depends on the degree
to which the true local behavior of the solution can
be modeled under these assumptions. For compu-
tational problems not incorporating mesh singulari-
ties, numerical results seem to suggest that Fourier
analysis does provide a useful indicator of scheme
performance characteristics.

Construction and analysis of the method now pro-
ceeds from the linearized Navier—Stokes equations in
Cartesian coordinates
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where W is the state vector, A and B are the invis-
cid flux Jacobians and C', D and E are the viscous
flux Jacobians. A preconditioned semi-discrete finite
volume scheme appears as

LW + PR(W) =0, (1)

where R(W) is the residual vector of the spatial
discretization, L; represents the multi-stage Runge—
Kutta operator and P is the preconditioner. For the

analysis that follows, R is taken to be a standard
linear first order upwind spatial discretization using
Roe-averaged characteristic variables [24]
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Assuming constant Pr and +, the four independent
parameters that govern the discrete Navier-Stokes
residual are the cell Reynolds number, Mach number,
cell aspect ratio and flow angle:

A Cartesian mesh is assumed to simplify notation,
but the theory extends naturally to a (£,n) mesh-
aligned coordinate system for real applications using
structured body-conforming meshes. The first of the
proposed methods also extends naturally to unstruc-
tured mesh applications.

Scalar Preconditioner

A conservative time step estimate for the Navier—
Stokes equations is based on the purely hyperbolic
and parabolic time steps formed using the spectral
radii of the flux Jacobians [25],

= Aty + At3,
where the hyperbolic time step is given by

v (5 + 57
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and the parabolic time step is

1 4p(C 4p(D E
At = p(C)  4p(D)  p(E) \
CFLp \ Ax? Ay? AzAy
The hyperbolic and parabolic CFL numbers,

CFLy and CFLp, reflect the extent of the stability
region of the multi-stage time-stepping scheme along
the imaginary and negative real axes, respectively.
In comparison with a uniform global time step, this
local stability estimate defines a suitable scalar pre-
conditioner for the Navier—Stokes equations, that re-
duces stiffness resulting from variation in spectral
radius and cell size throughout the mesh [26].

Point-Implicit Block-Jacobi Preconditioner

The block-Jacobi preconditioner is based on the form
of the discrete residual operator and is obtained by
extracting the terms corresponding to the central
node in the stencil
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It has been demonstrated in reference [14] that the
preconditioner takes a fundamentally similar form
for a 2nd/4th difference switched JST scheme [10]
based on the same Roe linearization. This compati-
bility and related numerical experiments suggest that
it is acceptable to base the preconditioner on a first
order discretization even when using higher order
switched and limited schemes, in an analogous man-
ner to the practice of using a first order discretization
for the Jacobian in implicit methods.

Line-Implicit J-Jacobi Preconditioner

The J-Jacobi preconditioner is obtained by includ-
ing the complete inviscid and viscous operators in
the normal direction but only the component cor-
responding to the central node for the streamwise
direction
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It is essential to note that the two matrix precondi-
tioners must be used in conjunction with matrix dis-
sipation to ensure the stability of the scheme. This
realization follows from applying the stability condi-
tion for a scalar convection—diffusion equation to the
individual modal families in the system [14, 8].

Fourier Footprints

In the context of a semi-discrete scheme (1), the
Fourier footprint of the spatial discretization is crit-
ical in determining the effectiveness of the time-
stepping scheme in damping and propagating error
modes. The footprint is found by substituting a
semi-discrete Fourier mode of the form

Wi = W (t)el(if=+i%)

into the discrete residual operator (2). The Fourier
amplitude W (t) satisfies the evolution equation

LW + PZW =0,

where Z is the Fourier symbol of the residual opera-
tor

Z(0,0,) =

2D
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Stability Region and Contours

Figure 2: Stability region and contours defined by
|¥(2)] = 0.1,0.2,...,1.0 for a 5-stage Runge-Kutta
time-stepping scheme.

The Fourier footprint is defined by the eigenvalues
of the matrix PZ, which are functions of the Fourier
angles 6, and 6,. For stability, the footprint must
lie within the stability region of the time-stepping
scheme specified by |¢(z)] < 1, where ¢(z) is the
amplification factor defined by

Wt = ()W

The stability region and contours for a 5-stage
Runge-Kutta scheme due to Martinelli [25] are
shown in Fig. 2 to provide a realistic context for
eigenvalue clustering.

In two dimensions, there are four characteristic
families representing convective entropy modes, con-
vective vorticity modes and two groups of acoustic
pressure modes. From a damping perspective, it is
desirable for the residual eigenvalues corresponding
to all these modes to be clustered into a region of
Fourier space where the amplification factor is sig-
nificantly less than unity. The primary weakness of
explicit time integration using a scalar time step is
that a significant fraction of the residual eigenvalues
cluster near the origin where the amplification fac-
tor is close to unity and the damping of error modes
is very inefficient. Since, at the origin, the gradi-
ent vector of the amplification factor lies along the
negative real axis, improved damping of these trou-
blesome modes will follow directly from an increase
in the magnitude of the real component of the cor-
responding residual eigenvalues.

Error modes are propagated at the group velocity
corresponding to a discrete wave packet of the cor-
responding spatial frequency. Since the expression



for the group velocity depends on the form of the
temporal discretization operator L;, it is not pos-
sible to determine detailed propagative information
from the Fourier footprint. However, for Runge—
Kutta operators of the type used in the present work,
the group velocity corresponding to a given residual
eigenvalue is related to the variation in the imagi-
nary components of all the residual eigenvalues in
that modal family [27]. Therefore, for rapid propa-
gation, it is desirable for residual eigenvalues to ex-
tend far from the negative real axis. Although it
is optimal if modes are both rapidly damped and
propagated, when considering the demanding case
of highly stretched boundary layer cells, the cluster-
ing is deemed successful as long as the eigenvalues do
not cluster arbitrarily close to the origin where they
can be neither damped nor propagated.

