AlAA 2002-4085

Effects of Flow Instabilitieson the
Linear Analysis of Turbomachinery
Aeroelasticity

M.S. Campobasso and M.B. Giles
Oxford University Computing Laboratory
0OX1 3QD Oxford, UK

38th AIAA/ASME/SAE/ASEE

Joint Propulsion Conference & Exhibit
7 — 10 July, 2002 / Indianapolis, IN

For permission to copy or republish, contact the American In stitute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344



Effects of Flow Instabilities on the Linear
Analysis of Turbomachinery Aeroelasticity

M.S. Campobasso * and M.B. Giles
Oxford University Computing Laboratory
OX1 3QD Oxford, UK

The linear analysis of turbomachinery aeroelasticity is based on the linearization
of the unsteady flow equations around the mean flow field which can be determined
by a nonlinear steady solver, while the unsteady periodic flow can be decomposed
into a sum of harmonics, each of which can be computed independently solving a
set of linearized equations. The analysis considers just one particular frequency of
unsteadiness at a time and the objective is to compute a complex flow solution which
represents the amplitude and phase of the unsteady flow. The solution procedure of
both the nonlinear steady and the linear harmonic Euler /Navier-Stokes solvers of the
HY DRA suite of codes can be viewed as a preconditioned fixed-point iteration. The
paper documents the numerical instabilities encountered solving the linear harmonic
equations for some turbomachinery test-cases, highlights their physical origin and
summarizes the implementation of a GMRES algorithm aiming at the stabilization
of the linear code. Presented results include the flutter analysis of a civil engine fan.

Nomenclature
Cp unsteady pressure
coefficient
m mass flow
M; isentropic Mach number
N number of grid nodes

of a blade-passage

Npiades number of blades of
the blade-row
Negs number of equations

(5 for the Euler equations
and 6 for the N'S model)

Tl number of multigrid cycles
per GMRES iteration

NKr number of GMRES iterations
per restarted cycle

bj Inter-Blade Phase-Angle
(IBPA)

w worksum

08 pressure ratio

0 logarithmic decrement

w frequency of the

unsteady flow field

Introduction

The aeroelastic phenomena of concern in the tur-
bomachinery industry are blade flutter and forced
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response, as they may both lead to dramatic me-
chanical failures if not properly accounted for in the
design of the engine. The blades of an assembly can
undergo flutter vibrations when the aerodynamic
damping associated with certain flow regimes be-
comes negative and is not counterbalanced by the
mechanical damping. In such circumstances, the
free vibration of the blades triggered by any tem-
porary perturbation is sustained through the energy
fed into the structure by the unsteady aerodynamic
forces and may damage the blades if the stress as-
sociated with the deformations exceeds the material
strength. Blade forced response is caused by the rel-
ative motion of adjacent frames of reference, which
transforms steady circumferential variations of the
flow field in one frame into periodic time-varying
forces acting on the blades in the other. Well known
examples include forcing due to the wakes shed by an
upstream blade-row and fan inlet distortions due to
cross-wind conditions. The high cycle fatigue caused
by these vibrations may shorten the life of the blades
below the target life of the engine.

