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ing computational hardware for problems of practicalaerodynamic interest. The �rst di�culty suggeststhat the design of an appropriate numerical algo-rithm must be based on a careful assessment of theinteraction between the discrete method, the com-putational mesh and the physics of the viscous 
ow.The second di�culty places a premium on strik-ing the right balance between the operation count,storage requirements and parallel scalability of themethod.Since the relevant number of mesh points is al-ready O(106-107) and will continue to increase asfast as hardware constraints will allow, it is criti-cal that the convergence rate of the method shouldbe insensitive to the problem size. The general so-lution strategy that appears most promising in thisregard is multigrid, for which grid-independent con-vergence rates have been proven for elliptic operators[1, 2, 3, 4]. Although no rigorous extension of thistheory has emerged for problems involving a hyper-1



bolic component, methods based on multigrid haveproven highly e�ective for inviscid calculations withthe Euler equations [5, 6, 7] and remain the most at-tractive approach for Navier{Stokes calculations de-spite the widely observed performance breakdown inthe presence of boundary layer anisotropy.Obtaining a steady state solution by time-marching the unsteady Euler or Navier{Stokes equa-tions requires elimination of transient error modeseither by damping or by expulsion from the com-putational domain. Classical multigrid techniquesdeveloped for elliptic problems transfer the low fre-quency errors in the solution to a succession ofcoarser meshes where they become high frequencyerrors that are more e�ectively smoothed by tra-ditional relaxation methods. For the unsteady Eu-ler and Navier{Stokes equations, which exhibit bothparabolic and hyperbolic properties in their discreteformulations, the coarse meshes in the multigrid cy-cle serve the dual role of enhancing both dampingand propagation of error modes [8]. E�cient multi-grid performance hinges on the ability of the relax-ation scheme to eliminate on the current mesh allmodes that cannot be resolved without aliasing onthe next coarser mesh in the cycle [9].The choice between an explicit or an implicit re-laxation scheme to drive the multigrid algorithm re-quires consideration of the computational trade-o�sin addition to determination of the relative damp-ing and propagative performances of the approaches.Explicit schemes o�er a low operation count, lowstorage requirements and good parallel scalabilitybut su�er from the limited stability imposed by theCFL condition. Alternatively, implicit schemes theo-retically o�er unconditional stability but are compu-tationally intensive, require a heavy storage overheadand are more di�cult to parallelize e�ciently. Inpractice, direct inversion is infeasible for large prob-lems due to a high operation count, so that someapproximate factorization such as ADI or LU mustbe employed. The resulting factorization errors e�ec-tively limit the convergence of the scheme when verylarge time steps are employed so that it is not possi-ble to fully capitalize on the potential bene�ts of un-conditional stability. For large problems, it thereforeseems advantageous to adopt an explicit approach ifa scheme with suitable properties can be designed.Alternatively, if e�ciency proves elusive using an ex-plicit approach, then a scheme incorporating someimplicit properties may appear more attractive.A popular explicit multigrid smoother is the semi-discrete scheme proposed by Jameson et al. [10]which uses multi-stage Runge{Kutta time-steppingto integrate the o.d.e. resulting from the spatial dis-

cretization. In accordance with the requirements fore�cient multigrid performance, the coe�cients of theRunge{Kutta scheme are chosen to promote rapidpropagation and damping of error modes [6, 11].This is accomplished by providing a large stabilitylimit and a small ampli�cation factor in the region ofFourier space where the residual eigenvalues of highfrequency modes are concentrated. Explicit multi-grid solvers based on this approach represent an im-portant schematic innovation in enabling large andcomplex Euler calculations to be performed as a rou-tine part of the aerodynamic design procedure [6, 7].However, despite the favorable convergence rates ob-served for Euler computations, this approach doesnot satisfy all the requirements for e�cient multigridperformance. These shortcomings become far moreevident when the approach is applied to Navier{Stokes calculations.The hierarchy of factors leading to multigrid ine�-ciency are illustrated in Fig. 1. The two fundamentalcauses of degraded multigrid performance for boththe Euler and Navier{Stokes equations are sti�nessin the discrete system and decoupling of modes in oneor more coordinate directions. These two problemsmanifest themselves in an identical manner by caus-ing the corresponding residual eigenvalues to fall nearthe origin in Fourier space so that they can be neitherdamped nor propagated e�ciently by the multi-stagerelaxation scheme. For Euler computations, discretesti�ness results primarily from the use of a scalartime step, which is unable to cope with the inher-ent disparity in the propagative speeds of convectiveand acoustic modes. This problem is relatively lo-calized since the sti�ness is only substantial near thestagnation point, at shocks and across the sonic line.Directional decoupling in Euler computations resultsprimarily from alignment of the 
ow with the compu-tational mesh, which causes some convective modesto decouple in the transverse direction. Although im-provements are possible, these shortcomings have notprevented the attainment of su�ciently rapid con-vergence to meet industrial requirements for inviscid
ow calculations [12], and do not represent a sub-stantial concern to the CFD community.For Navier{Stokes computations, the problems re-sulting from the disparity in propagative speeds andfrom 
ow alignment still persist, but a far more se-rious source of di�culties is introduced by the highaspect ratio cells inside the boundary layer. Thesehighly stretched cells increase the discrete sti�nessof the system by several orders of magnitude so thatthe entire convective Fourier footprints collapse tothe origin while decoupling the acoustic modes fromthe streamwise coordinate direction. Under these cir-2
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Figure 1: Diagnosis of Multigrid Breakdown for the Euler and Navier{Stokes equations.cumstances, the multigrid algorithm is extremely in-e�cient at eliminating a large fraction of the errormodes which could potentially exist in the solution.Convergence problems for Navier{Stokes applica-tions are also compounded by the need to incorporatea turbulence model. Popular algebraic models arenotorious for introducing a disruptive blinking phe-nomenon into the convergence process as the refer-ence distance migrates back and forth between neigh-boring cells. Alternatively, adopting a one or two-equation model requires solution of turbulent trans-port equations that incorporate production and de-struction source terms that are both temperamentaland sti�. However, recent e�orts have demonstratedthat turbulent transport equations can be success-fully discretized using a multigrid approach withoutinterfering with the convergence process of the 
owequations [13, 14].For three-dimensional calculations, mesh qualitycan also play a substantial role in determining theconvergence rate of a calculation. In particular, sin-gle block wing meshes invariably have a topologicalsingularity at the wing tip which can adversely af-fect both convergence and robustness. Unlike thepreviously mentioned problems, this di�culty arisesnot from a property of the governing 
ow equationsbut from the geometric complexity of the engineeringapplication. The pragmatic challenges of obtainingsolutions in the face of poor mesh quality will there-fore not be considered in the present work.One means of combatting discrete sti�ness in theEuler and Navier{Stokes equations is the use of a

matrix time step or preconditioner [15, 16, 17] thatis intended to cluster residual eigenvalues away fromthe origin into a region of Fourier space for which themulti-stage scheme can provide rapid damping andpropagation. In certain cases, preconditioning meth-ods can also be used to alleviate the problem of di-rectional decoupling [17, 14, 9]. Another method forcountering directional decoupling is the use of direc-tional coarsening multigrid algorithms [18]. The in-teraction between the preconditioner and the multi-grid coarsening algorithm is critical, making it im-perative that the two components of the scheme areconsidered simultaneously when attempting to de-sign e�cient preconditioned multigrid methods.Allmaras provided a systematic examination of thedamping requirements for relaxation methods usedin conjunction with both the traditional full coars-ened multigrid and for the semi-coarsening multigridalgorithm of Mulder [9, 18]. Using full coarsenedmultigrid in two dimensions, only modes which arelow frequency in both mesh directions can be re-solved on the coarser grids, so that the relaxationscheme must damp all high frequency modes, andalso those modes that are high frequency in onemesh direction and low frequency in the other. Foruse in conjunction with an explicit Runge{Kuttascheme, Allmaras recommends an implicit ADI pre-conditioner because explicit methods are notoriouslypoor at damping modes with a low frequency com-ponent [9].Alternatively, the semi-coarsening algorithm pro-posed by Mulder [18] coarsens separately in each3



