
AIAA 2002–4085
Effects of Flow Instabilities on the
Linear Analysis of Turbomachinery
Aeroelasticity
M.S. Campobasso and M.B. Giles
Oxford University Computing Laboratory
OX1 3QD Oxford, UK

38th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference & Exhibit

7 – 10 July, 2002 / Indianapolis, IN

For permission to copy or republish, contact the American In stitute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191–4344



E�e
ts of Flow Instabilities on the LinearAnalysis of Turboma
hinery Aeroelasti
ityM.S. Campobasso � and M.B. Giles yOxford University Computing LaboratoryOX1 3QD Oxford, UKThe linear analysis of turboma
hinery aeroelasti
ity is based on the linearizationof the unsteady 
ow equations around the mean 
ow �eld whi
h 
an be determinedby a nonlinear steady solver, while the unsteady periodi
 
ow 
an be de
omposedinto a sum of harmoni
s, ea
h of whi
h 
an be 
omputed independently solving aset of linearized equations. The analysis 
onsiders just one parti
ular frequen
y ofunsteadiness at a time and the obje
tive is to 
ompute a 
omplex 
ow solution whi
hrepresents the amplitude and phase of the unsteady 
ow. The solution pro
edure ofboth the nonlinear steady and the linear harmoni
 Euler/Navier-Stokes solvers of theHYDRA suite of 
odes 
an be viewed as a pre
onditioned �xed-point iteration. Thepaper do
uments the numeri
al instabilities en
ountered solving the linear harmoni
equations for some turboma
hinery test-
ases, highlights their physi
al origin andsummarizes the implementation of a GMRES algorithm aiming at the stabilizationof the linear 
ode. Presented results in
lude the 
utter analysis of a 
ivil engine fan.Nomen
lature
p unsteady pressure
oeÆ
ient_m mass 
owMis isentropi
 Ma
h numberN number of grid nodesof a blade-passageNblades number of blades ofthe blade-rowNeqs number of equations(5 for the Euler equationsand 6 for the NS model)n
l number of multigrid 
y
lesper GMRES iterationnKr number of GMRES iterationsper restarted 
y
le�j Inter-Blade Phase-Angle(IBPA)W worksum� pressure ratioÆ logarithmi
 de
rement! frequen
y of theunsteady 
ow �eldIntrodu
tionThe aeroelasti
 phenomena of 
on
ern in the tur-boma
hinery industry are blade 
utter and for
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response, as they may both lead to dramati
 me-
hani
al failures if not properly a

ounted for in thedesign of the engine. The blades of an assembly 
anundergo 
utter vibrations when the aerodynami
damping asso
iated with 
ertain 
ow regimes be-
omes negative and is not 
ounterbalan
ed by theme
hani
al damping. In su
h 
ir
umstan
es, thefree vibration of the blades triggered by any tem-porary perturbation is sustained through the energyfed into the stru
ture by the unsteady aerodynami
for
es and may damage the blades if the stress as-so
iated with the deformations ex
eeds the materialstrength. Blade for
ed response is 
aused by the rel-ative motion of adja
ent frames of referen
e, whi
htransforms steady 
ir
umferential variations of the
ow �eld in one frame into periodi
 time-varyingfor
es a
ting on the blades in the other. Well knownexamples in
lude for
ing due to the wakes shed by anupstream blade-row and fan inlet distortions due to
ross-wind 
onditions. The high 
y
le fatigue 
ausedby these vibrations may shorten the life of the bladesbelow the target life of the engine.The unsteady aerodynami
 analysis intended forturboma
hinery aeroelasti
 predi
tions must be ap-pli
able over wide ranges of blade-row geometriesand operating 
onditions as well as unsteady ex-
itation modes and frequen
ies. Also, be
ause ofthe large number of 
ontrolling parameters involved,there is a stringent requirement for 
omputationaleÆ
ien
y. Over the past two de
ades, a numberof methods have emerged to 
arry out the analy-sis of turboma
hinery aeroa
ousti
s and aeroelas-1 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2002{4085



ti
ity,17 varying from un
oupled linearized poten-tial 
ow solvers9, 18 to fully-
oupled nonlinear three-dimensional unsteady vis
ous methods.12 Withinthis range, the un
oupled linear harmoni
 Euler andNavier-Stokes (NS) methods have proved to be a su
-
essful 
ompromise between a