The unsteady aerodynamic analysis intended for
turbomachinery aeroelastic predictions must be ap-
plicable over wide ranges of blade-row geometries
and operating conditions as well as unsteady ex-
citation modes and frequencies. Also, because of
the large number of controlling parameters involved,
there is a stringent requirement for computational
efficiency. Over the past two decades, a number
of methods have emerged to carry out the analy-
sis of turbomachinery aeroacoustics and aeroelas-
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ticity,!” varying from uncoupled linearized poten-
tial flow solvers® 18 to fully-coupled nonlinear three-
dimensional unsteady viscous methods.!? Within
this range, the uncoupled linear harmonic Euler and
Navier-Stokes (NS) methods have proved to be a suc-
cessful compromise between accuracy and cost and
are now widely preferred in industry as a fast and
accurate tool for aeroelastic predictions. Indeed,
a growing body of evidence indicates that linear
viscous calculations are adequate for a surprisingly
large range of applications.? %1116 Thig method
views the aerodynamic unsteadiness as a small per-
turbation of the space-periodic mean steady flow.
Hence the unsteady flow field can be linearized about
it and due to linearity can be decomposed into a
sum of harmonic terms, each of which can be com-
puted independently. The cyclic periodicity of both
the steady and unsteady flow leads to a great reduc-
tion of computational costs, since the analysis can
focus on one blade passage rather than the whole
blade-row making use of suitable periodic boundary
conditions. The small amplitude of the aerodynamic
unsteadiness often allows one to neglect both the
coupling and variations of structural eigenmodes due
to the aerodynamic forces.! Therefore the inves-
tigation can be carried out considering one struc-
tural mode at a time, determined by a finite-element
program and used as an input for calculating the
unsteady aerodynamic forces. The complete aerody-
namic analysis consists of two phases: a) calculation
of the nonlinear steady flow field about which the lin-
earization is performed and b) solution of the linear
harmonic equations.

The HY D RA suite of parallel codes developed at
the Ozford University Computing Laboratory® ™14
includes both a nonlinear (hyd) and a linear har-
monic (hydlin) NS solver. The solution procedure
for both hyd and hydlin can be viewed as a pre-
conditioned fixed-point iteration. Usually the lin-
ear code converges without difficulty, but problems
have been encountered in situations in which the
steady flow calculation itself failed to converge to a
steady state but instead finished in a low-level limit
cycle, often related to some physical phenomenon
such as vortex shedding at a blunt trailing edge,
unsteady shock/boundary layer or shock/wake in-
teraction. The main objectives of this paper are to

e highlight and discuss the relationship between
the numerical instabilities of the linear solver for
some turbomachinery test-cases and the physi-
cal properties of the underlying mean flow;

e demonstrate the effectiveness of the Generalized
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Minimum Residuals (GMRES) algorithm!® for
retrieving the numerical stability of the linear
code.

Sections 2 and 3 present an overview of the steady
nonlinear and unsteady linear model respectively;
the main features of the GMRES algorithm and
some basic concepts concerning the numerical stabil-
ity of fixed-point iterations are provided in section 4.
Finally, section 5 presents two realistic applications,
the flutter analysis of a two-dimensional turbine sec-
tion for subsonic and transonic working conditions
and that of a civil engine fan from near-choke to
near-stall operating conditions.

Nonlinear flow analysis

The time-dependent Euler and Reynolds-averaged

NS equations are approximated on unstructured
hybrid grids, using an edge-based discretization.!®
Considering the computational domain consisting of
all the passages of a blade-row leads to a system of
nonlinear ordinary differential equations (ODE's) of
the form:
% +R(U, U, X, X) =0. (1)
where ¢ is the physical time, U is the vector of prim-
itive flow variables, R is the nodal residual, X and
X are the vectors of nodal coordinates and veloci-
ties respectively. The vector U, is used to enforce
time-dependent disturbances at the inflow and out-
flow boundaries such as wakes shed by an upstream
blade row. Each edge of the grid contributes only
to the residuals corresponding to the two nodes at
either end and the residual vector R depends also
on the nodal velocities X, because the grid can de-
form following the blade vibration. The system (1)
has size (Negs X Np), where Ny is the number of
grid nodes, Ngqs = 5 for the inviscid flow model and
Neys = 6 for turbulent flows. The 6" component
in the latter case is the turbulence variable, deter-
mined with the Spalart-Almaras turbulence model.
The residuals R also include the source terms due
to the centrifugal and Coriolis forces, since the equa-
tions refer to the relative frame of reference.