mesh direction and therefore reduces the region ofFourier space for which the relaxation scheme oneach mesh must successfully damp error modes. Toobtain an O(N) method for a three-dimensional cal-culation in which N is the cost of a single �ne meshevaluation, Mulder de�ned a restriction and prolon-gation structure in which not all grids are coars-ened in every direction. For two-dimensional gridsthat are coarsened separately in both directions, onlythose modes that are high frequency in both mesh di-rections need be damped by the relaxation scheme.For this purpose, Allmaras suggests a point-implicitblock-Jacobi preconditioner that has previously beendemonstrated to be e�ective in clustering high fre-quency eigenvalues away from the origin [16]. Forgrids that are not coarsened in one of the mesh direc-tions, Allmaras proposes using a semi-implicit line-Jacobi preconditioner in that direction [9].These strategies for preconditioning in the con-text of both full and semi-coarsened multigrid arewell-conceived. The drawback to implicit precon-ditioning for full coarsened multigrid is the associ-ated increase in operation count, storage overheadand di�culty in e�cient parallelization. The draw-back to a semi-coarsened approach is that for a three-dimensional computation, the costs for full coarsenedV and W-cycles are bounded by 97N and 43N , re-spectively, while for semi-coarsening, the cost of aV-Cycle is bounded by 8N and aW-cycle is no longerO(N) [18].Seeking a less expensive approach to overcomingmultigrid breakdown in the presence of boundarylayer anisotropy, Pierce and Giles examined the an-alytic form of the two-dimensional preconditionedFourier footprints inside an asymptotically stretchedboundary layer cell [17, 14, 8]. This analysis re-vealed the asymptotic dependence of the residualeigenvalues on the two Fourier angles, thus expos-ing the clustering properties of the preconditionedalgorithm. In particular, it was found that the bal-ance between streamwise convection and normal dif-fusion inside the boundary layer enables a point-implicit block-Jacobi preconditioner to ensure thateven those modes with a low frequency componentin one mesh direction are e�ectively damped [17].A simple modi�cation of the full coarsened algo-rithm to a J-coarsened strategy, in which coarseningis performed only in the direction normal to the wall,further ensures that all acoustic modes are damped[14]. Therefore, it is not necessary to resort to ei-ther an implicit preconditioner or a complete semi-coarsening algorithm to produce a preconditionedmultigrid method that e�ectively damps all modes.For the computation of two-dimensional turbu-

lent Navier{Stokes 
ows, this combination of block-Jacobi preconditioning and J-coarsened multigridhas been demonstrated to yield computational sav-ings of roughly an order of magnitude over exist-ing methods that rely on the standard combina-tion of full coarsened multigrid with a scalar timestep [8, 14]. The present work will extend boththe theoretical validity and practical demonstra-tion of this approach to three-dimensional turbulentNavier{Stokes calculations.In three dimensions, the use of a J-coarsened strat-egy substantially sacri�ces the desirable cost boundsof full coarsened multigrid. Therefore, it appearsworthwhile to simultaneously consider a rival com-bination of preconditioner and coarsening strategythat strikes a moderately di�erent balance betweencost, storage and scalability demands. Asymptoticanalysis indicates that the combination of a J-Jacobipreconditioner that is line-implicit in the directionnormal to the wall, together with an IJ-coarsenedmultigrid strategy that coarsens in both the nor-mal direction and the predominate streamwise direc-tion, will also provide e�ective damping of all errormodes. Subsequent investigations may even demon-strate that this assessment is overly conservative andthat full coarsening multigrid may be employed withimpunity. In either case, this scheme has the ad-vantage that the bene�cial multigrid cost boundsare substantially recovered. The use of an implicitpreconditioner in only one mesh direction need notinhibit the parallel e�ciency of the method sincethe approach is only appropriate inside the bound-ary layer and can therefore be applied in only thoseblocks adjacent to the wall. These improvementsare obtained at the cost of increased storage require-ments and an increased cost of relaxation. Deter-mination of the approach that best balances all thecon
icting demands must await implementation andtesting on problems of practical aerodynamic inter-est.The present paper therefore analyzes the followingtwo preconditioned multigrid methods:� point-implicit block-Jacobi preconditioningwith J-coarsened multigrid,� line-implicit J-Jacobi preconditioning withIJ-coarsened multigrid.The �rst of these methods has been chosen for im-plementation in the present work to capitalize onprevious experience using this approach in two di-mensions [14, 8]. The scheme is found to provideessentially the same rate of convergence for both twoand three-dimensional turbulent Navier{Stokes cal-4



culations, yielding rapid convergence to machine ac-curacy and dramatic computational savings over thestandard approach employing scalar time-steppingand full coarsened multigrid.The potential bene�ts from developing an e�-cient preconditioned multigrid method for three-dimensional turbulent Navier{Stokes calculations ex-tend far beyond facilitating computation of steadystate 
ows to many other areas of research that relyon a steady state solver as an inner kernel. Notablebene�ciaries would include both viscous design usingadjoint methods [19, 20] and unsteady simulationsbased on an inner multigrid iteration [21, 22, 23].2 Two DimensionsBefore examining the three-dimensional case, thetheoretical justi�cations for the proposed precondi-tioned multigrid methods will �rst be described intwo dimensions. A portion of this analysis has beendocumented previously [17, 14, 8] and is includedhere to provide a basis for discussing the extensionof the approach to three dimensions.2.1 De�nitionsTo assess the properties of the proposed methods,Fourier analysis is used to decompose the error intomodal components which can then be examined in-dividually. This analytical approach is based on alocal linearization of the 
ow on a mesh with con-stant spacing and periodic boundary conditions. Thevalidity of the analysis then depends on the degreeto which the true local behavior of the solution canbe modeled under these assumptions. For compu-tational problems not incorporating mesh singulari-ties, numerical results seem to suggest that Fourieranalysis does provide a useful indicator of schemeperformance characteristics.Construction and analysis of the method now pro-ceeds from the linearized Navier{Stokes equations inCartesian coordinates@W@t +A@W@x +B @W@y = C @2W@x2 +D @2W@y2 +E @2W@x@y ;where W is the state vector, A and B are the invis-cid 
ux Jacobians and C, D and E are the viscous
ux Jacobians. A preconditioned semi-discrete �nitevolume scheme appears asLtW + PR(W ) = 0; (1)where R(W ) is the residual vector of the spatialdiscretization, Lt represents the multi-stage Runge{Kutta operator and P is the preconditioner. For the

analysis that follows, R is taken to be a standardlinear �rst order upwind spatial discretization usingRoe-averaged characteristic variables [24]R = A2�x�2x � jAj2�x�xx + B2�y �2y � jBj2�y�yy� C�x2 �xx � D�y2 �yy � E4�x�y�2x2y: (2)Assuming constant Pr and 
, the four independentparameters that govern the discrete Navier{Stokesresidual are the cell Reynolds number, Mach number,cell aspect ratio and 
ow angle:Re�x = u�x� ; M = pu2+v2c ; �y�x ; vu :A Cartesian mesh is assumed to simplify notation,but the theory extends naturally to a (�; �) mesh-aligned coordinate system for real applications usingstructured body-conforming meshes. The �rst of theproposed methods also extends naturally to unstruc-tured mesh applications.Scalar PreconditionerA conservative time step estimate for the Navier{Stokes equations is based on the purely hyperbolicand parabolic time steps formed using the spectralradii of the 
ux Jacobians [25],P�1S = �t�1H +�t�1P ;where the hyperbolic time step is given by�t�1H = 1CFLH ��(A)�x + �(B)�y �and the parabolic time step is�t�1P = 1CFLP �4�(C)�x2 + 4�(D)�y2 + �(E)�x�y� :The hyperbolic and parabolic CFL numbers,CFLH and CFLP, re
ect the extent of the stabilityregion of the multi-stage time-stepping scheme alongthe imaginary and negative real axes, respectively.In comparison with a uniform global time step, thislocal stability estimate de�nes a suitable scalar pre-conditioner for the Navier{Stokes equations, that re-duces sti�ness resulting from variation in spectralradius and cell size throughout the mesh [26].Point-Implicit Block-Jacobi PreconditionerThe block-Jacobi preconditioner is based on the formof the discrete residual operator and is obtained byextracting the terms corresponding to the centralnode in the stencilP�1BJ = 1CFLH � jAj�x + jBj�y + 2C�x2 + 2D�y2� :5