ura
y and 
ost andare now widely preferred in industry as a fast anda

urate tool for aeroelasti
 predi
tions. Indeed,a growing body of eviden
e indi
ates that linearvis
ous 
al
ulations are adequate for a surprisinglylarge range of appli
ations.2, 10, 11, 16 This methodviews the aerodynami
 unsteadiness as a small per-turbation of the spa
e-periodi
 mean steady 
ow.Hen
e the unsteady 
ow �eld 
an be linearized aboutit and due to linearity 
an be de
omposed into asum of harmoni
 terms, ea
h of whi
h 
an be 
om-puted independently. The 
y
li
 periodi
ity of boththe steady and unsteady 
ow leads to a great redu
-tion of 
omputational 
osts, sin
e the analysis 
anfo
us on one blade passage rather than the wholeblade-row making use of suitable periodi
 boundary
onditions. The small amplitude of the aerodynami
unsteadiness often allows one to negle
t both the
oupling and variations of stru
tural eigenmodes dueto the aerodynami
 for
es.1 Therefore the inves-tigation 
an be 
arried out 
onsidering one stru
-tural mode at a time, determined by a �nite-elementprogram and used as an input for 
al
ulating theunsteady aerodynami
 for
es. The 
omplete aerody-nami
 analysis 
onsists of two phases: a) 
al
ulationof the nonlinear steady 
ow �eld about whi
h the lin-earization is performed and b) solution of the linearharmoni
 equations.The HYDRA suite of parallel 
odes developed atthe Oxford University Computing Laboratory4, 7, 14in
ludes both a nonlinear (hyd) and a linear har-moni
 (hydlin) NS solver. The solution pro
edurefor both hyd and hydlin 
an be viewed as a pre-
onditioned �xed-point iteration. Usually the lin-ear 
ode 
onverges without diÆ
ulty, but problemshave been en
ountered in situations in whi
h thesteady 
ow 
al
ulation itself failed to 
onverge to asteady state but instead �nished in a low-level limit
y
le, often related to some physi
al phenomenonsu
h as vortex shedding at a blunt trailing edge,unsteady sho
k/boundary layer or sho
k/wake in-tera
tion. The main obje
tives of this paper are to� highlight and dis
uss the relationship betweenthe numeri
al instabilities of the linear solver forsome turboma
hinery test-
ases and the physi-
al properties of the underlying mean 
ow;� demonstrate the e�e
tiveness of the Generalized

Minimum Residuals (GMRES) algorithm15 forretrieving the numeri
al stability of the linear
ode.Se
tions 2 and 3 present an overview of the steadynonlinear and unsteady linear model respe
tively;the main features of the GMRES algorithm andsome basi
 
on
epts 
on
erning the numeri
al stabil-ity of �xed-point iterations are provided in se
tion 4.Finally, se
tion 5 presents two realisti
 appli
ations,the 
utter analysis of a two-dimensional turbine se
-tion for subsoni
 and transoni
 working 
onditionsand that of a 
ivil engine fan from near-
hoke tonear-stall operating 
onditions.Nonlinear 
ow analysisThe time-dependent Euler and Reynolds-averagedNS equations are approximated on unstru
turedhybrid grids, using an edge-based dis
retization.13Considering the 
omputational domain 
onsisting ofall the passages of a blade-row leads to a system ofnonlinear ordinary di�erential equations (ODE0s) ofthe form: dUdt +R(U;Ub;X; _X) = 0: (1)where t is the physi
al time, U is the ve
tor of prim-itive 
ow variables, R is the nodal residual, X and_X are the ve
tors of nodal 
oordinates and velo
i-ties respe
tively. The ve
tor Ub is used to enfor
etime-dependent disturban
es at the in
ow and out-
ow boundaries su
h as wakes shed by an upstreamblade row. Ea
h edge of the grid 
ontributes onlyto the residuals 
orresponding to the two nodes ateither end and the residual ve
tor R depends alsoon the nodal velo
ities _X, be
ause the grid 
an de-form following the blade vibration. The system (1)has size (Neqs � N0), where N0 is the number ofgrid nodes, Neqs = 5 for the invis
id 
ow model andNeqs = 6 for turbulent 
ows. The 6th 
omponentin the latter 
ase is the turbulen
e variable, deter-mined with the Spalart-Almaras turbulen
e model.The residuals R also in
lude the sour
e terms dueto the 
entrifugal and Coriolis for
es, sin
e the equa-tions refer to the relative frame of referen
e.The �rst stage of the aeroelasti
 analysis requiresthe 
omputation of the mean steady 
ow U aboutwhi
h the linearization of the unsteady terms will be
arried out. Negle
ting the time-dependent terms inthe governing equations (1) and denoting by X themean nodal 
oordinates yieldsR(U;X) = 0: (2)2 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2002{4085



whi
h 
an be solved for a single blade-passage, asthe mean 
ow is 
ir
umferentially periodi
. The sys-tem (2) has size (N �Neqs) where N = N0=Nbladesand Nblades is the number of blades in the blade-row. The boundary 
onditions to whi
h the system(2) is subje
t 
an be of three types: in
ow/out
ow,periodi
 and invis
id/vis
ous wall. The in
ow andout
ow boundaries are handled through 
uxes whi
hin
orporate pres
ribed 
ow information and thusthey be
ome part of the residual ve
tor R. Theperiodi
ity 
ondition is applied enfor
ing identi
al
ow variables at mat
hing pairs of periodi
 nodeson the lower and upper periodi
 boundary, ex
eptfor the appropriate rotation of the velo
ity ve
torsa