The first stage of the aeroelastic analysis requires
the computation of the mean steady flow U about
which the linearization of the unsteady terms will be
carried out. Neglecting the time-dependent terms in
the governing equations (1) and denoting by X the
mean nodal coordinates yields

R(U,X) = 0. (2)
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which can be solved for a single blade-passage, as
the mean flow is circumferentially periodic. The sys-
tem (2) has size (N X Negs) where N = No/Npiades
and Npjades is the number of blades in the blade-
row. The boundary conditions to which the system
(2) is subject can be of three types: inflow/outflow,
periodic and inviscid/viscous wall. The inflow and
outflow boundaries are handled through fluxes which
incorporate prescribed flow information and thus
they become part of the residual vector R. The
periodicity condition is applied enforcing identical
flow variables at matching pairs of periodic nodes
on the lower and upper periodic boundary, except
for the appropriate rotation of the velocity vectors
accounting for the annular nature of the flow do-
main. Combining flux residuals at the two periodic
nodes in a suitable manner to maintain periodicity,
this boundary condition can also be included in the
definition of the flux residual vector R.

A no-slip boundary condition is applied to vis-
cous walls discarding the momentum residuals and
replacing these equations by the specification of zero
velocity at the boundary nodes. The computation of
the flux residuals at nodes on inviscid walls is based
on zero mass flux through the boundary faces, but
in addition flow tangency is enforced by setting the
normal component of the surface velocity to zero and
disregarding the normal component of the momen-
tum residuals. Applying these strong wall boundary
conditions® to the system (2) yields:

(I-B)R(U,X) = 0
BU = 0 (3)

where B is a projection matrix which extracts the
momentum/velocity components at the wall bound-
aries. The discrete equations (3) are solved using
Range-Kutta time-marching accelerated by Jacobi
preconditioning and multigrid.'3

Linear unsteady flow analysis

Due to the small level of unsteadiness, the time-
dependent variables can be written as the sum of a
mean steady part and a small amplitude perturba-
tion:

X(t) = X +x(t), |1%[] < [1X]|
Uy(t) = Up + (1), |[dp]| < [|Upl|
U(t) = U +1(t), [al| < [[U]]

where the perturbations are overlined with a tilde
symbol. Linearizing equations (1) about the mean
steady conditions (X, U) yields

da

E+Lﬁ:f‘1+f‘2 (4)

where the linearization matrix L and the vectors f,
and f, are given by

L_a_R f = — 8_Ri+8_Ri

“our ' T \oxXT T ax )
~ OR .
fQ——a—IJ_bllb

The unsteady periodic flow could be determined by
solving the linear equations (4), but due to linearity
can be decomposed into a sum of complex harmonics
of the form w1, (t) = R(e?*“tiy), each of which can
be computed separately. The complex elements of
1y, define the amplitude and phase of the unsteadi-
ness at frequency w. Analogous expansions hold for
%(t), x(t) and @,(t). Inserting such expressions in
equation (4) and considering only the mode k = 1
for simplicity, yields the harmonic equations

(iw+ La=f +6 (5)

which can be viewed as the frequency domain coun-
terpart of equations (4). The linear system (5) is
complex and it has size (N X Ngys). The vectors fl
and fg are its right-hand-side and they give the sen-
sitivity of the residuals to harmonic deformations of
the mesh and to incoming harmonic perturbations
respectively. The linear equations are solved with
the same pseudo time-marching approach adopted
for the solution of the nonlinear steady equations,
that is by introducing a fictitious time-derivative
dia/dr and time-marching the solution of the system
of linear ODE’s:

da A A
o (iw+L)u=f1+f2]

dr

until da/dr vanishes.  Discretizing such time-
derivative leads to the linear fixed-point iteration

discussed in greater detail in the following section.

In the flutter case, the object of the analysis is to
assess the stability of a particular structural mode.
The frequency w and the blade mode shape are cal-
culated with a finite-element program and used to
determine f;, which is non-zero throughout the com-
putational domain since the grid deforms following
the harmonic vibration of the blade, while f, is set
to zero. The phase between the motion of adjacent
blades (Inter-blade Phase-Angle or IBPA) is an ad-
ditional parameter of the analysis. It is given by
¢; = 27mj/Npiadges and the index j usually called
nodal diameter can take any integer value between 0
and (Npiades — 1), though the critical values are usu-
ally the first few ones.! Equations (5) can then be
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solved for a single passage, introducing the complex
phase shift e’® between the two periodic bound-
aries. The output of interest is the net energy flux
from the structure to the working fluid over one cycle
of vibration, defined by the worksum integral