2.2 Analysis

The most effective means of understanding the phe-
nomenon of multigrid breakdown is an examination
of the form of the preconditioned residual eigenvalues
in a highly stretched boundary layer cell. For this
purpose, the analytic expressions for the precondi-
tioned Fourier footprints are obtained for the impor-
tant set of asymptotic limits summarized in Table 1.
Cases E1 and E2 represent the inviscid flows corre-
sponding to the viscous conditions of cases NS1 and
NS2; and are provided to illustrate the importance of
viscous coupling across the boundary layer in deter-
mining the appropriate course of action. Case 1 rep-
resents a stretched cell with perfect flow alignment
while Case 2 corresponds to the same stretched cell
with diagonal cross flow. For the viscous cases, the
scaling for the cell aspect ratio is found by balancing
streamwise convection and normal diffusion, so that

v _ v
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The Mach number is held fixed during the limiting
procedure so that it appears in the analytic expres-
sions for the Fourier footprints displayed in Table 2
for 1st order upwind matrix dissipation. Here, the
notation s, = sinf,, sy = sinf,, C; = 1 — cosb,,
Cy =1 — cos b, is adopted for brevity.

Scalar Preconditioner and Full Coarsened
Multigrid

The performance of the standard combination of
scalar preconditioner (local time step) and full coars-
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Figure 3: Fourier quadrants for which the corre-
sponding error modes must be damped or expelled
for full coarsening multigrid to function efficiently.

ened multigrid will first be assessed before examining
the two proposed methods. For full coarsened multi-
grid to function efficiently, all modes corresponding
to the three shaded Fourier quadrants in Fig. 3 must
be either damped or propagated by the relaxation
scheme since only modes which are low frequency in
both mesh directions (L, L,) can be resolved without
aliasing on the next coarser mesh.

Asymptotic dependence on a Fourier angle
amounts to effective damping of modes in that di-
rection, since the corresponding eigenvalues will not
be clustered at the origin. Using the scalar precondi-
tioner, the Fourier footprints are identical for all four
cases and are displayed in Fig. 4a for all modes ex-
cept those in the L, L, quadrant, which need not be
damped on the fine mesh in a full coarsened multi-
grid context. The entire footprints of both convec-
tive families collapse to the origin so that neither
damping nor propagation of these modes is possible
and the system will not converge. From Table 2 it
is evident that the real and imaginary parts of the
acoustic footprints are both dependent on 6, so that
modes with a high frequency component in the y
direction will be both effectively damped and prop-
agated. However, acoustic modes that are low fre-
quency in the y direction will be poorly damped,
and in the worst case, the eigenvalue for a sawtooth
acoustic mode that is constant in the y direction and
high frequency in the z direction will fall exactly on
the origin.

The resulting scenario for full coarsened multi-



Case E1 Rea, = 00 %—>0 +=0
Case E2 Rea, = 00 2—3%0 %:ﬁ_g
Case NS1 || Rea, — o0 % = Re, 71/2 +=0
Case NS2 || Rea, — o0 2—‘; Re, _1/2 = 2—‘;

Table 1: Asymptotic limits for which analytic expressions for the preconditioned Fourier footprints of first
order matrix dissipation are obtained.

Case || eig(PsZ) eig(PgyZ) eig(Pys Z)
0 C, +1is, Cyr + s,
0 C, +iMs, Cy +iMs,
El
Cy +isy Cy +isy 1
Cy —isy Cy —isy 1
Co+Cy)+i(sa+sy
0 L(Co +Cy) + 4 (50 +5,) STl
~ Cat+M[Cy+i(sa+sy
. 0 i Co + T2 (O, + (s, +5,)] it
Cy +isy Cy +isy 1
Cy —isy Cy —isy 1
0 2+Pr0 + 2+Pr (Cy + isa) 50, +PTC + 36, +PT(C’x +isg)
NS1 0 1+2MC + 1+2M (Cy + SI) 1+2MC Ca + _1+_2MCy (Cy + SI)
Cy +isy Cy +isy 1
Cy —isy Cy —isy 1
Pr 1 Cy+Pr[3(CatCy)+5(satsy)]
0 1+P7~C + @30 +Cy) + 3 (50 + 5y)] oyi%(uoyfzsy)
Co+3M[Cy+%(sntsy)]
NSQ 0 1+3M [C +3 (SCE + Sy)] 1+3M(Cy+%sy)
Cy +isy Cy +isy 1
Cy —isy Cy —isy 1

Table 2: Analytic expressions for the preconditioned Fourier footprints using Scalar, Block-Jacobi and
J-Jacobi preconditioners applied to first order upwind matrix dissipation for the cases described in Table 1.
The modes are listed in the order: entropy, vorticity, acoustic, acoustic.
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grid in combination with the scalar preconditioner,
which is the strategy in widespread use throughout
the CFD community, is illustrated schematically in
Fig. 4b. The shaded regions represent Fourier quad-
rants for which the corresponding modes are effec-
tively damped and the other hatchings are stylized
depictions of the modes that cannot be damped and
therefore prevent or impede convergence. There is
no mechanism for damping convective modes in any
quadrant or acoustic modes in the H, L, quadrant.
It is not surprising that poor convergence is observed
when using this algorithm for viscous computations
with highly stretched boundary layer cells.