ounting for the annular nature of the 
ow do-main. Combining 
ux residuals at the two periodi
nodes in a suitable manner to maintain periodi
ity,this boundary 
ondition 
an also be in
luded in thede�nition of the 
ux residual ve
tor R.A no-slip boundary 
ondition is applied to vis-
ous walls dis
arding the momentum residuals andrepla
ing these equations by the spe
i�
ation of zerovelo
ity at the boundary nodes. The 
omputation ofthe 
ux residuals at nodes on invis
id walls is basedon zero mass 
ux through the boundary fa
es, butin addition 
ow tangen
y is enfor
ed by setting thenormal 
omponent of the surfa
e velo
ity to zero anddisregarding the normal 
omponent of the momen-tum residuals. Applying these strong wall boundary
onditions3 to the system (2) yields:(I�B) R(U;X) = 0B U = 0 (3)where B is a proje
tion matrix whi
h extra
ts themomentum/velo
ity 
omponents at the wall bound-aries. The dis
rete equations (3) are solved usingRange-Kutta time-mar
hing a

elerated by Ja
obipre
onditioning and multigrid.13Linear unsteady 
ow analysisDue to the small level of unsteadiness, the time-dependent variables 
an be written as the sum of amean steady part and a small amplitude perturba-tion:X(t) = X+ ~x(t); jj~xjj � jjXjjUb(t) = Ub + ~ub(t); jj ~ubjj � jjUbjjU(t) = U+ ~u(t); jj~ujj � jjUjjwhere the perturbations are overlined with a tildesymbol. Linearizing equations (1) about the meansteady 
onditions (X;U) yieldsd~udt + L~u = ~f1 + ~f2 (4)

where the linearization matrix L and the ve
tors ~f1and ~f2 are given byL = �R�U ; ~f1 = ���R�X ~x+ �R� _X _~x� ;~f2 = � �R�Ub ~ubThe unsteady periodi
 
ow 
ould be determined bysolving the linear equations (4), but due to linearity
an be de
omposed into a sum of 
omplex harmoni
sof the form ~uk(t) = <(eik!tûk), ea
h of whi
h 
anbe 
omputed separately. The 
omplex elements ofûk de�ne the amplitude and phase of the unsteadi-ness at frequen
y !. Analogous expansions hold for~x(t), _~x(t) and ~ub(t). Inserting su
h expressions inequation (4) and 
onsidering only the mode k = 1for simpli
ity, yields the harmoni
 equations(i! + L)û = f̂1 + f̂2 (5)whi
h 
an be viewed as the frequen
y domain 
oun-terpart of equations (4). The linear system (5) is
omplex and it has size (N �Neqs). The ve
tors f̂1and f̂2 are its right-hand-side and they give the sen-sitivity of the residuals to harmoni
 deformations ofthe mesh and to in
oming harmoni
 perturbationsrespe
tively. The linear equations are solved withthe same pseudo time-mar
hing approa
h adoptedfor the solution of the nonlinear steady equations,that is by introdu
ing a �
titious time-derivativedû=d� and time-mar
hing the solution of the systemof linear ODE's:dûd� = � h(i! + L)û = f̂1 + f̂2iuntil dû=d� vanishes. Dis
retizing su
h time-derivative leads to the linear �xed-point iterationdis
ussed in greater detail in the following se
tion.In the 
utter 
ase, the obje
t of the analysis is toassess the stability of a parti
ular stru
tural mode.The frequen
y ! and the blade mode shape are 
al-
ulated with a �nite-element program and used todetermine f̂1, whi
h is non-zero throughout the 
om-putational domain sin
e the grid deforms followingthe harmoni
 vibration of the blade, while f̂2 is setto zero. The phase between the motion of adja
entblades (Inter-blade Phase-Angle or IBPA) is an ad-ditional parameter of the analysis. It is given by�j = 2�j=Nblades and the index j usually 
allednodal diameter 
an take any integer value between 0and (Nblades�1), though the 
riti
al values are usu-ally the �rst few ones.1 Equations (5) 
an then be3 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2002{4085



solved for a single passage, introdu
ing the 
omplexphase shift ei�j between the two periodi
 bound-aries. The output of interest is the net energy 
uxfrom the stru
ture to the working 
uid over one 
y
leof vibration, de�ned by the worksum integralW = Z T0 ZS publade � dSdtin whi
h T is the period of vibration, p and ubladeare the time-dependent blade stati
 pressure and ve-lo
ity respe
tively, dS is the elemental blade surfa
ewith outward normal and S is the overall blade sur-fa
e. A positive sign indi
ates stability as energy istransfered from the stru
ture to the 
uid, whereas anegative sign indi
ates the o

urren
e of 
utter. Inthe engineering 
ommunity, the logarithmi
 de
re-ment Æ is a more frequently used stability parameter.Provided that a suitable normalization of the stru
-tural eigenmode is used,6 its expression isÆ = W!2In for
ed response, the obje
t of the analysis is todetermine the unsteady for
es a
ting on the bladedue to any of the harmoni
 