It has been demonstrated in reference [14] that thepreconditioner takes a fundamentally similar formfor a 2nd/4th di�erence switched JST scheme [10]based on the same Roe linearization. This compati-bility and related numerical experiments suggest thatit is acceptable to base the preconditioner on a �rstorder discretization even when using higher orderswitched and limited schemes, in an analogous man-ner to the practice of using a �rst order discretizationfor the Jacobian in implicit methods.Line-Implicit J-Jacobi PreconditionerThe J-Jacobi preconditioner is obtained by includ-ing the complete inviscid and viscous operators inthe normal direction but only the component cor-responding to the central node for the streamwisedirectionP�1JJ = 1CFLH � jAj�x + B2�y�2y � jBj2�y�yy+ 2C�x2 � D�y2 �yy� :It is essential to note that the two matrix precondi-tioners must be used in conjunction with matrix dis-sipation to ensure the stability of the scheme. Thisrealization follows from applying the stability condi-tion for a scalar convection{di�usion equation to theindividual modal families in the system [14, 8].Fourier FootprintsIn the context of a semi-discrete scheme (1), theFourier footprint of the spatial discretization is crit-ical in determining the e�ectiveness of the time-stepping scheme in damping and propagating errormodes. The footprint is found by substituting asemi-discrete Fourier mode of the formWi;j = cW (t)e{̂(i�x+j�y)into the discrete residual operator (2). The Fourieramplitude cW (t) satis�es the evolution equationLtcW + PZcW = 0;where Z is the Fourier symbol of the residual opera-torZ(�x; �y) = {̂ A�x sin �x + jAj�x(1� cos �x)+ {̂ B�y sin �y + jBj�y (1� cos �y)+ 2C�x2 (1� cos �x) + 2D�y2 (1� cos �y)+ E�x�y sin �x sin �y :
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Figure 2: Stability region and contours de�ned byj (z)j = 0:1; 0:2; :::; 1:0 for a 5-stage Runge{Kuttatime-stepping scheme.The Fourier footprint is de�ned by the eigenvaluesof the matrix PZ, which are functions of the Fourierangles �x and �y. For stability, the footprint mustlie within the stability region of the time-steppingscheme speci�ed by j (z)j � 1, where  (z) is theampli�cation factor de�ned bycWn+1 =  (z)cWn:The stability region and contours for a 5-stageRunge{Kutta scheme due to Martinelli [25] areshown in Fig. 2 to provide a realistic context foreigenvalue clustering.In two dimensions, there are four characteristicfamilies representing convective entropy modes, con-vective vorticity modes and two groups of acousticpressure modes. From a damping perspective, it isdesirable for the residual eigenvalues correspondingto all these modes to be clustered into a region ofFourier space where the ampli�cation factor is sig-ni�cantly less than unity. The primary weakness ofexplicit time integration using a scalar time step isthat a signi�cant fraction of the residual eigenvaluescluster near the origin where the ampli�cation fac-tor is close to unity and the damping of error modesis very ine�cient. Since, at the origin, the gradi-ent vector of the ampli�cation factor lies along thenegative real axis, improved damping of these trou-blesome modes will follow directly from an increasein the magnitude of the real component of the cor-responding residual eigenvalues.Error modes are propagated at the group velocitycorresponding to a discrete wave packet of the cor-responding spatial frequency. Since the expression6



for the group velocity depends on the form of thetemporal discretization operator Lt, it is not pos-sible to determine detailed propagative informationfrom the Fourier footprint. However, for Runge{Kutta operators of the type used in the present work,the group velocity corresponding to a given residualeigenvalue is related to the variation in the imagi-nary components of all the residual eigenvalues inthat modal family [27]. Therefore, for rapid propa-gation, it is desirable for residual eigenvalues to ex-tend far from the negative real axis. Although itis optimal if modes are both rapidly damped andpropagated, when considering the demanding caseof highly stretched boundary layer cells, the cluster-ing is deemed successful as long as the eigenvalues donot cluster arbitrarily close to the origin where theycan be neither damped nor propagated.2.2 AnalysisThe most e�ective means of understanding the phe-nomenon of multigrid breakdown is an examinationof the form of the preconditioned residual eigenvaluesin a highly stretched boundary layer cell. For thispurpose, the analytic expressions for the precondi-tioned Fourier footprints are obtained for the impor-tant set of asymptotic limits summarized in Table 1.Cases E1 and E2 represent the inviscid 
ows corre-sponding to the viscous conditions of cases NS1 andNS2, and are provided to illustrate the importance ofviscous coupling across the boundary layer in deter-mining the appropriate course of action. Case 1 rep-resents a stretched cell with perfect 
ow alignmentwhile Case 2 corresponds to the same stretched cellwith diagonal cross 
ow. For the viscous cases, thescaling for the cell aspect ratio is found by balancingstreamwise convection and normal di�usion, so thatu�x = ��y2 ;which leads to the relation�y�x = Re�1=2�x :The Mach number is held �xed during the limitingprocedure so that it appears in the analytic expres-sions for the Fourier footprints displayed in Table 2for 1st order upwind matrix dissipation. Here, thenotation sx � sin �x, sy � sin �y, Cx � 1 � cos �x,Cy � 1� cos �y is adopted for brevity.Scalar Preconditioner and Full CoarsenedMultigridThe performance of the standard combination ofscalar preconditioner (local time step) and full coars-
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Figure 3: Fourier quadrants for which the corre-sponding error modes must be damped or expelledfor full coarsening multigrid to function e�ciently.ened multigrid will �rst be assessed before examiningthe two proposed methods. For full coarsened multi-grid to function e�ciently, all modes correspondingto the three shaded Fourier quadrants in Fig. 3 mustbe either damped or propagated by the relaxationscheme since only modes which are low frequency inboth mesh directions (LxLy) can be resolved withoutaliasing on the next coarser mesh.Asymptotic dependence on a Fourier angleamounts to e�ective damping of modes in that di-rection, since the corresponding eigenvalues will notbe clustered at the origin. Using the scalar precondi-tioner, the Fourier footprints are identical for all fourcases and are displayed in Fig. 4a for all modes ex-cept those in the LxLy quadrant, which need not bedamped on the �ne mesh in a full coarsened multi-grid context. The entire footprints of both convec-tive families collapse to the origin so that neitherdamping nor propagation of these modes is possibleand the system will not converge. From Table 2 itis evident that the real and imaginary parts of theacoustic footprints are both dependent on �y so thatmodes with a high frequency component in the ydirection will be both e�ectively damped and prop-agated. However, acoustic modes that are low fre-quency in the y direction will be poorly damped,and in the worst case, the eigenvalue for a sawtoothacoustic mode that is constant in the y direction andhigh frequency in the x direction will fall exactly onthe origin.The resulting scenario for full coarsened multi-7



Case E1 Re�x =1 �y�x ! 0 vu = 0Case E2 Re�x =1 �y�x ! 0 vu = �y�xCase NS1 Re�x !1 �y�x = Re�1=2�x vu = 0Case NS2 Re�x !1 �y�x = Re�1=2�x vu = �y�xTable 1: Asymptotic limits for which analytic expressions for the preconditioned Fourier footprints of �rstorder matrix dissipation are obtained.
Case eig(PSZ) eig(PBJZ) eig(PJJZ)E1 00Cy + {̂syCy � {̂sy

Cx + {̂sxCx + {̂MsxCy + {̂syCy � {̂sy
Cx + {̂sxCx + {̂Msx11E2 00Cy + {̂syCy � {̂sy

12 (Cx + Cy) + {̂2 (sx + sy)11+MCx + M1+M [Cy + {̂(sx + sy)]Cy + {̂syCy � {̂sy
(Cx+Cy)+{̂(sx+sy)1+Cy+{̂syCx+M [Cy+{̂(sx+sy)]1+M(Cy+{̂sy)11NS1 00Cy + {̂syCy � {̂sy

22+PrCy + Pr2+Pr (Cx + {̂sx)11+2MCx + 2M1+2M (Cy + {̂2sx)Cy + {̂syCy � {̂sy
22Cy+PrCy + Pr2Cy+Pr (Cx + {̂sx)11+2MCyCx + 2M1+2MCy (Cy + {̂2sx)11NS2 00Cy + {̂syCy � {̂sy

11+PrCy + Pr(1+Pr) [ 12 (Cx + Cy) + {̂2 (sx + sy)]11+3MCx + 3M1+3M [Cy + {̂3 (sx + sy)]Cy + {̂syCy � {̂sy
Cy+Pr[ 12 (Cx+Cy)+ {̂2 (sx+sy)]Cy+Pr2 (1+Cy+{̂sy)Cx+3M[Cy+ {̂3 (sx+sy)]1+3M(Cy+ {̂3 sy)11Table 2: Analytic expressions for the preconditioned Fourier footprints using Scalar, Block-Jacobi andJ-Jacobi preconditioners applied to �rst order upwind matrix dissipation for the cases described in Table 1.The modes are listed in the order: entropy, vorticity, acoustic, acoustic.8
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4a: Fourier Footprint for allmodes except LxLy.
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4b: Damping Schematic forFull Coarsened Multigrid.Figure 4: Clustering performance of the Scalar Preconditioner and implications for Full Coarsened Multigridinside highly stretched boundary layer cells with aligned 
ow. Footprint symbols: entropy (+), vorticity (�),acoustic (�; �).
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5a: Footprint for all modes except LxLy.Case NS1 with M = 0:04.
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5b: Damping Schematic forFull Coarsened Multigrid.Figure 5: Clustering performance of the Block-Jacobi Preconditioner and implications for Full CoarsenedMultigrid inside highly stretched boundary layer cells with aligned 
ow. Footprint symbols: entropy (+),vorticity (�), acoustic (�; �). 9