Block-Jacobi Preconditioner and Full Coars-
ened Multigrid

Developing an understanding for the behavior of the
block-Jacobi preconditioner requires a careful exami-
nation of the expressions in Table 2. For the aligned
inviscid flow of Case E1, the convective modes are
dependent only on #,, and the acoustic modes are
dependent only on §,, so that each modal family is
effectively damped in only two Fourier quadrants.
By comparison, the viscous results of Case NS1 re-
veal that the balance between streamwise convection
and normal diffusion has caused the two convective
families to become dependent on both Fourier angles,
so that all quadrants except L, L, will be effectively
damped. For the entropy family, this property is
independent of Mach number, while for the vortic-
ity family, this behavior exists except in the case of
vanishing Mach number. For both inviscid and vis-
cous results, the effect of introducing diagonal cross
flow in Case 2 is to improve the propagative per-
formance for the convective modes by introducing a
dependence on both Fourier angles in the imaginary
components. Notice that the matrix preconditioner
has no effect on the footprints for the acoustic modes,
which are identical to those using the scalar precon-
ditioner.

The scenario for full coarsened multigrid using the
matrix preconditioner is illustrated by the Fourier
footprint and schematic damping diagram of Fig. 5.
The footprint depicts all modes except L,L, for
the perfectly aligned viscous flow of Case NS1 with
M = 0.04. This Mach number represents a realis-
tic value for a highly stretched boundary layer cell
at the wall, the specific value being observed at the
mid-chord for a cell with y* < 1 in an RAE2822
AGARD Case 6 calculation [8]. Fig. 5a reveals that
the entropy footprint is clustered well away from the
origin for all modes. The vorticity mode remains
distinctly clustered away from the origin even at this
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low Mach number. Propagative clustering of the vor-
ticity mode away from the real axis improves if either
the Mach number or the flow angle increases.

This beneficial effect on the clustering of the con-
vective eigenvalues has a profound influence on the
outlook for full coarsening multigrid described in
Fig. 5b. Darker shading is used to denote the Fourier
quadrants for which damping is facilitated by use of a
matrix preconditioner. The full coarsened algorithm
will now function efficiently for all convective modes.
However, the footprints for the acoustic modes still
approach the origin when 6, is small, so the only
remaining impediments to efficient performance are
the acoustic modes corresponding to the H, L, quad-
rant.

Block-Jacobi Preconditioner and J-Coarsened

Multigrid

The fact that the block-Jacobi preconditioner pro-
vides effective clustering of convective eigenvalues in
all but the L,L, quadrant provides the freedom to
modify the multigrid coarsening strategy with only
the damping of H,L, acoustic modes in mind. One
possibility that avoids the high cost of the complete
semi-coarsening stencil and takes advantage of the
damping properties revealed in the present analysis
is a J-coarsened strategy in which coarsening is per-
formed only in the direction normal to the wall. The
implications for multigrid performance with this ap-
proach are summarized in Fig. 6. The Fourier foot-
print is plotted for the diagonal cross flow of Case
NS2 with M = 0.2 to demonstrate the rapid improve-
ment in the clustering of the convective eigenvalues
as the flow angle and Mach number increase above
the extreme conditions shown in Fig. 5a. Only those
modes corresponding to the L, H, and H, H, Fourier
quadrants are displayed in Fig. 6a since modes from
the other two quadrants can now be resolved on the
coarse mesh. The corresponding residual eigenvalues
are effectively clustered away from the origin for all
families.

The schematic of Fig. 6b demonstrates that the
combination of block-Jacobi preconditioning and
J-coarsened multigrid accounts for the damping of all
error modes inside highly stretched boundary layer
cells. This result holds even for the perfectly aligned
flow of Case NSI1 as long as the Mach number does
not, vanish. For typical turbulent viscous meshes,
the Mach number remains sufficiently large, even in
the cells near the wall, that the tip of the vortic-
ity footprint remains distinguishable from the origin
as in Fig. 5a. For most boundary layer cells, the
Mach number is large enough that even the vortic-
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ity footprint is clustered well away from the origin
and all modes are rapidly damped as in Fig. 6a. The
interaction of the preconditioner and multigrid algo-
rithm is critical, since the preconditioner is chiefly
responsible for damping the convective modes and
the coarsening strategy is essential to damping the
acoustic modes.

Cost bounds for full and J-coarsened cycles are
presented in Table 3, where N is the cost of a single
flow evaluation on the fine mesh. The cost of J-
coarsened multigrid is independent of the number of
dimensions since coarsening is performed in only one
direction. For a V-cycle, the cost of J-coarsening is
80% more than full coarsening in two dimensions and
133% more in three dimensions. Use of a J-coarsened
W-cycle is inadvisable since the cost depends on the
number of multigrid levels (K). While there is a sig-
nificant overhead associated with using J-coarsened
vs. full coarsened multigrid, subsequent demonstra-
tions will show that the penalty is well worthwhile
for turbulent Navier—Stokes calculations.

Implementation for structured grid applications is
straightforward for single block codes but problem-
atic for multi-block solvers. Coarsening directions
will not necessarily coincide in all blocks so that cell
mismatches would be produced at the block inter-
faces on the coarse meshes. One means of circum-
venting this difficulty is to adopt an overset grid ap-
proach with interpolation between the overlapping
blocks [28]. Since the J-coarsened approach is only
beneficial inside the boundary layer, those blocks
which are in the inviscid region of the flow should
employ a full coarsened strategy, while continuing
to use the block-Jacobi preconditioner for improved
eigenvalue clustering [17, 14]. Assuming that half the
mesh cells are located in blocks outside the bound-
ary layer, this has the effect of decreasing the cost
of the multigrid cycle to the average of the full and
J-coarsened bounds.