omponents, into whi
hthe in
oming time-periodi
 gust 
an be de
omposed.The IBPA depends on the geometri
 properties ofthe problem. In the 
ase of for
ing 
oming from
ir
umferentially periodi
 wakes, the blades and thewakes may have di�erent pit
hes and hen
e there is adi�eren
e in the times at whi
h neighbouring wakesstrike neighbouring blades. Therefore the IBPAof the fundamental harmoni
 is 2�Nwakes=Nblades.Again the linear harmoni
 equations (5) 
an besolved for a single blade passage using 
omplex pe-riodi
 boundary 
onditions. The ve
tor f̂1 is zerothroughout the domain be
ause the mesh is station-ary and the ve
tor f̂2 is non-zero only at the inletor outlet boundaries, where the harmoni
 pertur-bation is pres
ribed. The unsteady aerodynami
for
e a
ting on the blade 
an be 
al
ulated in apost-pro
essing step for ea
h stru
tural mode usingthe unsteady pressure �eld determined with the har-moni
 analysis.The linear unsteady analysis is 
ompleted by en-for
ing suitable linearized boundary 
onditions. Thein
ow, out
ow and (
omplex) periodi
 boundary
onditions 
an all be symboli
ally in
luded intoequations (5). Taking into a

ount the linearizedstrong wall boundary 
ondition, however, the sys-tem to be solved be
omes:(I�B) h(i! + L)û� f̂1 � f̂2i = 0B û = b (6)

The 
omponent b of the linear 
ow velo
ity at thewall is zero for both invis
id and vis
ous walls in thefor
ed response problem as the grid does not deform,while is non-zero for both wall types in the 
utterproblem, due to the surfa
e displa
ements and inthe invis
id 
ase also to the rotation of the wall nor-mals.3 Equations (6) are then solved using the samepre
onditioned pseudo time-mar
hing method as forthe nonlinear equations.GMRES stabilizationThe linearized harmoni
 NS equations (6) 
an beviewed as a simple linear system of the formAx = b (7)Though equations (6) are 
omplex, hydlin has beenwritten using real arithmeti
, that is 
onsidering realve
tors of size (2�Neqs �N) with the fa
tor 2 a
-
ounting for real and imaginary part, rather than
omplex ve
tors of size (Neqs �N). This 
hoi
e hasbeen made be
ause of errors often introdu
ed byhighly optimized FORTRAN 
ompilers when deal-ing with 
omplex arithmeti
. Therefore the system(7) has also dimension (2�Neqs �N) and the 
odefor its solution 
an be regarded as the �xed-pointiteration: xn+1 = (I �M�1A)xn +M�1b (8)in whi
h M�1 is a pre
onditioning matrix result-ing from the Runge-Kutta time-mar
hing algorithm,the Ja
obi pre
onditioner and the multi-grid s
heme.Linear stability analysis of (8) shows that ne
essary
ondition for its 
onvergen
e is that all the eigenval-ues of (I �M�1A) lie within the unit 
ir
le 
entredat the origin in the 
omplex plane or equivalentlythat all the eigenvalues of M�1A lie in the unit dis

entred at (1; 0). For most aeroelasti
 problemsof pra
ti
al interest, this 
ondition is ful�lled andthe linear 
ode 
onverges without diÆ
ulty. How-ever an exponential growth of the residual has beenen
ountered in situations in whi
h the steady 
ow
al
ulation itself failed to 
onverge to a steady-statebut instead �nished in a small-amplitude limit 
y
le,related to some physi
al phenomenon su
h as sep-aration bubbles, 
orner stalls and vortex sheddingat a blunt trailing edge. The solution pro
edureof the nonlinear steady equations (3) is not time-a

urate be
ause of the lo
al time-stepping te
h-nique and the Ja
obi pre
onditioner used for theintegration, but it nevertheless re
e
ts some physi
alproperties of the 
ow �eld due to the pseudo time-mar
hing strategy asso
iated with the Runge-Kutta4 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2002{4085



algorithm. Physi
al small-amplitude limit 
y
les donot prevent the steady solver from 
onverging to ana