grid in combination with the scalar preconditioner,which is the strategy in widespread use throughoutthe CFD community, is illustrated schematically inFig. 4b. The shaded regions represent Fourier quad-rants for which the corresponding modes are e�ec-tively damped and the other hatchings are stylizeddepictions of the modes that cannot be damped andtherefore prevent or impede convergence. There isno mechanism for damping convective modes in anyquadrant or acoustic modes in the HxLy quadrant.It is not surprising that poor convergence is observedwhen using this algorithm for viscous computationswith highly stretched boundary layer cells.Block-Jacobi Preconditioner and Full Coars-ened MultigridDeveloping an understanding for the behavior of theblock-Jacobi preconditioner requires a careful exami-nation of the expressions in Table 2. For the alignedinviscid 
ow of Case E1, the convective modes aredependent only on �x, and the acoustic modes aredependent only on �y, so that each modal family ise�ectively damped in only two Fourier quadrants.By comparison, the viscous results of Case NS1 re-veal that the balance between streamwise convectionand normal di�usion has caused the two convectivefamilies to become dependent on both Fourier angles,so that all quadrants except LxLy will be e�ectivelydamped. For the entropy family, this property isindependent of Mach number, while for the vortic-ity family, this behavior exists except in the case ofvanishing Mach number. For both inviscid and vis-cous results, the e�ect of introducing diagonal cross
ow in Case 2 is to improve the propagative per-formance for the convective modes by introducing adependence on both Fourier angles in the imaginarycomponents. Notice that the matrix preconditionerhas no e�ect on the footprints for the acoustic modes,which are identical to those using the scalar precon-ditioner.The scenario for full coarsened multigrid using thematrix preconditioner is illustrated by the Fourierfootprint and schematic damping diagram of Fig. 5.The footprint depicts all modes except LxLy forthe perfectly aligned viscous 
ow of Case NS1 withM = 0:04. This Mach number represents a realis-tic value for a highly stretched boundary layer cellat the wall, the speci�c value being observed at themid-chord for a cell with y+ < 1 in an RAE2822AGARD Case 6 calculation [8]. Fig. 5a reveals thatthe entropy footprint is clustered well away from theorigin for all modes. The vorticity mode remainsdistinctly clustered away from the origin even at this

low Mach number. Propagative clustering of the vor-ticity mode away from the real axis improves if eitherthe Mach number or the 
ow angle increases.This bene�cial e�ect on the clustering of the con-vective eigenvalues has a profound in
uence on theoutlook for full coarsening multigrid described inFig. 5b. Darker shading is used to denote the Fourierquadrants for which damping is facilitated by use of amatrix preconditioner. The full coarsened algorithmwill now function e�ciently for all convective modes.However, the footprints for the acoustic modes stillapproach the origin when �y is small, so the onlyremaining impediments to e�cient performance arethe acoustic modes corresponding to the HxLy quad-rant.Block-Jacobi Preconditioner and J-CoarsenedMultigridThe fact that the block-Jacobi preconditioner pro-vides e�ective clustering of convective eigenvalues inall but the LxLy quadrant provides the freedom tomodify the multigrid coarsening strategy with onlythe damping of HxLy acoustic modes in mind. Onepossibility that avoids the high cost of the completesemi-coarsening stencil and takes advantage of thedamping properties revealed in the present analysisis a J-coarsened strategy in which coarsening is per-formed only in the direction normal to the wall. Theimplications for multigrid performance with this ap-proach are summarized in Fig. 6. The Fourier foot-print is plotted for the diagonal cross 
ow of CaseNS2 withM = 0:2 to demonstrate the rapid improve-ment in the clustering of the convective eigenvaluesas the 
ow angle and Mach number increase abovethe extreme conditions shown in Fig. 5a. Only thosemodes corresponding to the LxHy andHxHy Fourierquadrants are displayed in Fig. 6a since modes fromthe other two quadrants can now be resolved on thecoarse mesh. The corresponding residual eigenvaluesare e�ectively clustered away from the origin for allfamilies.The schematic of Fig. 6b demonstrates that thecombination of block-Jacobi preconditioning andJ-coarsened multigrid accounts for the damping of allerror modes inside highly stretched boundary layercells. This result holds even for the perfectly aligned
ow of Case NS1 as long as the Mach number doesnot vanish. For typical turbulent viscous meshes,the Mach number remains su�ciently large, even inthe cells near the wall, that the tip of the vortic-ity footprint remains distinguishable from the originas in Fig. 5a. For most boundary layer cells, theMach number is large enough that even the vortic-10
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6a: Footprint for LxHy and HxHy quadrants.Case NS2 with M = 0:2.
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6b: Damping Schematic forJ-Coarsened Multigrid.Figure 6: Clustering performance of the Block-Jacobi Preconditioner and implications for J-CoarsenedMultigrid inside highly stretched boundary layer cells with aligned 
ow. Footprint symbols: entropy (+),vorticity (�), acoustic (�; �).
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7a: Footprint for all modes except LxLy.Case NS1 with M = 0:04.
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7b: Damping Schematic forFull Coarsened Multigrid.Figure 7: Clustering performance of the J-Jacobi Preconditioner and implications for Full CoarsenedMultigrid inside highly stretched boundary layer cells with aligned 
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ity footprint is clustered well away from the originand all modes are rapidly damped as in Fig. 6a. Theinteraction of the preconditioner and multigrid algo-rithm is critical, since the preconditioner is chie
yresponsible for damping the convective modes andthe coarsening strategy is essential to damping theacoustic modes.Cost bounds for full and J-coarsened cycles arepresented in Table 3, where N is the cost of a single
ow evaluation on the �ne mesh. The cost of J-coarsened multigrid is independent of the number ofdimensions since coarsening is performed in only onedirection. For a V-cycle, the cost of J-coarsening is80% more than full coarsening in two dimensions and133% more in three dimensions. Use of a J-coarsenedW-cycle is inadvisable since the cost depends on thenumber of multigrid levels (K). While there is a sig-ni�cant overhead associated with using J-coarsenedvs. full coarsened multigrid, subsequent demonstra-tions will show that the penalty is well worthwhilefor turbulent Navier{Stokes calculations.Implementation for structured grid applications isstraightforward for single block codes but problem-atic for multi-block solvers. Coarsening directionswill not necessarily coincide in all blocks so that cellmismatches would be produced at the block inter-faces on the coarse meshes. One means of circum-venting this di�culty is to adopt an overset grid ap-proach with interpolation between the overlappingblocks [28]. Since the J-coarsened approach is onlybene�cial inside the boundary layer, those blockswhich are in the inviscid region of the 
ow shouldemploy a full coarsened strategy, while continuingto use the block-Jacobi preconditioner for improvedeigenvalue clustering [17, 14]. Assuming that half themesh cells are located in blocks outside the bound-ary layer, this has the e�ect of decreasing the costof the multigrid cycle to the average of the full andJ-coarsened bounds.Although the J-coarsened approach is described inthe present work using structured mesh terminology,the method also �ts very naturally into unstructured2D Full JV 53N 3NW 2N KNIIIa: 2D Multigrid CostBounds.
3D Full JV 97N 3NW 43N KNIIIb: 3D Multigrid CostBounds.Table 3: Cost comparison for V and W-cycles usingFull and J-Coarsened Multigrid.

grid applications. In this case, it is no longer neces-sary to specify a global search direction since edgecollapsing [29, 30] or agglomeration [31, 32] proce-dures can be employed to provide normal coarseningnear the walls and full coarsening in the inviscid re-gions.J-Jacobi Preconditioner and Full CoarsenedMultigridAnother attractive alternative that avoids the in-creased cost bounds of J-coarsened multigrid is acombination of line-implicit J-Jacobi preconditioningwith full coarsened multigrid. The general intentionof this approach is that the preconditioner shouldcontinue to couple the convective families to bothFourier angles while simultaneously providing for ef-fective damping of all acoustic modes including thosethat are low frequency in �y. From the expressionsin Table 2, it is evident that the basic structure ofthe convective footprints is very similar to the caseof block-Jacobi preconditioning. The only notabledi�erence is the introduction of terms dependent onthe Fourier angles in the denominator. The impactof the J-Jacobi preconditioner on the acoustic foot-prints is far more dramatic. In highly stretched cellsaligned with the 
ow, the acoustic footprints are nowindependent of both Fourier angles and are clusteredwell away from the origin.The Fourier footprint produced by J-Jacobi pre-conditioning for the challenging 
ow conditions ofCase NS1 with M = 0:04 is shown in Fig. 7a. Theclustering of the vorticity eigenvalues is nearly iden-tical to that obtained when using the block-Jacobipreconditioner, as recalled from Fig. 5a. The shapeof the entropy envelope is substantially altered, butstill corresponds to both e�cient damping and prop-agation. The most notable di�erence is the collapseof the acoustic envelopes to a point on the negativereal axis, where they are still e�ciently damped, butcan no longer be propagated.The performance of full coarsened multigrid us-ing J-Jacobi preconditioning is illustrated in Fig. 5b.As demonstrated by the dark shading, the matrixpreconditioner is now responsible for all dampingduring the multigrid cycle. Use of the J-Jacobi pre-conditioner increases the cost of relaxation and theamount of required storage, but provides the signi�-cant bene�t of returning to a full coarsened strategy,with a corresponding reduction in the cost bound foreach multigrid cycle. Furthermore, the use of a line-implicit preconditioner normal to the wall need notimpair parallel e�ciency. The J-Jacobi approach isonly appropriate inside the highly stretched bound-12