T
W= / / Ptytage - dSdt
0 S

in which T is the period of vibration, p and upqqe
are the time-dependent blade static pressure and ve-
locity respectively, dS is the elemental blade surface
with outward normal and S is the overall blade sur-
face. A positive sign indicates stability as energy is
transfered from the structure to the fluid, whereas a
negative sign indicates the occurrence of flutter. In
the engineering community, the logarithmic decre-
ment ¢ is a more frequently used stability parameter.
Provided that a suitable normalization of the struc-
tural eigenmode is used,® its expression is

=
w

In forced response, the object of the analysis is to
determine the unsteady forces acting on the blade
due to any of the harmonic components, into which
the incoming time-periodic gust can be decomposed.
The IBPA depends on the geometric properties of
the problem. In the case of forcing coming from
circumferentially periodic wakes, the blades and the
wakes may have different pitches and hence there is a
difference in the times at which neighbouring wakes
strike neighbouring blades. Therefore the ITBPA
of the fundamental harmonic is 27 Nyakes/ Notades-
Again the linear harmonic equations (5) can be
solved for a single blade passage using complex pe-
riodic boundary conditions. The vector f, is zero
throughout the domain because the mesh is station-
ary and the vector f5 is non-zero only at the inlet
or outlet boundaries, where the harmonic pertur-
bation is prescribed. The unsteady aerodynamic
force acting on the blade can be calculated in a
post-processing step for each structural mode using
the unsteady pressure field determined with the har-
monic analysis.

The linear unsteady analysis is completed by en-
forcing suitable linearized boundary conditions. The
inflow, outflow and (complex) periodic boundary
conditions can all be symbolically included into
equations (5). Taking into account the linearized
strong wall boundary condition, however, the sys-
tem to be solved becomes:

(I-B) [(iw+L)a—f1—f2 = 0

Bia = b (6)
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The component b of the linear flow velocity at the
wall is zero for both inviscid and viscous walls in the
forced response problem as the grid does not deform,
while is non-zero for both wall types in the flutter
problem, due to the surface displacements and in
the inviscid case also to the rotation of the wall nor-
mals.®> Equations (6) are then solved using the same
preconditioned pseudo time-marching method as for
the nonlinear equations.

GMRES stabilization

The linearized harmonic NS equations (6) can be
viewed as a simple linear system of the form

Az =b (7)

Though equations (6) are complex, hydlin has been
written using real arithmetic, that is considering real
vectors of size (2 X Nggs x N) with the factor 2 ac-
counting for real and imaginary part, rather than
complex vectors of size (Ngys X N). This choice has
been made because of errors often introduced by
highly optimized FORTRAN compilers when deal-
ing with complex arithmetic. Therefore the system
(7) has also dimension (2 X N.4s X N) and the code
for its solution can be regarded as the fixed-point
iteration:

Tpy1 =T — M Az, + M~ (8)

in which M ! is a preconditioning matrix result-
ing from the Runge-Kutta time-marching algorithm,
the Jacobi preconditioner and the multi-grid scheme.
Linear stability analysis of (8) shows that necessary
condition for its convergence is that all the eigenval-
ues of (I — M~*4) lie within the unit circle centred
at the origin in the complex plane or equivalently
that all the eigenvalues of M ~'4 lie in the unit disc
centred at (1,0). For most aeroelastic problems
of practical interest, this condition is fulfilled and
the linear code converges without difficulty. How-
ever an exponential growth of the residual has been
encountered in situations in which the steady flow
calculation itself failed to converge to a steady-state
but instead finished in a small-amplitude limit cycle,
related to some physical phenomenon such as sep-
aration bubbles, corner stalls and vortex shedding
at a blunt trailing edge. The solution procedure
of the nonlinear steady equations (3) is not time-
accurate because of the local time-stepping tech-
nique and the Jacobi preconditioner used for the
integration, but it nevertheless reflects some physical
properties of the flow field due to the pseudo time-
marching strategy associated with the Runge-Kutta
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algorithm. Physical small-amplitude limit cycles do
not prevent the steady solver from converging to an
acceptable level, although their effect is sometimes
visible in small oscillations of the residual. However
they result in a small number of complex conju-
gate pairs of eigenvalues of the linearization matrix
(I — M—*A) lying outside the unit circle (outliers)
and thus causing the exponential growth of the resid-
ual of the linear equations. This problem has been
overcome by implementing a preconditioned GM-
RES algorithm in hydlin. GMRES is an iterative
method for the solution of linear systems, belongs
to the family of Krylov subspace methods'® and
is guaranteed to converge even in the presence of
outliers. The Krylov subspace of dimension m gen-
erated by the preconditioned operator M ~'4 and the
vector b is the vectorial space spanned by the vectors
((M—A)7b, j=0,...m — 1), that is