eptable level, although their e�e
t is sometimesvisible in small os
illations of the residual. Howeverthey result in a small number of 
omplex 
onju-gate pairs of eigenvalues of the linearization matrix(I �M�1A) lying outside the unit 
ir
le (outliers)and thus 
ausing the exponential growth of the resid-ual of the linear equations. This problem has beenover
ome by implementing a pre
onditioned GM-RES algorithm in hydlin. GMRES is an iterativemethod for the solution of linear systems, belongsto the family of Krylov subspa
e methods15 andis guaranteed to 
onverge even in the presen
e ofoutliers. The Krylov subspa
e of dimension m gen-erated by the pre
onditioned operatorM�1A and theve
tor b is the ve
torial spa
e spanned by the ve
tors((M�1A)jb; j = 0; : : :m� 1), that isKm =< b;M�1Ab; : : : ; (M�1A)m�1b >The GMRES algorithm is based on the progressiveredu
ed Arnoldi fa
torization8 of M�1A:M�1AQm = Qm+1 ~Hm (9)where m is the 
urrent GMRES iteration, ~Hm is aHessemberg matrix of size ((m + 1) � m), Qm is amatrix of size ((2�Neqs�N)�m) whosem 
olumnsform an orthonormal basis for the Krylov subspa
eKm and Qm+1 is Qm augmented with a new Krylovve
tor. It should be noted that the size of ea
h 
ol-umn of Qm is equal to that of the 
omplex linear
ow �eld. At the mth GMRES iteration the solutionof (7) is approximated by the linear 
ombination ofthe available m Krylov ve
tors whi
h minimizes the2-norm of the residual and for this reason the algo-rithm 
an be viewed as an optimization pro
ess.The pre
onditioned GMRES solver uses the 
orepart of hydlin as a bla
k-box to determine theKrylov ve
tors whi
h are pre
onditioned with thealready existing pre
onditioner (multigrid+Runge-Kutta+Ja
obi pre
onditioner) and the 
omputation-ally 
heap optimization is 
arried out at the toproutine level. The number of GMRES iterationsrequired for full 
onvergen
e is mu
h smaller thanthe size of A, but nevertheless very big with re-spe
t to the 
omputing resour
es usually available.This is due to the fa
t that at the mth iterationall m Krylov ve
tors are needed to 
ompute thenew orthogonal ve
tor of the basis. This problem isover
ome using the restart option, that is perform-ing nKr GMRES iterations and re-starting GMRESfrom the updated solution re-
omputing from therea new set of nKr Krylov ve
tors. Values of nKr

between 10 and 30 make the 
omputation a�ord-able even for large problems and a good 
onvergen
elevel is usually a
hieved within 20 restarted 
y
les,but unfortunately numeri
al stagnation of the resid-ual may o

ur. Extensive numeri
al validation on avariety of turboma
hinery test-
ases has highlightedtwo important features: a) stagnation does not o

urprovided that both nKr and the number of multigrid
y
les per GMRES iteration n
l are 
hosen above
ertain threshold values and b) there exists an opti-mal 
ombination of n
l and nKr whi
h minimizes theCPU-time required to a
hieve the same level of 
on-vergen
e. Unfortunately both the threshold limitsand the optimum of (nKr; n
l) are strongly 
ase-dependent. It should be also noted that di�erent
hoi
es of n
l as well as other multigrid parame-ters su
h as the number of iterations on the di�erentgrids lead to di�erent pre
onditioner M�1.Another advantage of GMRES is that it allowsthe straightforward determination of the unstableeigenmodes, as the algorithm has the property ofsolving the least stable modes �rst, that is thosewhose eigenvalues are farthest from the 
entre ofthe unit 
ir
le in the 
omplex plane. As shown innext se
tion, this enables one to relate the sour
eof numeri
al instability to the physi
al unsteadinesswhi
h 
auses it. In order to establish the relationshipbetween the least stable modes and the set of Krylovve
tors, let us start by 
onsidering the partial redu
-tion of M�1A based on the mth Krylov subspa
e:QHmM�1AQm = Hm (10)where Hm denotes the upper (m � m) portion of~Hm and the supers
ript H the Hermitian 
onjugateoperator. The eigenvalues �j of Hm are 
alled Ritzvalues and they are de�ned byHmyj = �jyj ; j = 1; 2; : : : ;m (11)where yj is the right eigenve
tor of Hm asso
iatedwith �j . Combining equations (10) and (11) yieldsQHmM�1AQmyj = (QHmQ)�jyj (12)and 
onsequentlyQHm(M�1A� �jI)Qmyj = 0 (13)The m ve
torsQmyj = mXl=1(yj)lql j = 1; 2; : : : ;m (14)are the Ritz ve
tors of A based on the mth Krylovsubspa
e, whi
h provide an approximate estimate of5 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2002{4085



the sought dominant eigenmodes. In fa
t, equation(13) states only that the residual of ea
h eigenve
torreseig = (A � �jI)Qmyj is orthogonal to the sub-spa
e Km. but the expression (14) would providethe exa
t eigenmodes only if reseig = 0. It 
an beproved, however, that the the 2-norm of reseig de-pends linearly on the residual of the linear equations.For all the test-
ases 
onsidered, 150 GMRES itera-tions without restart have been suÆ
ient to a
hievea good 
onvergen
e level of the linear equations andtherefore to obtain an a