ary layer cells so there is no need to extend the pre-conditioner beyond those blocks that are adjacent toa solid boundary. In the regions of the 
ow where cellstretching is not severe and the 
ow is primarily in-viscid, the block-Jacobi preconditioner performs verye�ciently in combination with full coarsened multi-grid [17, 14].Preliminary e�orts to implement this approach intwo dimensions appear to reveal an instability result-ing from the use of higher order dissipation on the�ne mesh. A more thorough investigation will berequired to either verify or eliminate this behavior.3 Three DimensionsIn three dimensions, the situation is complicated bythe addition of one more convective vorticity familyand one more space dimension in which error modesfor all �ve modal families must be e�ciently elimi-nated. It is not possible to obtain analytic asymp-totic results for the three-dimensional preconditionedFourier footprints since determination of the eigen-values requires solution of a quintic equation. Abelproved in 1824 that the method of radicals, whichcan be employed to �nd the roots of equations ofdegree � 4, cannot be extended to the solution ofquintics [33]. Side-stepping this intractability, it isstill possible to proceed in assessing the performanceof the two proposed methods by assuming the worstcase scenario: that none of the preconditioned foot-prints are asymptotically dependent on �z . This isa reasonable assumption for the cases previously ex-amined if �z � O(�x) and the 
ow is aligned withthe x direction.Block-Jacobi Preconditioning and J-Coars-ened MultigridIn three dimensions, a complete multigrid damp-ing schematic must display information for all eightFourier octants. This is most easily accomplished bydisplaying two slices through Fourier space, one forlow values of the third Fourier angle and one for highvalues. One possibility is to take the slices for lowand high values of �z. Assuming that there is no cou-pling in the z direction, these two slices would bothappear identical to the two-dimensional schematicof Fig. 6. In other words, the performance of thescheme is unchanged by the addition of a third co-ordinate direction. To see why this is the case, it isilluminating to display slices for low and high valuesof �x so that the interaction between the z directionand the direction of coarsening is exposed. Fig. 8illustrates that the behavior for all acoustic modes

is identical to the two-dimensional case. The prin-cipal development in three dimensions is that thepreconditioner no longer ensures that all convectivemodes are damped, since the eigenvalues correspond-ing to convective modes in the LxLyHz octant areassumed not to be dependent on �z. However, usinga J-coarsened strategy, these modes can be trans-ferred to a coarser mesh where they become LxHyHzmodes which can be e�ectively damped. The coars-ening strategy therefore assumes the extra respon-sibility of eliminating some of the convective modesin addition to all of the acoustic modes with a lowfrequency component in �y.In three dimensions, the point-implicit block-Jacobi preconditioner requires solution of a 5�5 sys-tem for each mesh cell at each stage of the Runge{Kutta scheme. The operation count is minimized bycomputing the LU decomposition of the matrix be-fore the �rst stage and then storing the resulting 25three-dimensional arrays for back substitution dur-ing each stage. By avoiding a globally implicit ap-proach, the algorithm leads to e�cient parallel imple-mentations so that the increase in memory overheadis mitigated by the suitability for distributed mem-ory architectures. Although the use of J-coarsenedmultigrid avoids the excessively high cost of usinga complete semi-coarsening algorithm, the cost of aJ-coarsened V-cycle is still more than double the costof using full coarsening in three dimensions. There-fore, it is worth considering an alternative approachthat preserves the damping properties of the schemewhile recovering the low multigrid cost bounds of afull coarsened approach.J-Jacobi Preconditioning and IJ-CoarsenedMultigridAssuming that there is no asymptotic dependence ofthe residual eigenvalues on �z, the three-dimensionaldamping schematic for this approach can again beconstructed by taking slices for low and high valuesof �z which will appear identical to the correspondingtwo-dimensional schematic of Fig. 7b. As with theprevious case, the convective modes in the LxLyHzoctant will not be damped by the J-Jacobi precon-ditioner. Instead, these modes must be passed tothe coarse mesh, which e�ectively prohibits coars-ening in the K mesh direction. In three dimen-sions, the J-Jacobi preconditioner therefore requiresan IJ-coarsened strategy rather than the full coars-ened strategy of two dimensions. This situation stillrepresents a substantial improvement over the multi-grid cost bounds of the J-coarsened approach sinceIJ-coarsening costs the same as full coarsening in two13
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8a: Damping Schematic for Low �x.(0 � �x � �2 ).
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8b: Damping Schematic for High �x.(�2 � �x � �).Figure 8: Implications for 3D performance of Block-Jacobi Preconditioning with J-Coarsened Multigridinside highly stretched boundary layer cells with aligned 
ow.dimensions.The following argument suggests that this view-point may be overly pessimistic and that full coars-ened multigrid may be acceptable in combinationwith J-Jacobi preconditioning. Consider a mesh cellon the surface of a wing in which x is parallel tothe chord, y is normal to the surface and z pointsalong the span. The solid wall boundary conditionat y = 0 e�ectively enforces 
ow tangency with they faces of the cell so that it is critical to account forthe possibility of perfect 
ow alignment with thesefaces, as re
ected in the asymptotic cases previouslyexamined. However, there is no similar boundarycondition (except at the intersection with the body)which enforces tangency to the z faces of the cell, sothat 
ow alignment with these faces is unlikely ratherthan expected. In general, there will be some sideslip in the spanwise direction which will introduce adependence on �z into the convective eigenvalues. Asa result, convective modes from the LxLyHz octantmay then be e�ciently damped by the relaxationscheme so that full coarsened multigrid again be-comes viable. Alternatively, by increasing the span-wise resolution of the mesh so that �z = O(�y),the viscous di�usion will cause the convective modesto couple in both the y and z directions, once again

leading to e�cient damping in the LxLyHz octant.In three dimensions, the J-Jacobi preconditionerrequires solution of a block-tridiagonal system ateach stage of the Runge{Kutta scheme. The LU fac-tors may be computed before the �rst stage and the75 three-dimensional arrays stored for back substitu-tion in later stages. Alternatively, the preconditionermay be formed and factored at every stage to avoidthe storage overhead. However, since the J-Jacobipreconditioner will only be used in blocks adjacentto solid boundaries, and the multigrid storage re-quirement is reduced in comparison to a J-coarsenedapproach, it will likely prove most advantageous tostore the factored preconditioner to reduce the oper-ation count.
4 ImplementationThis section brie
y documents the numerical meth-ods implemented in the present work. Only thosetechniques which are non-standard will be treated indetail.14



Basic DiscretizationThe baseline code used as a starting point for thepresent work is the well-validated 3D viscous 
owsolver FLO107 written by Jameson and Martinelli[34]. The discretization is based on a conservativecell-centered semi-discrete �nite volume scheme. Forthe present work, characteristic-based matrix dissi-pation based on a Roe linearization [24] provides abasis for the construction of a matrix switched JSTscheme [10, 12]. Updates are performed using a 5-stage Runge{Kutta time-stepping scheme to drive aV-cycle with time steps computed moving both upand down the cycle [10, 6, 25]. The CFL number is2.5 on all meshes and the switched scheme is usedonly on the �ne mesh with a �rst order upwind ver-sion of the numerical dissipation used on all coarsermeshes.PreconditionerThe 5�5 block-Jacobi preconditioner is computed foreach cell before the �rst stage of each time step, andthen stored as LU factors for inexpensive back substi-tution during each stage of the Runge{Kutta scheme.In the context of preconditioning, an entropy �xserves to prevent the time step from becoming toolarge near the stagnation point, at shocks and at thesonic line. When using the block-Jacobi precondi-tioner on high aspect ratio cells, the van Leer entropy�x [35] used in the numerical dissipation does notsu�ciently limit the time step to provide robustness,so a more severe Harten entropy �x [36] is used inthe preconditioner, with the minimum of the bound-ing parabola equal to one eighth the speed of sound.This choice of bounding constant has proven suitablefor both 2D and 3D calculations [8].Turbulence ModelsBoth the algebraic Baldwin{Lomax turbulencemodel [37] and the one-equation Spalart-Allmarasturbulence model [38] are implemented. The tur-bulent transport equation for the SA model is solvedusing a �rst order spatial discretization and 5-stageRunge{Kutta time integration with implicit treat-ment of the source terms to drive the same multigridalgorithm as that used for the 
ow equations. Pre-cautions must be taken to ensure that neither thetime integration procedure nor the coarse grid cor-rections introduce negative turbulent viscosity val-ues into the 
ow �eld. This solution procedure isvery convenient because the turbulent viscosity canbe treated in nearly all subroutines as an extra vari-able in the state vector. The transition point is set