Although the J-coarsened approach is described in
the present work using structured mesh terminology,
the method also fits very naturally into unstructured

2D || Full | J 3D | Full | J
V || 3N | 3N V | 2N | 3N
W || 2N | KN W | 3N | KN

IITa: 2D Multigrid Cost
Bounds.

IIIb: 3D Multigrid Cost
Bounds.

Table 3: Cost comparison for V and W-cycles using
Full and J-Coarsened Multigrid.
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grid applications. In this case, it is no longer neces-
sary to specify a global search direction since edge
collapsing [29, 30] or agglomeration [31, 32] proce-
dures can be employed to provide normal coarsening
near the walls and full coarsening in the inviscid re-
gions.

J-Jacobi Preconditioner and Full Coarsened
Multigrid

Another attractive alternative that avoids the in-
creased cost bounds of J-coarsened multigrid is a
combination of line-implicit J-Jacobi preconditioning
with full coarsened multigrid. The general intention
of this approach is that the preconditioner should
continue to couple the convective families to both
Fourier angles while simultaneously providing for ef-
fective damping of all acoustic modes including those
that are low frequency in 6,. From the expressions
in Table 2, it is evident that the basic structure of
the convective footprints is very similar to the case
of block-Jacobi preconditioning. The only notable
difference is the introduction of terms dependent on
the Fourier angles in the denominator. The impact
of the J-Jacobi preconditioner on the acoustic foot-
prints is far more dramatic. In highly stretched cells
aligned with the flow, the acoustic footprints are now
independent of both Fourier angles and are clustered
well away from the origin.

The Fourier footprint produced by J-Jacobi pre-
conditioning for the challenging flow conditions of
Case NS1 with M = 0.04 is shown in Fig. 7a. The
clustering of the vorticity eigenvalues is nearly iden-
tical to that obtained when using the block-Jacobi
preconditioner, as recalled from Fig. 5a. The shape
of the entropy envelope is substantially altered, but
still corresponds to both efficient damping and prop-
agation. The most notable difference is the collapse
of the acoustic envelopes to a point on the negative
real axis, where they are still efficiently damped, but
can no longer be propagated.

The performance of full coarsened multigrid us-
ing J-Jacobi preconditioning is illustrated in Fig. 5b.
As demonstrated by the dark shading, the matrix
preconditioner is now responsible for all damping
during the multigrid cycle. Use of the J-Jacobi pre-
conditioner increases the cost of relaxation and the
amount of required storage, but provides the signifi-
cant benefit of returning to a full coarsened strategy,
with a corresponding reduction in the cost bound for
each multigrid cycle. Furthermore, the use of a line-
implicit preconditioner normal to the wall need not
impair parallel efficiency. The J-Jacobi approach is
only appropriate inside the highly stretched bound-



ary layer cells so there is no need to extend the pre-
conditioner beyond those blocks that are adjacent to
a solid boundary. In the regions of the flow where cell
stretching is not severe and the flow is primarily in-
viscid, the block-Jacobi preconditioner performs very
efficiently in combination with full coarsened multi-
grid [17, 14].

Preliminary efforts to implement this approach in
two dimensions appear to reveal an instability result-
ing from the use of higher order dissipation on the
fine mesh. A more thorough investigation will be
required to either verify or eliminate this behavior.

3 Three Dimensions

In three dimensions, the situation is complicated by
the addition of one more convective vorticity family
and one more space dimension in which error modes
for all five modal families must be efficiently elimi-
nated. It is not possible to obtain analytic asymp-
totic results for the three-dimensional preconditioned
Fourier footprints since determination of the eigen-
values requires solution of a quintic equation. Abel
proved in 1824 that the method of radicals, which
can be employed to find the roots of equations of
degree < 4, cannot be extended to the solution of
quintics [33]. Side-stepping this intractability, it is
still possible to proceed in assessing the performance
of the two proposed methods by assuming the worst
case scenario: that none of the preconditioned foot-
prints are asymptotically dependent on #,. This is
a reasonable assumption for the cases previously ex-
amined if Az > O(Az) and the flow is aligned with
the z direction.

Block-Jacobi Preconditioning and J-Coars-
ened Multigrid

In three dimensions, a complete multigrid damp-
ing schematic must display information for all eight
Fourier octants. This is most easily accomplished by
displaying two slices through Fourier space, one for
low values of the third Fourier angle and one for high
values. One possibility is to take the slices for low
and high values of 6. Assuming that there is no cou-
pling in the z direction, these two slices would both
appear identical to the two-dimensional schematic
of Fig. 6. In other words, the performance of the
scheme is unchanged by the addition of a third co-
ordinate direction. To see why this is the case, it is
illuminating to display slices for low and high values
of 8, so that the interaction between the z direction
and the direction of coarsening is exposed. Fig. 8
illustrates that the behavior for all acoustic modes
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is identical to the two-dimensional case. The prin-
cipal development in three dimensions is that the
preconditioner no longer ensures that all convective
modes are damped, since the eigenvalues correspond-
ing to convective modes in the L,L,H. octant are
assumed not to be dependent on 6,. However, using
a J-coarsened strategy, these modes can be trans-
ferred to a coarser mesh where they become L, H,H.
modes which can be effectively damped. The coars-
ening strategy therefore assumes the extra respon-
sibility of eliminating some of the convective modes
in addition to all of the acoustic modes with a low
frequency component in 8,,.