urate estimate of the dom-inant modes. ResultsTwo-dimensional turbine se
tionOne of the test-
ases that has been used for bothassessing the predi
tive 
apabilities of hydlin andtesting the implemented GMRES solver is the 2Dturbine se
tion of the 11th Standard Con�guration,whi
h is the mid-span blade-to-blade se
tion of anannular turbine 
as
ade with 20 blades. The an-nular test-rig and 
as
ade geometry are brie
y de-s
ribed in referen
e,5 whi
h also provides experimen-tal measurements and various 
omputed results ofthe steady and unsteady 
ow �eld due to blade-plunging with pres
ribed IBPA. Two steady work-ing 
onditions are 
onsidered: a subsoni
 one withexit Ma
h number of 0.68 and a transoni
 one withexit Ma
h number of 0.96. The 
omputational gridthat we have used for the investigation has 17745nodes, sin
e a preliminary mesh-re�nement analysis
arried out using a 
oarse (7869 nodes), medium-re�ned (17745 nodes) and �ne (39673 nodes) meshhas shown no di�eren
e of pra
ti
al interest betweenthe results obtained with the medium and �ne grids.The 
oarse mesh is shown in �gure 1 while �gure 2provides measured and 
omputed steady isentropi
Ma
h number on the blade surfa
e for the two work-ing 
onditions. The high pressure pat
h at about20 % 
hord and the rapid pressure rise at about80 % 
hord on the su
tion surfa
e in the transoni

ase (�gure 2-b) are due to a separation bubble andan impinging sho
k respe
tively. This is 
learly vis-ible in the Ma
h number 
ontours of �gure 3, whi
halso show how both the blade boundary layers andwakes thi
ken after passing through the sho
k. Themeasured and 
omputed amplitude and phase of theunsteady pressure 
oeÆ
ient 
P (de�ned in refer-en
e5) are provided in �gure 4. For both working
onditions, large di�eren
es between measured and
omputed results are visible on the su
tion surfa
ewhere most of the unsteady phenomena take pla
e.However the numeri
al results presented in this pa-

per are in a very good agreement with those in theliterature.5The stability 
urves (IBPA vs: Æ) for both 
owregimes are provided in �gure 5-a, whi
h shows thatthe system never be
omes aeroelasti
ally unstable.The nonlinear 
al
ulations of both the subsoni
 andtransoni
 mean steady 
ow 
onverge without diÆ-
ulties to ma
hine epsilon (10�18). However all thelinear 
al
ulations based on the transoni
 mean 
owdiverge using the standard 
ode and 
onvergen
e 
anbe retrieved only using GMRES, as shown in the
onvergen
e histories of hydlin in �gure 5-b, whi
hrefers to IBPA = 180o. The variable on the x-axisis the number of multigrid 
y
les and that on they-axis is the logarithm in base 10 of the root-mean-square of all nodal residuals (rms). The number atthe right of the label 'GMRES' in the legend is nKr.The GMRES 
onvergen
e histories show that theoverall number of multigrid 
y
les or equivalently ofCPU-time required for a
hieving a given 
onvergen
elevel depends on both nKr and n
l and among the
ombinations tried for this test-
ase the minimumCPU-time is obtained for nKr = 20 and n
l = 3.In order to investigate the origin of the numeri
alinstability of the standard 
ode, the �rst 150 domi-nant eigenmodes of the pre
onditioned linearizationmatrixM�1A have been determined using the pro
e-dure des
ribed in the previous se
tion and they areplotted in the 
omplex plane of �gure 6. The two
omplex 
onjugate pairs of outliers labelled with 1and 2 are responsible for the exponential growth ofthe residual asso
iated with the �xed-point iteration(8). In fa
t, its asymptoti
 
onvergen
e rate is deter-mined by the spe
tral radius � of the linear operatorM�1A and it 
an be proved that the relationship be-tween the asymptoti
 slope of the residual 
urve and� is: � (log(rms))Nmg � log � (15)where Nmg is the number of multigrid 
y
les a
rosswhi
h the variation of rms is 
onsidered. This equa-tion provides the theoreti
al relationship betweenthe slope of the exponentially growing residual 
urveof the standard iteration (�gure 5-b) and the spe
tralradius of the linear operator (radius of the out-lier 1). Inserting the 
omputed values in it yields46:90e � 3 � 47:53e � 3, whi
h demonstrates the
orre
tness of the mathemati
al analysis. Figure 7-ashows that the maximum pressure amplitude of theeigenve
tor asso
iated with the 
omplex 
onjugatepair of outliers 1 o

urs at the edge of the separa-tion bubble on the su
tion surfa
e and this provesthat the origin of the numeri
al instability is the6 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2002{4085



small limit 
y
le asso
iated with this unstable sep-aration. The eigenmode asso
iated with the outlier2 also 
orresponds to the separation on the su
tionsurfa
e and therefore is not reported here. The pres-sure amplitude of the eigenve
tor asso
iated with the
omplex 
onjugate pair of eigenvalues 3 is providedin �gure 7-b. Nonzero amplitudes o