using the trip term built into the Spalart{Allmarasmodel. To prevent the turbulence models from ad-versely a�ecting the convergence of the 
ow equa-tions, either by blinking in the case of the BL model,or by hanging in the case of the SA model, the tur-bulent viscosity �eld is frozen after the r.m.s. densityresiduals have decreased by four orders of magnitude.In a few of the cases, the turbulence �eld had to befrozen after only three orders.Viscous DiscretizationThe baseline version of the viscous 
ux discretiza-tion in FLO107 calculates the velocity gradients andforms the stress components at the vertices beforeaveraging to the centers of the cell faces to computethe viscous 
ux balance. This discretization is verye�cient because it avoids having to compute the ve-locity gradients separately for each cell face (eachcell being associated with three faces but only onevertex). However, as a result of this averaging pro-cess, the discretization does admit odd/even spuriousmodes that alternate between positive and negativevalues at alternate cells. This was previously thoughtnot to be a concern since the numerical dissipationis designed to eliminate this type of oscillation in thesolution.One of the surprises during the course of thepresent work was the discovery that the admission ofthese odd/even modes actually can present a signi�-cant impediment to convergence. Using the standardscalar preconditioner, this discretization was foundto necessitate a smaller CFL number in comparisonto the modi�ed scheme described below, and was ac-tually unstable when used in conjunction with theblock-Jacobi preconditioner. This problem also sur-faced with the viscous 
uxes in the SA turbulencemodel, which failed to converge when using this dis-cretization.One option is to accept the additional cost ofcalculating the velocity gradients at the cell faces,which produces a compact discretization stencil thatdoes not admit odd/even modes. An alternativeapproach, which was proposed by Jameson andCaughey in developing a discretization for the tran-sonic potential equation [39] and later suggested foruse with the Navier{Stokes equations by Liu andZheng [13], is to add a correction stencil to the ve-locity gradients calculated at the vertices to approxi-mately convert the large stencil of the present schemeto the smaller stencil of a face-centered approach.Consider a regular Cartesian grid with unit meshspacing and mesh indices (i; j; k) located at the cellcenters in the (x; y; z) coordinate directions. Using15



a compact cell-faced scheme to compute a velocitygradient at the face (i+ 1=2; j; k) produces@u@x ����compact = �i+1=2uj;k;where �i+1=2 denotes di�erencing across the cell facein the i direction. By contrast, computing the gra-dients at the vertices and averaging to the cell facegives @u@x ����averaged = �i+1=2M;where M is the stencilM = 264 116uj+1;k�1 18uj+1;k 116uj+1;k+118uj;k�1 14uj;k 18uj;k+1116uj�1;k�1 18uj�1;k 116uj�1;k+1 375 :Comparing these expressions reveals that in the caseof a regular grid, the compact stencil can be exactlyrecovered by subtracting a correction stencil from theaveraged formula@u@x ����compact = @u@x ����averaged ��i+1=2N;where N is given byN = 264 116uj+1;k�1 18uj+1;k 116uj+1;k+118uj;k�1 � 34uj;k 18uj;k+1116uj�1;k�1 18uj�1;k 116uj�1;k+1 375 :Generalizing this formula to body-conforming com-putational coordinates (�; �; �) then produces the ap-proximate relationship for the gradient at a � face@u@x ����compact � @u@x ����averaged � S�xVol�i+1=2N;where S�x represents the projection of the � face inthe x coordinate direction and Vol is the average vol-ume at the cell face. Similar expressions can be ob-tained for the gradients of the other relevant 
owvariables for each of the (x; y; z) coordinate direc-tions at each of the (�; �; �) cell faces. Note that fora given face, the stencil N need only be calculatedonce per 
ow variable and then the metric term isvaried for each Cartesian direction. The same cor-rection stencil is applied to the calculation of theviscous 
uxes for the Spalart{Allmaras turbulencemodel.Using this approach, the velocity gradients arecomputed at the vertices as in the original version ofFLO107 and then averaged to the cell faces, where
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Figure 9: Parallel e�ciency for a 288�64�16 mesh.the correction stencil is applied before assembling thestress components. This method is relatively inex-pensive compared to computing the velocities at thecell faces and provides a good approximation to thecompact stencil which does not allow odd/even gridpoint decoupling. In fact, running side by side withthe �rst author's two-dimensional 
ow solver, whichdirectly computes the viscous terms using the com-pact formulation as in reference [25], on a straightwing with an aspect ratio of 106 (so as to eliminatethe in
uence of the third coordinate direction), thetwo codes produced exactly the same convergencehistory.ParallelizationThe code is parallelized using the MPI (MessagePassing Interface) library to implement a domaindecomposition approach using a SPMD (Single Pro-gram Multiple Data) paradigm [40]. Halo data isexchanged between neighboring processors after ev-ery stage on all meshes so that the convergence of theparallel code is identical to that of the serial version.The parallel scalability of the approach is demon-strated in Fig. 9 for a 288�64�16 mesh with 294,912cells. The calculation scales to 18 processors with ane�ciency of 78% relative to a calculation with 2 pro-cessors. The calculation could not be performed onone processor due to memory constraints. For vis-cous meshes with an order of magnitude more cells,the method will continue to scale e�ciently to farlarger numbers of processors.16



Wing Section AR Sweep Twist Dimensions y+ave=max M1 � ReL Spanwise b.c.Straight RAE2822 4.0 0:0� 0:0� 288�64�16 1.02/2.12 0.725 2:4� 6.5�106 PeriodicitySwept RAE2822 4.0 30:0� 0:0� 288�64�16 1.02/2.12 0.800 2:8� 6.5�106 PeriodicityTwisted RAE2822 4.0 0:0� 2:0� 288�64�16 1.02/2.12 0.725 3:4� 6.5�106 PeriodicityFully-3D RAE2822 8.0 30:0� 3:5� 288�64�16 1.02/2.12 0.800 4:0� 6.5�106 SymmetryTable 4: Test case de�nitions: wing name, airfoil section, aspect ratio, sweep, twist, mesh dimensions, averageand maximum y+ at the �rst cell height, free stream Mach number, angle of attack, Reynolds number, andtype of boundary condition in the spanwise direction.5 ResultsThis section will demonstrate the accelerationprovided by the proposed preconditioned multi-grid method of block-Jacobi preconditioning andJ-coarsened multigrid (New) compared to the stan-dard combination of scalar preconditioning and fullcoarsened multigrid (Standard). The following seriesof test cases are chosen so as to systematically intro-duce the in
uence of the third coordinate directioninto the 
ow:� straight wing with spanwise periodicity,� swept wing with spanwise periodicity,� twisted wing with spanwise periodicity,� fully-3D swept twisted wing with symmetryplanes at the root and tip.The RAE2822 airfoil section is used to constructall test cases and the details of the geometry and
ow conditions for each case are provided in Table 4.The �rst case is essentially a two-dimensional 
owcorresponding to AGARD Case 6 [41] and providesan opportunity for direct comparison with the �rstauthor's two-dimensional 
ow solver [14, 8]. The sec-ond case introduces a constant spanwise velocity intothe 
ow and the third cases introduces a periodicallyvarying spanwise velocity into the 
ow. The �nalcase provides a fully three-dimensional wing 
ow.Symmetry planes are placed at both the root andtip sections to avoid the issue of mesh singularitiesemanating from the wing tip. This geometry there-fore resembles a wind tunnel model with end plates.For each of the test geometries, the 
ow conditionswere modi�ed so as to produce a pressure distribu-tion with a shock strength resembling that of Case 6.For the convergence comparisons that follow, theplotted residuals represent the r.m.s. change in den-sity during one application of the time-stepping

scheme on the �nest mesh in the multigrid cycle.Convergence information for all the test cases is pro-vided in various useful forms in Table 5 for the initialconvergence rate between residual levels of 100 and10�4 and in Table 6 for the asymptotic rate betweenresidual levels of 10�4 and 10�8. The asymptoticrate of the standard approach is too slow to permitconvergence of the solution to a residual level of 10�8,so the asymptotic rates for this approach are extrap-olated based on the convergence during the �rst 500cycles after 10�4 has been reached. This estimate isgenerous since some degradation in the asymptoticconvergence rate would continue to occur beyond thispoint in the convergence history.Straight WingThe initial convergence rates for the density and tur-bulent viscosity using the Spalart{Allmaras turbu-lence model are displayed in Fig. 10a. The con-vergence histories of the two quantities are identicalusing the new approach and the turbulent viscosityconverges somewhat faster than the 
ow equationsusing the standard approach. As summarized in Ta-ble 5, the density residual requires 109 cycles at arate of .9187 per cycle to reach four orders of mag-nitude using the new method while the standard ap-proach requires 2120 cycles at a rate of .9957 to reachthe same level of convergence. Since each multigridcycle is more than twice as expensive using the newapproach it is important to take into considerationthe actual computational e�ort involved in each ofthese calculations. To ensure that the communi-cation costs of the parallel implementation are ac-counted for, all cost comparisons are made on thebasis of wall time. A wall time cost comparison forthe present calculations is shown in Fig. 10b. Thenew approach yields savings of a factor of 8.84 inreaching a residual level of 10�4 and a factor of 20.34in asymptotic performance.The convergence rate of the new approach us-17