In three dimensions, the point-implicit block-
Jacobi preconditioner requires solution of a 5x5 sys-
tem for each mesh cell at each stage of the Runge—
Kutta scheme. The operation count is minimized by
computing the LU decomposition of the matrix be-
fore the first stage and then storing the resulting 25
three-dimensional arrays for back substitution dur-
ing each stage. By avoiding a globally implicit ap-
proach, the algorithm leads to efficient parallel imple-
mentations so that the increase in memory overhead
is mitigated by the suitability for distributed mem-
ory architectures. Although the use of J-coarsened
multigrid avoids the excessively high cost of using
a complete semi-coarsening algorithm, the cost of a
J-coarsened V-cycle is still more than double the cost
of using full coarsening in three dimensions. There-
fore, it is worth considering an alternative approach
that preserves the damping properties of the scheme
while recovering the low multigrid cost bounds of a
full coarsened approach.

J-Jacobi Preconditioning and IJ-Coarsened
Multigrid

Assuming that there is no asymptotic dependence of
the residual eigenvalues on ., the three-dimensional
damping schematic for this approach can again be
constructed by taking slices for low and high values
of f, which will appear identical to the corresponding
two-dimensional schematic of Fig. 7b. As with the
previous case, the convective modes in the L,L,H,
octant will not be damped by the J-Jacobi precon-
ditioner. Instead, these modes must be passed to
the coarse mesh, which effectively prohibits coars-
ening in the K mesh direction. In three dimen-
sions, the J-Jacobi preconditioner therefore requires
an IJ-coarsened strategy rather than the full coars-
ened strategy of two dimensions. This situation still
represents a substantial improvement over the multi-
grid cost bounds of the J-coarsened approach since
IJ-coarsening costs the same as full coarsening in two
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Figure 8: Implications for 3D performance of Block-Jacobi Preconditioning with J-Coarsened Multigrid
inside highly stretched boundary layer cells with aligned flow.

dimensions.

The following argument suggests that this view-
point may be overly pessimistic and that full coars-
ened multigrid may be acceptable in combination
with J-Jacobi preconditioning. Consider a mesh cell
on the surface of a wing in which z is parallel to
the chord, y is normal to the surface and z points
along the span. The solid wall boundary condition
at y = 0 effectively enforces flow tangency with the
y faces of the cell so that it is critical to account for
the possibility of perfect flow alignment with these
faces, as reflected in the asymptotic cases previously
examined. However, there is no similar boundary
condition (except at the intersection with the body)
which enforces tangency to the z faces of the cell, so
that flow alignment with these faces is unlikely rather
than expected. In general, there will be some side
slip in the spanwise direction which will introduce a
dependence on 8, into the convective eigenvalues. As
a result, convective modes from the L,L,H, octant
may then be efficiently damped by the relaxation
scheme so that full coarsened multigrid again be-
comes viable. Alternatively, by increasing the span-
wise resolution of the mesh so that Az = O(Ay),
the viscous diffusion will cause the convective modes
to couple in both the y and z directions, once again
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leading to efficient damping in the L, L, H. octant.

In three dimensions, the J-Jacobi preconditioner
requires solution of a block-tridiagonal system at
each stage of the Runge—Kutta scheme. The LU fac-
tors may be computed before the first stage and the
75 three-dimensional arrays stored for back substitu-
tion in later stages. Alternatively, the preconditioner
may be formed and factored at every stage to avoid
the storage overhead. However, since the J-Jacobi
preconditioner will only be used in blocks adjacent
to solid boundaries, and the multigrid storage re-
quirement is reduced in comparison to a J-coarsened
approach, it will likely prove most advantageous to
store the factored preconditioner to reduce the oper-
ation count.

4 Implementation

This section briefly documents the numerical meth-
ods implemented in the present work. Only those
techniques which are non-standard will be treated in
detail.



Basic Discretization

The baseline code used as a starting point for the
present work is the well-validated 3D viscous flow
solver FLO107 written by Jameson and Martinelli
[34]. The discretization is based on a conservative
cell-centered semi-discrete finite volume scheme. For
the present work, characteristic-based matrix dissi-
pation based on a Roe linearization [24] provides a
basis for the construction of a matrix switched JST
scheme [10, 12]. Updates are performed using a 5-
stage Runge—Kutta time-stepping scheme to drive a
V-cycle with time steps computed moving both up
and down the cycle [10, 6, 25]. The CFL number is
2.5 on all meshes and the switched scheme is used
only on the fine mesh with a first order upwind ver-
sion of the numerical dissipation used on all coarser
meshes.

Preconditioner

The 5x5 block-Jacobi preconditioner is computed for
each cell before the first stage of each time step, and
then stored as LU factors for inexpensive back substi-
tution during each stage of the Runge-Kutta scheme.
In the context of preconditioning, an entropy fix
serves to prevent the time step from becoming too
large near the stagnation point, at shocks and at the
sonic line. When using the block-Jacobi precondi-
tioner on high aspect ratio cells, the van Leer entropy
fix [35] used in the numerical dissipation does not
sufficiently limit the time step to provide robustness,
so a more severe Harten entropy fix [36] is used in
the preconditioner, with the minimum of the bound-
ing parabola equal to one eighth the speed of sound.
This choice of bounding constant has proven suitable
for both 2D and 3D calculations [§].