ur both in thesho
k and the separation bubble. The eigenvaluesof this mode lie within the unit disk, but they arequite 
lose to the origin. This may worsen the 
on-vergen
e properties of GMRES and explains why the
onvergen
e rate of GMRES improves by in
reasingn
l (�gure 5-b). In fa
t, the eigenvalues of M�1Awithin the unit 
ir
le move progressively 
loser tothe 
entre of the disk at (1; 0) as n
l is in
reased.Finally it should be noted that the eigensystem de-s
ribed above has been found to be independent ofthe IBPA used for the linear 
al
ulation.Three-dimensional fanThe se
ond test-
ase 
onsidered is a three-dimensional fan rotor whose geometry and surfa
egrid are shown in �gure 8. This grid has only 157441nodes and is quite 
oarse, but all the phenomena dis-
ussed in this se
tion have been also observed with�ner 
omputational meshes and for other test-
ases.The linear 
utter analysis has been 
arried out for4 points of a 
onstant-speed working line using hydand hydlin. The 
omputed pressure ratio � is plot-ted versus the 
omputed mass 
ow _m in �gure 9-a.Note that both � and _m are given as per
entagesof their design values. For all 4 working 
onditionsthe residual of the nonlinear steady equations dropsby four orders of magnitude (�gure 9-b), ending ina low-amplitude limit 
y
le.The analysis of the 
utter stability of the �rst 
apmode has been 
arried out for all 4 steady working
onditions and the 
omputed logarithmi
 de
rementis plotted in �gure 10. As expe
ted, the least sta-ble aeroelasti
 modes are those asso
iated with the�rst few IBPA's and the blades undergo 
utter inthe 2 nodal diameter mode at the mean 
ow 
on-ditions D, whi
h are the 
losest to stall. All linear
al
ulations have been performed using GMRES, asthey were otherwise unstable. This is visible in the
onvergen
e plots of hydlin reported in �gure 11,whi
h refer to the mean 
ow 
onditions D and toIBPA = 180o. Figure 11-a shows that the GMRESsolver stagnates if n
l < 3 and an a

eptable 
onver-gen
e rate 
an be a
hieved only using nKr � 30. Thebene�
ial e�e
t of higher values of n
l on the overallnumber of multigrid iteration required for 
onver-gen
e is also visible in �gure 11-b, as the 
onvergen
e

rate with n
l = 3 is higher than with n
l = 1. Figure11-b also highlights that starting GMRES from thelast solution of the standard hydlin after the 
al
ula-tion has diverged, results in an initially sharp redu
-tion of the residual and then in a 
onvergen
e ratesimilar to that of the des
ending bran
h of the stan-dard 
ode. This behaviour 
an be explained by thepresen
e of a few outliers: after a few hundred multi-grid 
y
les needed to resolve the stable modes, theunstable modes asso
iated with the outliers be
omedominant and determine the exponential growth ofthe residual of the standard iteration. They are in-stead solved very rapidly restarting the 
al
ulationwith GMRES. In fa
t, the 
orresponding subset ofthe spe
trum of M�1A with the �rst 150 dominanteigenvalues has 4 
omplex 
onjugate pairs of outliers,labelled from 1 to 4 in order of de
reasing distan
efrom the 
entre of the unit dis
 in �gure 12. In-serting in equation (15) the 
omputed data relativeto the slope of the as
ending bran
h of the resid-ual 
urve of the standard iteration (�gure 11) andthe spe
tral radius of M�1A (radius of the outlier 1)yields 38:82e� 3 � 40:17e� 3, whi
h 
on�rms on
emore the 
orre
tness of the mathemati
al analysis.The eigenmode asso
iated with the pair of outliers1 is due to the hub 
orner stall, sin
e its maximumpressure amplitude o

urs in the small region be-tween the su
tion side and the hub 
lose to theTrailing Edge (TE) as shown in �gure 13-a. Con-tours of the same variable in a blade-to-blade se
tion
lose to the hub are presented in �gure 13-b, while atwo-dimensional view of the 
ow separation 
ausedby the 
orner stall is given in �gure 16, whi
h showsthe velo
ity ve
tors in the same blade-to-blade se
-tion. The eigenmode asso
iated with the pair ofoutliers 3 takes its maximum in the Leading Edge(LE) region 
lose to the hub (�gures 14-a and 14-b)and it 
orresponds to a separation bubble as shownin �gure 17. The eigenmodes 2 and 4 are not re-ported, be
ause they 
orrespond to the same 
owphenomena as 1 and 3 respe
tively. The numeri
alinstabilities of the standard 
ode are therefore dueto the linearization of the small-amplitude limit 
y-
les asso
iated with the hub 
orner stall and the LEseparation.The eigenmode 
orresponding to the 
omplex 
on-jugate pair 5 does not 
ause the exponential growthof the residual as it lies in the unit dis
, but it wouldbe responsible for a very low 
onvergen
e rate of thestandard 
ode in the absen
e of any outlier be
auseof its proximity to the unit dis
. The pressure am-plitude of this eigenmode is non-zero both at the
orner between hub and su
tion surfa
e 
lose to the7 of 11Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2002{4085