K, =<b, M '4b,...,(M4)™ b >

The GMRES algorithm is based on the progressive
reduced Arnoldi factorization® of M ~14:

MﬁlAQm = QerlI:Im (9)

where m is the current GMRES iteration, H,, is a
Hessemberg matrix of size ((m + 1) X m), Qn, is a
matrix of size ((2 X Negs X N) x m) whose m columns
form an orthonormal basis for the Krylov subspace
K, and Q41 is @y, augmented with a new Krylov
vector. It should be noted that the size of each col-
umn of @,, is equal to that of the complex linear
flow field. At the m** GMRES iteration the solution
of (7) is approximated by the linear combination of
the available m Krylov vectors which minimizes the
2-norm of the residual and for this reason the algo-
rithm can be viewed as an optimization process.

The preconditioned GMRES solver uses the core
part of hydlin as a black-box to determine the
Krylov vectors which are preconditioned with the
already existing preconditioner (multigrid+Runge-
Kutta+Jacobi preconditioner) and the computation-
ally cheap optimization is carried out at the top
routine level. The number of GMRES iterations
required for full convergence is much smaller than
the size of A, but nevertheless very big with re-
spect to the computing resources usually available.
This is due to the fact that at the m!" iteration
all m Krylov vectors are needed to compute the
new orthogonal vector of the basis. This problem is
overcome using the restart option, that is perform-
ing nx,, GMRES iterations and re-starting GMRES
from the updated solution re-computing from there
a new set of ng, Krylov vectors. Values of ng,

between 10 and 30 make the computation afford-
able even for large problems and a good convergence
level is usually achieved within 20 restarted cycles,
but unfortunately numerical stagnation of the resid-
ual may occur. Extensive numerical validation on a
variety of turbomachinery test-cases has highlighted
two important features: a) stagnation does not occur
provided that both ng, and the number of multigrid
cycles per GMRES iteration n. are chosen above
certain threshold values and b) there exists an opti-
mal combination of n.; and n g, which minimizes the
CPU-time required to achieve the same level of con-
vergence. Unfortunately both the threshold limits
and the optimum of (ng,,ny) are strongly case-
dependent. It should be also noted that different
choices of n. as well as other multigrid parame-
ters such as the number of iterations on the different
grids lead to different preconditioner M 1.

Another advantage of GMRES is that it allows
the straightforward determination of the unstable
eigenmodes, as the algorithm has the property of
solving the least stable modes first, that is those
whose eigenvalues are farthest from the centre of
the unit circle in the complex plane. As shown in
next section, this enables one to relate the source
of numerical instability to the physical unsteadiness
which causes it. In order to establish the relationship
between the least stable modes and the set of Krylov
vectors, let us start by considering the partial reduc-
tion of M A based on the m** Krylov subspace:

QgM_lAQm = Hm (10)

where H,, denotes the upper (m x m) portion of
H,, and the superscript 7 the Hermitian conjugate
operator. The eigenvalues 6; of H,, are called Ritz
values and they are defined by

Hmyj :0jyj, j:1,2,... ,m (].].)
where y; is the right eigenvector of H,, associated
with #;. Combining equations (10) and (11) yields