Turb Cycles Rate Wall Time (s) CostWing Model Standard New Standard New Standard New RatioStraight SA 2120 109 .9957 .9187 44,188 5000 8.84Straight BL 1935 113 .9953 .9213 24,407 3257 7.49Swept BL 1855 113 .9950 .9190 23,409 3340 7.01Twisted SA 2113 124 .9957 .9268 46,362 5672 8.17Fully-3D BL 5579 131 .9984 .9321 54,559 2904 18.79Table 5: Comparison of initial convergence (100!10�4) for scalar preconditioning with full coarsened multi-grid (standard) vs. block-Jacobi preconditioning with J-coarsened multigrid (new): multigrid cycles, conver-gence rate per cycle, wall time, wall time speed-up.Turb Cycles Rate Wall Time (s) CostWing Model Standard� New Standard� New Standard� New RatioStraight SA 9013 199 .9990 .9548 186,780 9185 20.34Straight BL 8386 191 .9989 .9528 104,200 5450 19.12Swept BL 6572 196 .9986 .9554 82,693 5605 14.75Twisted SA 9555 207 .9990 .9568 198,160 9436 21.00Fully-3D BL 27,100 213 .9997 .9575 266,710 4685 56.93Table 6: Comparison of asymptotic convergence (10�4!10�8) for scalar preconditioning with full coarsenedmultigrid (standard) vs. block-Jacobi preconditioning with J-coarsened multigrid (new): multigrid cycles,convergence rate per cycle, wall time, wall time speed-up. �Extrapolated based on �rst 500 cycles afterreaching 10�4.ing the 3D code is compared to the convergencehistory on the same mesh using a 2D code inFig. 11a. These calculations were performed withboth Spalart{Allmaras and Baldwin{Lomax turbu-lence models to demonstrate that the new approachis insensitive to the choice of turbulence model. Theinitial convergence of the 2D and 3D codes is nearlyidentical, with the 2D code eventually converging tomachine accuracy in about 450 cycles and the 3Dcode requiring about 500 cycles. The correspond-ing solutions are displayed in Fig. 11b where it isevident that the two implementations yield almostidentical results for the SA model, producing a shocksomewhat forward of the experimental location ashas been previously observed [38]. The two imple-mentations of the BL model yield slightly di�erentshock locations which are both in better agreementwith the experiment. The computational savings ofthe new approach are slightly less when using theBaldwin{Lomax turbulence model for this test case,yielding a factor of 7.49 in initial convergence and

19.12 in asymptotic convergence.Swept WingThe convergence histories for a periodically sweptwing with constant spanwise velocity are shown inFig. 12. Both the Mach number and angle of at-tack were increased for this 
ow, as the spanwise re-lief would otherwise eliminate the shock on the up-per surface. Using the Baldwin{Lomax turbulencemodel, the new approach converges four orders ofmagnitude in 113 cycles at a rate of .9190 and thestandard approach requires 1855 cycles at a rate of.9950 corresponding to computational savings of 7.01in initial convergence rate and 14.75 in asymptoticrate. As in the case of the straight wing with two-dimensional 
ow, the new method converges to ma-chine accuracy in about 500 cycles.18



Twisted WingConvergence results for the periodically twisted wingare shown in Fig. 13 for a calculation employing theSpalart{Allmaras turbulence model. This test caseproduces pressure distributions at angles of attackranging between�1� of the standard AGARD Case 6value of 2:4�. For the case of non-uniform spanwisevelocity, the new approach now requires 124 multi-grid cycle to reach four orders compared to 2113 us-ing the standard approach, which represents a com-putational savings of 8.17. The computational sav-ings in terms of asymptotic convergence rate is nowa factor of 21.00. The number of cycles required forthe new approach to converge to machine accuracyincreases slightly to about 550.Fully-3D WingThis geometry was constructed by using a constantplanform with a linear twist distribution along thespan. The pressure distributions at six stations alongthe wing are shown in Fig. 14. The presence of theend plate at the tip does not substantially alter the
ow �eld over the majority of the wing, as is evidentfrom the typical root and central pressure distribu-tions. However, the plate does have a signi�cant ef-fect on the 
ow near the tip, where the lack of three-dimensional relief tends to introduce a very strongshock. The choice of the maximum twist angle wastherefore largely governed by the desire to keep thetip 
ow from separating. Note that the small wig-gles in the pressure distribution are not numericaloscillations but rather the e�ect of imperfections inthe measured experimental coordinates of the origi-nal RAE2822 test section [41].The convergence results for the new and standardmethods are displayed in terms of multigrid cyclesand wall time in Figs 15a and 15b. The introduc-tion of full three-dimensionality into the 
ow �eldhas very little e�ect upon the convergence rate ofthe new approach. Four orders of convergence areachieved in 131 cycles at a rate of .9321 and thenext four order require only an additional 213 cyclesat a rate of .9575. As for the periodically twistedcase, the solution converges to machine accuracy inabout 550 cycles. The convergence of the standardapproach is substantially slower than for the previ-ous cases, requiring 5579 cycles to reach four ordersof convergence at a rate of .9984 with an extrapolatedrequirement of 27,100 additional cycles to convergethe next four orders. The new approach thereforeprovides computational savings in terms of wall timeof 18.79 in initial convergence and 56.93 in asymp-totic convergence.

It remains to extend the method to treat exposedwing tips and other complex con�gurations whichlead to mesh singularities that do not fall within theassumptions of the theoretical analysis used to mo-tivate this approach.6 ConclusionsTwo preconditioned multigrid methods are proposedthat are designed to perform e�ciently for three-dimensional turbulent Navier{Stokes computationson highly stretched meshes� point-implicit block-Jacobi preconditioningwith J-coarsened multigrid,� line-implicit J-Jacobi preconditioning withIJ-coarsened multigrid.The properties of these schemes are illustrated by ex-amining analytic expressions for the preconditionedFourier footprints in the asymptotic limit of high cellReynolds number and aspect ratio to reveal that allconvective and acoustic modes are e�ectively elimi-nated inside the boundary layer.The �rst of these methods is implemented in thepresent work, and is shown to provide rapid con-vergence to machine accuracy for three-dimensionalturbulent Navier{Stokes calculations. The compu-tational savings over the standard combination ofscalar preconditioning and full coarsened multigridare roughly an order of magnitude to achieve engi-neering accuracy and much larger in terms of asymp-totic performance.AcknowledgementsThis work was generously supported by EPSRC andthe NASA-IBM Cooperative Research Agreement.The �rst author wishes to thank the members of theCFD Laboratory for Engineering Analysis and De-sign at Princeton University for being amiable hoststhroughout the course of this project. Discussionswith Drs. Juan Alonso and James Reuther were alsomuch appreciated.References[1] R.P. Fedorenko. The speed of convergence of oneiterative process. Zh. vych. mat., 4(3):559{564,1964. (USSR Comp. Math. and Math. Phys.,4:227-235, 1964).19