Turbulence Models

Both the algebraic Baldwin—Lomax turbulence
model [37] and the one-equation Spalart-Allmaras
turbulence model [38] are implemented. The tur-
bulent transport equation for the SA model is solved
using a first order spatial discretization and 5-stage
Runge-Kutta time integration with implicit treat-
ment of the source terms to drive the same multigrid
algorithm as that used for the flow equations. Pre-
cautions must be taken to ensure that neither the
time integration procedure nor the coarse grid cor-
rections introduce negative turbulent viscosity val-
ues into the flow field. This solution procedure is
very convenient because the turbulent viscosity can
be treated in nearly all subroutines as an extra vari-
able in the state vector. The transition point is set
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using the trip term built into the Spalart—Allmaras
model. To prevent the turbulence models from ad-
versely affecting the convergence of the flow equa-
tions, either by blinking in the case of the BL model,
or by hanging in the case of the SA model, the tur-
bulent viscosity field is frozen after the r.m.s. density
residuals have decreased by four orders of magnitude.
In a few of the cases, the turbulence field had to be
frozen after only three orders.

Viscous Discretization

The baseline version of the viscous flux discretiza-
tion in FLO107 calculates the velocity gradients and
forms the stress components at the vertices before
averaging to the centers of the cell faces to compute
the viscous flux balance. This discretization is very
efficient because it avoids having to compute the ve-
locity gradients separately for each cell face (each
cell being associated with three faces but only one
vertex). However, as a result of this averaging pro-
cess, the discretization does admit odd/even spurious
modes that alternate between positive and negative
values at alternate cells. This was previously thought
not to be a concern since the numerical dissipation
is designed to eliminate this type of oscillation in the
solution.

One of the surprises during the course of the
present work was the discovery that the admission of
these odd/even modes actually can present a signifi-
cant impediment to convergence. Using the standard
scalar preconditioner, this discretization was found
to necessitate a smaller CFL number in comparison
to the modified scheme described below, and was ac-
tually unstable when used in conjunction with the
block-Jacobi preconditioner. This problem also sur-
faced with the viscous fluxes in the SA turbulence
model, which failed to converge when using this dis-
cretization.

One option is to accept the additional cost of
calculating the velocity gradients at the cell faces,
which produces a compact discretization stencil that
does not admit odd/even modes. An alternative
approach, which was proposed by Jameson and
Caughey in developing a discretization for the tran-
sonic potential equation [39] and later suggested for
use with the Navier-Stokes equations by Liu and
Zheng [13], is to add a correction stencil to the ve-
locity gradients calculated at the vertices to approxi-
mately convert the large stencil of the present scheme
to the smaller stencil of a face-centered approach.

Consider a regular Cartesian grid with unit mesh
spacing and mesh indices (i, j, k) located at the cell
centers in the (z,y,2) coordinate directions. Using



a compact cell-faced scheme to compute a velocity
gradient at the face (i + 1/2, j, k) produces

Ju
or

= Ai+1/2uj,ka
compact
where A; /5 denotes differencing across the cell face
in the i direction. By contrast, computing the gra-
dients at the vertices and averaging to the cell face
gives
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Comparing these expressions reveals that in the case
of a regular grid, the compact stencil can be exactly
recovered by subtracting a correction stencil from the
averaged formula
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where N is given by
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Generalizing this formula to body-conforming com-
putational coordinates (£, 7, () then produces the ap-
proximate relationship for the gradient at a & face

ou
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s
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compact averaged

where S¢, represents the projection of the ¢ face in
the x coordinate direction and Vol is the average vol-
ume at the cell face. Similar expressions can be ob-
tained for the gradients of the other relevant flow
variables for each of the (z,y,2) coordinate direc-
tions at each of the (&,7,() cell faces. Note that for
a given face, the stencil N need only be calculated
once per flow variable and then the metric term is
varied for each Cartesian direction. The same cor-
rection stencil is applied to the calculation of the
viscous fluxes for the Spalart—Allmaras turbulence
model.

Using this approach, the velocity gradients are
computed at the vertices as in the original version of
FLO107 and then averaged to the cell faces, where
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the correction stencil is applied before assembling the
stress components. This method is relatively inex-
pensive compared to computing the velocities at the
cell faces and provides a good approximation to the
compact stencil which does not allow odd/even grid
point decoupling. In fact, running side by side with
the first author’s two-dimensional flow solver, which
directly computes the viscous terms using the com-
pact formulation as in reference [25], on a straight
wing with an aspect ratio of 10° (so as to eliminate
the influence of the third coordinate direction), the
two codes produced exactly the same convergence
history.

Parallelization

The code is parallelized using the MPI (Message
Passing Interface) library to implement a domain
decomposition approach using a SPMD (Single Pro-
gram Multiple Data) paradigm [40]. Halo data is
exchanged between neighboring processors after ev-
ery stage on all meshes so that the convergence of the
parallel code is identical to that of the serial version.

The parallel scalability of the approach is demon-
strated in Fig. 9 for a 288x64x16 mesh with 294,912
cells. The calculation scales to 18 processors with an
efficiency of 78% relative to a calculation with 2 pro-
cessors. The calculation could not be performed on
one processor due to memory constraints. For vis-
cous meshes with an order of magnitude more cells,
the method will continue to scale efficiently to far
larger numbers of processors.