QM AQmy; = (QrmQ)0iy; (12)
and consequently
Qu(M ™A~ 6;1)Qmy; =0 (13)

The m vectors

m

Qmy; = >_Wiha

=1

j=1,2,... (14)

3

are the Ritz vectors of A based on the m!* Krylov
subspace, which provide an approximate estimate of
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the sought dominant eigenmodes. In fact, equation
(13) states only that the residual of each eigenvector
resecig = (A — 0;1)Q.ny; is orthogonal to the sub-
space K,,. but the expression (14) would provide
the exact eigenmodes only if res.;; = 0. It can be
proved, however, that the the 2-norm of res.;, de-
pends linearly on the residual of the linear equations.
For all the test-cases considered, 150 GMRES itera-
tions without restart have been sufficient to achieve
a good convergence level of the linear equations and
therefore to obtain an accurate estimate of the dom-
inant modes.

Results

Two-dimensional turbine section

One of the test-cases that has been used for both
assessing the predictive capabilities of hydlin and
testing the implemented GMRES solver is the 2D
turbine section of the 11** Standard Configuration,
which is the mid-span blade-to-blade section of an
annular turbine cascade with 20 blades. The an-
nular test-rig and cascade geometry are briefly de-
scribed in reference,® which also provides experimen-
tal measurements and various computed results of
the steady and unsteady flow field due to blade-
plunging with prescribed IBPA. Two steady work-
ing conditions are considered: a subsonic one with
exit Mach number of 0.68 and a transonic one with
exit Mach number of 0.96. The computational grid
that we have used for the investigation has 17745
nodes, since a preliminary mesh-refinement analysis
carried out using a coarse (7869 nodes), medium-
refined (17745 nodes) and fine (39673 nodes) mesh
has shown no difference of practical interest between
the results obtained with the medium and fine grids.
The coarse mesh is shown in figure 1 while figure 2
provides measured and computed steady isentropic
Mach number on the blade surface for the two work-
ing conditions. The high pressure patch at about
20 % chord and the rapid pressure rise at about
80 % chord on the suction surface in the transonic
case (figure 2-b) are due to a separation bubble and
an impinging shock respectively. This is clearly vis-
ible in the Mach number contours of figure 3, which
also show how both the blade boundary layers and
wakes thicken after passing through the shock. The
measured and computed amplitude and phase of the
unsteady pressure coefficient cp (defined in refer-
ence®) are provided in figure 4. For both working
conditions, large differences between measured and
computed results are visible on the suction surface
where most of the unsteady phenomena take place.
However the numerical results presented in this pa-
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per are in a very good agreement with those in the
literature.?

The stability curves (IBPA vs. §) for both flow
regimes are provided in figure 5-a, which shows that
the system never becomes aeroelastically unstable.
The nonlinear calculations of both the subsonic and
transonic mean steady flow converge without diffi-
culties to machine epsilon (107!%). However all the
linear calculations based on the transonic mean flow
diverge using the standard code and convergence can
be retrieved only using GMRES, as shown in the
convergence histories of hydlin in figure 5-b, which
refers to IBPA = 180°. The variable on the x-axis
is the number of multigrid cycles and that on the
y-axis is the logarithm in base 10 of the root-mean-
square of all nodal residuals (rms). The number at
the right of the label ’'GMRES’ in the legend is n .
The GMRES convergence histories show that the
overall number of multigrid cycles or equivalently of
CPU-time required for achieving a given convergence
level depends on both ng, and n, and among the
combinations tried for this test-case the minimum
CPU-time is obtained for ng, = 20 and n. = 3.
In order to investigate the origin of the numerical
instability of the standard code, the first 150 domi-
nant eigenmodes of the preconditioned linearization
matrix M ~'4 have been determined using the proce-
dure described in the previous section and they are
plotted in the complex plane of figure 6. The two
complex conjugate pairs of outliers labelled with 1
and 2 are responsible for the exponential growth of
the residual associated with the fixed-point iteration
(8). In fact, its asymptotic convergence rate is deter-
mined by the spectral radius p of the linear operator
M~ and it can be proved that the relationship be-
tween the asymptotic slope of the residual curve and

p is:
A (log(rms))