[2] N.S. Bakhvalov. On the convergence of a re-laxation method with natural constraints of theelliptic operator. Zh. vych. mat., 6(5):861{885,1966. (USSR Comp. Math. and Math. Phys.,6:101-135, 1966).[3] R.A. Nicholaides. On the l2 convergence of analgorithm for solving �nite element equations.Math. Comp., 31:892{906, 1977.[4] W. Hackbusch. On the multi-grid methodapplied to di�erence equations. Computing,20:291{306, 1978.[5] R.-H. Ni. A multiple-grid scheme for solving theEuler equations. AIAA Journal, 20(11):1565{1571, 1982.[6] A. Jameson. Solution of the Euler equations bya multigrid method. Applied Math. and Com-putation, 13:327{356, 1983.[7] A. Jameson. Multigrid algorithms for compress-ible 
ow calculations. In Second European Con-ference on Multigrid Methods, 1985.[8] N.A. Pierce and M.B. Giles. Preconditionedmultigrid methods for compressible 
ow calcu-lations on stretched meshes. Submitted to J.Comp. Phys., April, 1996.[9] S. Allmaras. Analysis of semi-implicit precon-ditioners for multigrid solution of the 2-D com-pressible Navier{Stokes equations. AIAA Paper95-1651-CP, 12th Computational Fluid Dynam-ics Conference, San Diego, CA, 1995.[10] A. Jameson, W. Schmidt, and E. Turkel. Nu-merical solution of the Euler equations by �nitevolume methods using Runge-Kutta time step-ping schemes. AIAA Paper 81-1259, 1981.[11] B. van Leer, W.-T. Lee, P.L. Roe, and C.-H.Tai. Design of optimally smoothing multi-stageschemes for the Euler equations. J. Appl. Num.Math., 1991.[12] A. Jameson. Analysis and design of numericalschemes for gas dynamics 1: Arti�cial di�usion,upwind biasing, limiters and their e�ect on ac-curacy and multigrid convergence. Int. J. ofComp. Fluid Dyn., 4:171{218, 1995.[13] F. Liu and X. Zheng. A strongly coupled time-marching method for solving the Navier{Stokesand k-! turbulence model equations with multi-grid. J. Comp. Phys., 128:289{300, 1996.

[14] N.A. Pierce and M.B. Giles. Precondition-ing compressible 
ow calculations on stretchedmeshes. AIAA Paper 96-0889, 34th AerospaceSciences Meeting and Exhibit, Reno, NV, 1996.[15] B. van Leer, W.-T. Lee, and P.L. Roe. Charac-teristic time-stepping or local preconditioning ofthe Euler equations. AIAA Paper 91-1552-CP,1991.[16] S. Allmaras. Analysis of a local matrix precon-ditioner for the 2-D Navier{Stokes equations.AIAA Paper 93-3330-CP, 11th ComputationalFluid Dynamics Conference, Orlando, FL, 1993.[17] N.A. Pierce and M.B. Giles. Preconditioning onstretched meshes. Oxford University ComputingLaboratory Technical Report 95/10, Presentedat the 12th AIAA CFD Conference, San Diego,CA, 1995.[18] W.A. Mulder. A new multigrid approach to con-vection problems. J. Comp. Phys., 83:303{323,1989.[19] A. Jameson. Aerodynamic design via controltheory. J. Sci. Comp., 3:233{260, 1988.[20] A. Jameson, N.A. Pierce, and L. Martinelli. Op-timum aerodynamic design using the Navier{Stokes equations. AIAA paper 97-0101, AIAA35th Aerospace Sciences Meeting, Reno, NV,1997.[21] A. Jameson. Time dependent calculations usingmultigrid, with applications to unsteady 
owspast airfoils and wings. AIAA Paper 91-1596,10th Computational Fluid Dynamics Confer-ence, Honolulu, HI, 1991.[22] N.A. Pierce and J.J. Alonso. A preconditionedimplicit multigrid algorithm for parallel com-putation of unsteady aeroelastic compressible
ows. AIAA Paper 97-0444, 35th Aerospace Sci-ences Meeting and Exhibit, Reno, NV, 1997.[23] N.A. Pierce and J.J. Alonso. E�cient compu-tation of unsteady viscous 
ows by an implicitpreconditioned multigrid method. Submitted toAIAA Journal, January, 1997.[24] P.L. Roe. Approximate Riemann solvers, pa-rameter vectors, and di�erence schemes. J.Comp. Phys., 43:357{372, 1981.[25] L. Martinelli. Calculations of Viscous Flowswith a Multigrid Method. PhD thesis, Prince-ton University, 1987.20



[26] C.P. Li. Numerical solution of the viscous react-ing blunt body 
ows of a multicomponent mix-ture. AIAA Paper 73-202, 1973.[27] N.A. Pierce. Preconditioned Multigrid Methodsfor Compressible Flow Calculations on StretchedMeshes. PhD thesis, Oxford University, (ex-pected completion June, 1997).[28] J.A. Benek, P.G. Buning, and J.L. Steger. A 3-DChimera grid imbedding technique. AIAA Pa-per 85-1523, 7th AIAA CFD Conference, Cinci-natti, OH, 1985.[29] P.I. Crumpton and M.B. Giles. Implicit timeaccurate solutions on unstructured grids. AIAAPaper 95-1671, 12th AIAA CFD Conference,San Diego, CA, 1995.[30] P.I. Crumpton, P. Moinier, and M.B. Giles. Cal-culation of turbulent 
ow on unstructured gridswith high aspect ratio. In Proc. 10th Interna-tional on Numerical Methods for Laminar andTurbulent Flow, Swansea, UK, July, 1997.[31] W.A. Smith. Multigrid solution of transonic
ow on unstructured grids. In O. Baysal, ed-itor, Recent Advances and Applications Compu-tational Fluid Dynamics, Nov. 1990. Proceed-ings of the ASME Winter Annual Meeting.[32] D.J. Mavriplis and V. Venkatakrishnan. Multi-grid techniques for unstructured meshes. ICASEReport No. 95-30, 1995.[33] I. Stewart. Galois Theory. Chapman & HallMathematics, 1994.[34] A. Jameson and L. Martinelli. Mesh re�nementand modeling errors in 
ow simulation. AIAAPaper 96-2050, 1996.[35] B. van Leer, W.-T. Lee, and K.G. Powell.Sonic-point capturing. AIAA Paper 89-1945-CP, AIAA 9th Computational Fluid DynamicsConference, 1989.[36] A. Harten. High resolution schemes for hy-perbolic conservation laws. J. Comp. Phys.,49:357{393, 1983.[37] B. Baldwin and H. Lomax. Thin layer approx-imation and algebraic model for separated tur-bulent 
ows. AIAA Paper 78-257, 1978.[38] P.R. Spalart and S.R. Allmaras. A one-equationturbulence model for aerodynamic 
ows. LaRecherche Aerospatiale, 1:5{21, 1994.

[39] A. Jameson and D.A. Caughey. A �nite volumemethod for transonic potential 
ow calculations.AIAA Paper 77-635, 1977.[40] J.J. Alonso, T.J. Mitty, L. Martinelli, andA. Jameson. A two-dimensional multigrid-driven Navier-Stokes solver for multiprocessorarchitectures. In Proceedings of the ParallelCFD '94 Conference, Kyoto, Japan, 1994.[41] P.H. Cook, M.A. McDonald, and M.C.P.Firmin. AEROFOIL RAE2822 pressure dis-tributions, boundary layer and wake measure-ments. AGARD Advisory Report No. 138, 1979.

21



0 500 1000 1500 2000 2500
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Convergence History

lo
g1

0(
R

es
)

Multigrid Cycles

                        

                        

                        

                        

d�d�toNewd�d�toStandard
10a: Initial convergence of density andturbulent viscosity residuals. 0 5 10 15 20 25 30 35 40 45 50
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d� Newd� Standard10b: Cost based on wall time.Figure 10: Straight Wing: Comparison of the new and standard methods using the SA turbulence model.
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Experiment2D Code3D Codeo SA2D Code3D CodeoBL11b: Solution comparison.Figure 11: Straight Wing: Comparison of the 2D and 3D codes using SA and BL turbulence models.
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d� Newd� StandardFigure 12: Swept Wing: Convergence comparisonusing the BL turbulence model. 0 500 1000 1500 2000 2500 3000 3500 4000
−12

−10

−8

−6

−4

−2

0
Convergence History

lo
g1

0(
R

es
)

Multigrid Cycles

                        

                        

d� Newd� StandardFigure 13: Twisted Wing: Convergence comparisonusing the SA turbulence model.22
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14a: Cp at span station z = 0:25.   1
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14b: Cp at span station z = 1:75.   1
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14c: Cp at span station z = 3:25.
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14d: Cp at span station z = 4:75.   1
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14e: Cp at span station z = 6:25.   1
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14f: Cp at span station z = 7:75.Figure 14: Spanwise pressure distributions for a wing with endplates.Geometry: RAE2822 Airfoil, Aspect Ratio = 8, Sweep = 30�, Twist = 3:5�.Flow conditions: M = 0:8; � = 4:0�; Re = 6:5�10�6.
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d� Newd� Standard15b: Cost comparison.Figure 15: Fully-3D Wing: Comparison of the new and standard methods using the BL turbulence model.23