‘ Wing H Section ‘ AR ‘ Sweep ‘ Twist ‘ Dimensions ‘ y:ve/max ‘ My ‘ «@ ‘ Rer, H Spanwise b.c.
Straight || RAE2822 | 4.0 0.0° | 0.0° |288x64x16 |1.02/2.12 || 0.725 | 2.4° 6.5x108 Periodicity
Swept RAE2822 | 4.0 | 30.0° | 0.0° |288x64x16 |1.02/2.12 || 0.800 | 2.8° 6.5x108 Periodicity
Twisted || RAE2822 | 4.0 0.0° | 2.0° | 288x64x16 |1.02/2.12 || 0.725 | 3.4° 6.5x10° Periodicity
Fully-3D || RAE2822 | 8.0 | 30.0° | 3.5° | 288x64x16 | 1.02/2.12 || 0.800 | 4.0° | 6.5x10° Symmetry

Table 4: Test case definitions: wing name, airfoil section, aspect ratio, sweep, twist, mesh dimensions, average
and maximum yT at the first cell height, free stream Mach number, angle of attack, Reynolds number, and
type of boundary condition in the spanwise direction.

5 Results

This section will demonstrate the acceleration
provided by the proposed preconditioned multi-
grid method of block-Jacobi preconditioning and
J-coarsened multigrid (New) compared to the stan-
dard combination of scalar preconditioning and full
coarsened multigrid (Standard). The following series
of test cases are chosen so as to systematically intro-
duce the influence of the third coordinate direction
into the flow:

e straight wing with spanwise periodicity,
e swept wing with spanwise periodicity,
o twisted wing with spanwise periodicity,

o fully-3D swept twisted wing with symmetry
planes at the root and tip.

The RAE2822 airfoil section is used to construct
all test cases and the details of the geometry and
flow conditions for each case are provided in Table 4.
The first case is essentially a two-dimensional flow
corresponding to AGARD Case 6 [41] and provides
an opportunity for direct comparison with the first
author’s two-dimensional flow solver [14, 8]. The sec-
ond case introduces a constant spanwise velocity into
the flow and the third cases introduces a periodically
varying spanwise velocity into the flow. The final
case provides a fully three-dimensional wing flow.
Symmetry planes are placed at both the root and
tip sections to avoid the issue of mesh singularities
emanating from the wing tip. This geometry there-
fore resembles a wind tunnel model with end plates.
For each of the test geometries, the flow conditions
were modified so as to produce a pressure distribu-
tion with a shock strength resembling that of Case 6.

For the convergence comparisons that follow, the
plotted residuals represent the r.m.s. change in den-
sity during one application of the time-stepping
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scheme on the finest mesh in the multigrid cycle.
Convergence information for all the test cases is pro-
vided in various useful forms in Table 5 for the initial
convergence rate between residual levels of 10° and
10~* and in Table 6 for the asymptotic rate between
residual levels of 10~* and 10~%. The asymptotic
rate of the standard approach is too slow to permit
convergence of the solution to a residual level of 1078,
so the asymptotic rates for this approach are extrap-
olated based on the convergence during the first 500
cycles after 10~% has been reached. This estimate is
generous since some degradation in the asymptotic
convergence rate would continue to occur beyond this
point in the convergence history.

Straight Wing

The initial convergence rates for the density and tur-
bulent viscosity using the Spalart—Allmaras turbu-
lence model are displayed in Fig. 10a. The con-
vergence histories of the two quantities are identical
using the new approach and the turbulent viscosity
converges somewhat faster than the flow equations
using the standard approach. As summarized in Ta-
ble 5, the density residual requires 109 cycles at a
rate of .9187 per cycle to reach four orders of mag-
nitude using the new method while the standard ap-
proach requires 2120 cycles at a rate of .9957 to reach
the same level of convergence. Since each multigrid
cycle is more than twice as expensive using the new
approach it is important to take into consideration
the actual computational effort involved in each of
these calculations. To ensure that the communi-
cation costs of the parallel implementation are ac-
counted for, all cost comparisons are made on the
basis of wall time. A wall time cost comparison for
the present calculations is shown in Fig. 10b. The
new approach yields savings of a factor of 8.84 in
reaching a residual level of 10~* and a factor of 20.34
in asymptotic performance.

The convergence rate of the new approach us-



Wing Turb Cycles Rate Wall Time (s) || Cost
Model || Standard | New || Standard | New || Standard | New || Ratio

Straight | SA 2120 109 9957 | 9187 || 44,188 | 5000 | 8.84
Straight | BL 1935 113 9953 | .9213 || 24,407 | 3257 || 7.49
Swept BL 1855 113 29950 | .9190 || 23,409 |3340 | 7.01
Twisted | SA 2113 124 9957 | .9268 || 46,362 |5672 || 8.17
Fully-3D | BL 5579 131 .9984 | .9321 || 54,559 | 2904 || 18.79

Table 5: Comparison of initial convergence (10°—10~

4) for scalar preconditioning with full coarsened multi-

grid (standard) vs. block-Jacobi preconditioning with J-coarsened multigrid (new): multigrid cycles, conver-

gence rate per cycle, wall time, wall time speed-up.