~ 1 15
Nows og p (15)

where Ny, is the number of multigrid cycles across
which the variation of rms is considered. This equa-
tion provides the theoretical relationship between
the slope of the exponentially growing residual curve
of the standard iteration (figure 5-b) and the spectral
radius of the linear operator (radius of the out-
lier 1). Inserting the computed values in it yields
46.90e — 3 ~ 47.53e — 3, which demonstrates the
correctness of the mathematical analysis. Figure 7-a
shows that the maximum pressure amplitude of the
eigenvector associated with the complex conjugate
pair of outliers 1 occurs at the edge of the separa-
tion bubble on the suction surface and this proves
that the origin of the numerical instability is the
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small limit cycle associated with this unstable sep-
aration. The eigenmode associated with the outlier
2 also corresponds to the separation on the suction
surface and therefore is not reported here. The pres-
sure amplitude of the eigenvector associated with the
complex conjugate pair of eigenvalues 3 is provided
in figure 7-b. Nonzero amplitudes occur both in the
shock and the separation bubble. The eigenvalues
of this mode lie within the unit disk, but they are
quite close to the origin. This may worsen the con-
vergence properties of GMRES and explains why the
convergence rate of GMRES improves by increasing
ne (figure 5-b). In fact, the eigenvalues of M4
within the unit circle move progressively closer to
the centre of the disk at (1,0) as ne is increased.
Finally it should be noted that the eigensystem de-
scribed above has been found to be independent of
the IBPA used for the linear calculation.

Three-dimensional fan

The second test-case considered is a three-
dimensional fan rotor whose geometry and surface
grid are shown in figure 8. This grid has only 157441
nodes and is quite coarse, but all the phenomena dis-
cussed in this section have been also observed with
finer computational meshes and for other test-cases.
The linear flutter analysis has been carried out for
4 points of a constant-speed working line using hyd
and hydlin. The computed pressure ratio 3 is plot-
ted versus the computed mass flow m in figure 9-a.
Note that both 8 and 7 are given as percentages
of their design values. For all 4 working conditions
the residual of the nonlinear steady equations drops
by four orders of magnitude (figure 9-b), ending in
a low-amplitude limit cycle.

The analysis of the flutter stability of the first flap
mode has been carried out for all 4 steady working
conditions and the computed logarithmic decrement
is plotted in figure 10. As expected, the least sta-
ble aeroelastic modes are those associated with the
first few IBPA’s and the blades undergo flutter in
the 2 nodal diameter mode at the mean flow con-
ditions D, which are the closest to stall. All linear
calculations have been performed using GMRES, as
they were otherwise unstable. This is visible in the
convergence plots of hydlin reported in figure 11,
which refer to the mean flow conditions D and to
IBPA = 180°. Figure 11-a shows that the GMRES
solver stagnates if n, < 3 and an acceptable conver-
gence rate can be achieved only using ng, > 30. The
beneficial effect of higher values of n.; on the overall
number of multigrid iteration required for conver-
gence is also visible in figure 11-b, as the convergence

rate with n, = 3 is higher than with n, = 1. Figure
11-b also highlights that starting GMRES from the
last solution of the standard hydlin after the calcula-
tion has diverged, results in an initially sharp reduc-
tion of the residual and then in a convergence rate
similar to that of the descending branch of the stan-
dard code. This behaviour can be explained by the
presence of a few outliers: after a few hundred multi-
grid cycles needed to resolve the stable modes, the
unstable modes associated with the outliers become
dominant and determine the exponential growth of
the residual of the standard iteration. They are in-
stead solved very rapidly restarting the calculation
with GMRES. In fact, the corresponding subset of
the spectrum of M ~'4 with the first 150 dominant
eigenvalues has 4 complex conjugate pairs of outliers,
labelled from 1 to 4 in order of decreasing distance
from the centre of the unit disc in figure 12. In-
serting in equation (15) the computed data relative
to the slope of the ascending branch of the resid-
ual curve of the standard iteration (figure 11) and
the spectral radius of M ~'4 (radius of the outlier 1)
yields 38.82e — 3 & 40.17e — 3, which confirms once
more the correctness of the mathematical analysis.