TE and in the separation region at the LE 
lose tothe hub, but it experien
es its maximum on the su
-tion surfa
e 
lose to the tip (�gures 15-a and 15-b),where a strong sho
k o

urs (�gure 18). Similarlyto the turbine test-
ase, the eigensystem des
ribedabove is independent of the IBPA.All 
al
ulations have been run with 4 grid levels ona 
omputer 
luster 
onsisting of 24 four-pro
essorSun Ultra-80 nodes, with a Sun Blade-1000 front-end. The CPU-time of one multigrid 
y
le dependson the number of iterations performed on ea
h gridlevel. The values 
hosen for this test-
ase have ledto a CPU-time of about 56 se
onds for one multigrid
y
le of hydlin using 8 pro
essors and the 800 
y
lesneeded for a good 
onvergen
e of ea
h linear 
al
u-lation have thus required an overall time of about 12hours. The CPU-time of one multigrid 
y
le of hydis about half of that needed by hydlin.Con
lusionsThe paper has presented the linear analysis of tur-boma
hinery aeroelasti
ity from a simple algebrai
viewpoint, whi
h allows one a relatively straight-forward understanding of the relationship betweenthe numeri
al instabilities of the linearized solverof the Navier-Stokes equations and the small un-steady phenomena of the mean steady 
ow �eld.The implementation of the GMRES algorithm inthe existing linear NS solver based on a pre
ondi-tioned �xed-point iteration has stabilized the 
ode,allowing the aeroelasti
 analysis to be 
arried outeven in presen
e of small unsteady phenomena inthe mean 
ow, whi
h are believed not to have anysigni�
ant e�e
t on the aeroelasti
 behaviour of the
omponent under investigation. The CPU-time re-quired for 
onvergen
e of the linear equations usingthe restarted GMRES algorithm depends on boththe number of GMRES iterations per restarted 
y-
le and the number of multigrid 
y
les per GMRESiterations. The optimum 
ombination of these twoparameters is however 
ase-dependent. Both the
orre
tness of the analysis and the relationship be-tween numeri
al instabilities of the linear solver andunsteady phenomena of the mean 
ow have beendemonstrated through the linear 
utter analysis oftwo realisti
 turboma
hinery test-
ases.A
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Fig. 1 Mesh for the 2D turbine se
tion.
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computeda) b)Fig. 2 Isentropi
 Ma
h number on the bladesurfa
e of the 2D turbine: a) subsoni
 
onditionsand b) transoni
 
onditions.

                                                                                

                                                                                
                                                                                
                                                                                

Fig. 3 Ma
h 
ontours for transoni
 
onditionsof the 2D turbine.
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) d)Fig. 4 Amplitude of unsteady pressure 
oeÆ-
ient on the blade surfa
e of the 2D turbine: a)subsoni
 
onditions, b) transoni
 
onditions andphase of unsteady pressure 
oeÆ
ient: 
) sub-soni
 
onditions, d) transoni
 
onditions. Allresults refer to IBPA = 180o.
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a) b)Fig. 5 Flutter analysis of the 2D turbine: a)Logarithmi
 de
rement versus IBPA and b) 
on-vergen
e histories of hydlin for transoni
 mean
ow and IBPA = 180o.
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a) b)Fig. 7 Flutter analysis of the 2D turbine: pres-sure amplitude of the dominant eigenmode asso-
iated with the 
omplex 
onjugate a) outlier 1and b) eigenvalue 3.

Fig. 8 Blade geometry and surfa
e mesh of the3D fan.
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a) b)Fig. 11 Flutter analysis of the 3D fan: 
on-vergen
e histories of hydlin for mean 
ow D andIBPA = 180o.
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a) b)Fig. 13 Pressure amplitude of dominant eigen-mode asso
iated with the 
omplex 
onjugate pair1: a) 3D view of the 
orner between the hub andthe su
tion side 
lose to the TE and b) blade-to-blade se
tion 
lose to the hub.

                                                                                

                                                                                
                                                                                
                                                                                

                                                                                

                                                                                
                                                                                
                                                                                

a) b)Fig. 14 Pressure amplitude of dominant eigen-mode asso
iated with the 
omplex 
onjugate pair3: a) 3D view of the 
orner between the hub andthe su
tion side 
lose to the LE and b) blade-to-blade se
tion 
lose to the hub.

                                                                                

                                                                                
                                                                                
                                                                                

                                                                                

                                                                                
                                                                                
                                                                                

a) b)Fig. 15 Pressure amplitude of dominant eigen-mode asso
iated with the 
omplex 
onjugate pair5: a) 3D view of the su
tion side and b) blade-to-blade se
tion in the LE region 
lose to the tip.

                                                                                

                                                                                
                                                                                
                                                                                

Fig. 16 TE velo
ity ve
tors 
lose to the hub.

                                                                                

                                                                                
                                                                                
                                                                                

Fig. 17 LE velo
ity ve
tors 
lose to the hub.

                                                                                

                                                                                
                                                                                
                                                                                

Fig. 18 LE Ma
h 
ontours 
lose to the tip.11 of 11Ameri
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