Wing Turb Cycles Rate Wall Time (s) Cost
Model || Standard* | New || Standard* | New | Standard* ‘ New || Ratio

Straight SA 9013 199 .9990 .9548 186,780 | 9185 || 20.34
Straight BL 8386 191 .9989 .9528 104,200 | 5450 || 19.12
Swept BL 6572 196 .9986 .9554 82,693 | 5605 || 14.75
Twisted SA 9555 207 .9990 .9568 198,160 | 9436 || 21.00
Fully-3D | BL 27,100 213 .9997 9575 266,710 | 4685 || 56.93

Table 6: Comparison of asymptotic convergence (10~*—10~%) for scalar preconditioning with full coarsened
multigrid (standard) vs. block-Jacobi preconditioning with J-coarsened multigrid (new): multigrid cycles,
convergence rate per cycle, wall time, wall time speed-up. *Extrapolated based on first 500 cycles after

reaching 1074,

ing the 3D code is compared to the convergence
history on the same mesh using a 2D code in
Fig. 11a. These calculations were performed with
both Spalart—Allmaras and Baldwin—Lomax turbu-
lence models to demonstrate that the new approach
is insensitive to the choice of turbulence model. The
initial convergence of the 2D and 3D codes is nearly
identical, with the 2D code eventually converging to
machine accuracy in about 450 cycles and the 3D
code requiring about 500 cycles. The correspond-
ing solutions are displayed in Fig. 11b where it is
evident that the two implementations yield almost
identical results for the SA model, producing a shock
somewhat forward of the experimental location as
has been previously observed [38]. The two imple-
mentations of the BL model yield slightly different
shock locations which are both in better agreement
with the experiment. The computational savings of
the new approach are slightly less when using the
Baldwin—Lomax turbulence model for this test case,
yielding a factor of 7.49 in initial convergence and

19.12 in asymptotic convergence.

Swept Wing

The convergence histories for a periodically swept
wing with constant spanwise velocity are shown in
Fig. 12. Both the Mach number and angle of at-
tack were increased for this flow, as the spanwise re-
lief would otherwise eliminate the shock on the up-
per surface. Using the Baldwin—-Lomax turbulence
model, the new approach converges four orders of
magnitude in 113 cycles at a rate of .9190 and the
standard approach requires 1855 cycles at a rate of
.9950 corresponding to computational savings of 7.01
in initial convergence rate and 14.75 in asymptotic
rate. As in the case of the straight wing with two-
dimensional flow, the new method converges to ma-
chine accuracy in about 500 cycles.
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Twisted Wing

Convergence results for the periodically twisted wing
are shown in Fig. 13 for a calculation employing the
Spalart—Allmaras turbulence model. This test case
produces pressure distributions at angles of attack
ranging between £1° of the standard AGARD Case 6
value of 2.4°. For the case of non-uniform spanwise
velocity, the new approach now requires 124 multi-
grid cycle to reach four orders compared to 2113 us-
ing the standard approach, which represents a com-
putational savings of 8.17. The computational sav-
ings in terms of asymptotic convergence rate is now
a factor of 21.00. The number of cycles required for
the new approach to converge to machine accuracy
increases slightly to about 550.

Fully-3D Wing

This geometry was constructed by using a constant
planform with a linear twist distribution along the
span. The pressure distributions at six stations along
the wing are shown in Fig. 14. The presence of the
end plate at the tip does not substantially alter the
flow field over the majority of the wing, as is evident
from the typical root and central pressure distribu-
tions. However, the plate does have a significant ef-
fect on the flow near the tip, where the lack of three-
dimensional relief tends to introduce a very strong
shock. The choice of the maximum twist angle was
therefore largely governed by the desire to keep the
tip flow from separating. Note that the small wig-
gles in the pressure distribution are not numerical
oscillations but rather the effect of imperfections in
the measured experimental coordinates of the origi-
nal RAE2822 test section [41].

The convergence results for the new and standard
methods are displayed in terms of multigrid cycles
and wall time in Figs 15a and 15b. The introduc-
tion of full three-dimensionality into the flow field
has very little effect upon the convergence rate of
the new approach. Four orders of convergence are
achieved in 131 cycles at a rate of .9321 and the
next four order require only an additional 213 cycles
at a rate of .9575. As for the periodically twisted
case, the solution converges to machine accuracy in
about 550 cycles. The convergence of the standard
approach is substantially slower than for the previ-
ous cases, requiring 5579 cycles to reach four orders
of convergence at a rate of .9984 with an extrapolated
requirement of 27,100 additional cycles to converge
the next four orders. The new approach therefore
provides computational savings in terms of wall time
of 18.79 in initial convergence and 56.93 in asymp-
totic convergence.
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It remains to extend the method to treat exposed
wing tips and other complex configurations which
lead to mesh singularities that do not fall within the
assumptions of the theoretical analysis used to mo-
tivate this approach.

6 Conclusions

Two preconditioned multigrid methods are proposed
that are designed to perform efficiently for three-
dimensional turbulent Navier—Stokes computations
on highly stretched meshes

e point-implicit block-Jacobi preconditioning
with J-coarsened multigrid,

e line-implicit J-Jacobi preconditioning with
IJ-coarsened multigrid.

The properties of these schemes are illustrated by ex-
amining analytic expressions for the preconditioned
Fourier footprints in the asymptotic limit of high cell
Reynolds number and aspect ratio to reveal that all
convective and acoustic modes are effectively elimi-
nated inside the boundary layer.

The first of these methods is implemented in the
present work, and is shown to provide rapid con-
vergence to machine accuracy for three-dimensional
turbulent Navier—Stokes calculations. The compu-
tational savings over the standard combination of
scalar preconditioning and full coarsened multigrid
are roughly an order of magnitude to achieve engi-
neering accuracy and much larger in terms of asymp-
totic performance.
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Figure 10: Straight Wing: Comparison of the new and standard methods using the SA turbulence model.
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Figure 11: Straight Wing: Comparison of the 2D and 3D codes using SA and BL turbulence models.
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Figure 15: Fully-3D Wing: Comparison of the new and standard methods using the BL turbulence model.
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