The eigenmode associated with the pair of outliers
1 is due to the hub corner stall, since its maximum
pressure amplitude occurs in the small region be-
tween the suction side and the hub close to the
Trailing Edge (TE) as shown in figure 13-a. Con-
tours of the same variable in a blade-to-blade section
close to the hub are presented in figure 13-b, while a
two-dimensional view of the flow separation caused
by the corner stall is given in figure 16, which shows
the velocity vectors in the same blade-to-blade sec-
tion. The eigenmode associated with the pair of
outliers 3 takes its maximum in the Leading Edge
(LE) region close to the hub (figures 14-a and 14-b)
and it corresponds to a separation bubble as shown
in figure 17. The eigenmodes 2 and 4 are not re-
ported, because they correspond to the same flow
phenomena as 1 and 3 respectively. The numerical
instabilities of the standard code are therefore due
to the linearization of the small-amplitude limit cy-
cles associated with the hub corner stall and the LE
separation.

The eigenmode corresponding to the complex con-
jugate pair 5 does not cause the exponential growth
of the residual as it lies in the unit disc, but it would
be responsible for a very low convergence rate of the
standard code in the absence of any outlier because
of its proximity to the unit disc. The pressure am-
plitude of this eigenmode is non-zero both at the
corner between hub and suction surface close to the
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TE and in the separation region at the LE close to
the hub, but it experiences its maximum on the suc-
tion surface close to the tip (figures 15-a and 15-b),
where a strong shock occurs (figure 18). Similarly
to the turbine test-case, the eigensystem described
above is independent of the IBPA.

All calculations have been run with 4 grid levels on
a computer cluster consisting of 24 four-processor
Sun Ultra-80 nodes, with a Sun Blade-1000 front-
end. The CPU-time of one multigrid cycle depends
on the number of iterations performed on each grid
level. The values chosen for this test-case have led
to a CPU-time of about 56 seconds for one multigrid
cycle of hydlin using 8 processors and the 800 cycles
needed for a good convergence of each linear calcu-
lation have thus required an overall time of about 12
hours. The CPU-time of one multigrid cycle of hyd
is about half of that needed by hydlin.

Conclusions

The paper has presented the linear analysis of tur-
bomachinery aeroelasticity from a simple algebraic
viewpoint, which allows one a relatively straight-
forward understanding of the relationship between
the numerical instabilities of the linearized solver
of the Navier-Stokes equations and the small un-
steady phenomena of the mean steady flow field.
The implementation of the GMRES algorithm in
the existing linear NS solver based on a precondi-
tioned fixed-point iteration has stabilized the code,
allowing the aeroelastic analysis to be carried out
even in presence of small unsteady phenomena in
the mean flow, which are believed not to have any
significant effect on the aeroelastic behaviour of the
component under investigation. The CPU-time re-
quired for convergence of the linear equations using
the restarted GMRES algorithm depends on both
the number of GMRES iterations per restarted cy-
cle and the number of multigrid cycles per GMRES
iterations. The optimum combination of these two
parameters is however case-dependent. Both the
correctness of the analysis and the relationship be-
tween numerical instabilities of the linear solver and
unsteady phenomena of the mean flow have been
demonstrated through the linear flutter analysis of
two realistic turbomachinery test-cases.
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Fig. 1 Mesh for the 2D turbine section.
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Fig. 13 Pressure amplitude of dominant eigen-
mode associated with the complex conjugate pair
1: a) 3D view of the corner between the hub and
the suction side close to the TE and b) blade-to-
blade section close to the hub.
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Fig. 17 LE velocity vectors close to the hub.
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Fig. 15 Pressure amplitude of dominant eigen-
mode associated with the complex conjugate pair
5: a) 3D view of the suction side and b) blade-to-
blade section in the LE region close to the tip.

Fig. 18 LE Mach contours close to the tip.
11 or 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2002-4085



