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E�ets of Flow Instabilities on the LinearAnalysis of Turbomahinery AeroelastiityM.S. Campobasso � and M.B. Giles yOxford University Computing LaboratoryOX1 3QD Oxford, UKThe linear analysis of turbomahinery aeroelastiity is based on the linearizationof the unsteady ow equations around the mean ow �eld whih an be determinedby a nonlinear steady solver, while the unsteady periodi ow an be deomposedinto a sum of harmonis, eah of whih an be omputed independently solving aset of linearized equations. The analysis onsiders just one partiular frequeny ofunsteadiness at a time and the objetive is to ompute a omplex ow solution whihrepresents the amplitude and phase of the unsteady ow. The solution proedure ofboth the nonlinear steady and the linear harmoni Euler/Navier-Stokes solvers of theHYDRA suite of odes an be viewed as a preonditioned �xed-point iteration. Thepaper douments the numerial instabilities enountered solving the linear harmoniequations for some turbomahinery test-ases, highlights their physial origin andsummarizes the implementation of a GMRES algorithm aiming at the stabilizationof the linear ode. Presented results inlude the utter analysis of a ivil engine fan.Nomenlaturep unsteady pressureoeÆient_m mass owMis isentropi Mah numberN number of grid nodesof a blade-passageNblades number of blades ofthe blade-rowNeqs number of equations(5 for the Euler equationsand 6 for the NS model)nl number of multigrid ylesper GMRES iterationnKr number of GMRES iterationsper restarted yle�j Inter-Blade Phase-Angle(IBPA)W worksum� pressure ratioÆ logarithmi derement! frequeny of theunsteady ow �eldIntrodutionThe aeroelasti phenomena of onern in the tur-bomahinery industry are blade utter and fored�email: sergio.ampobasso�omlab.ox.a.ukyemail: mike.giles�omlab.ox.a.ukCopyright  2002 by M.S. Campobasso, M.B. Giles. Published by theAmerian Institute of Aeronautis and Astronautis, In. with permission.

response, as they may both lead to dramati me-hanial failures if not properly aounted for in thedesign of the engine. The blades of an assembly anundergo utter vibrations when the aerodynamidamping assoiated with ertain ow regimes be-omes negative and is not ounterbalaned by themehanial damping. In suh irumstanes, thefree vibration of the blades triggered by any tem-porary perturbation is sustained through the energyfed into the struture by the unsteady aerodynamifores and may damage the blades if the stress as-soiated with the deformations exeeds the materialstrength. Blade fored response is aused by the rel-ative motion of adjaent frames of referene, whihtransforms steady irumferential variations of theow �eld in one frame into periodi time-varyingfores ating on the blades in the other. Well knownexamples inlude foring due to the wakes shed by anupstream blade-row and fan inlet distortions due toross-wind onditions. The high yle fatigue ausedby these vibrations may shorten the life of the bladesbelow the target life of the engine.The unsteady aerodynami analysis intended forturbomahinery aeroelasti preditions must be ap-pliable over wide ranges of blade-row geometriesand operating onditions as well as unsteady ex-itation modes and frequenies. Also, beause ofthe large number of ontrolling parameters involved,there is a stringent requirement for omputationaleÆieny. Over the past two deades, a numberof methods have emerged to arry out the analy-sis of turbomahinery aeroaoustis and aeroelas-1 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085



tiity,17 varying from unoupled linearized poten-tial ow solvers9, 18 to fully-oupled nonlinear three-dimensional unsteady visous methods.12 Withinthis range, the unoupled linear harmoni Euler andNavier-Stokes (NS) methods have proved to be a su-essful ompromise between auray and ost andare now widely preferred in industry as a fast andaurate tool for aeroelasti preditions. Indeed,a growing body of evidene indiates that linearvisous alulations are adequate for a surprisinglylarge range of appliations.2, 10, 11, 16 This methodviews the aerodynami unsteadiness as a small per-turbation of the spae-periodi mean steady ow.Hene the unsteady ow �eld an be linearized aboutit and due to linearity an be deomposed into asum of harmoni terms, eah of whih an be om-puted independently. The yli periodiity of boththe steady and unsteady ow leads to a great redu-tion of omputational osts, sine the analysis anfous on one blade passage rather than the wholeblade-row making use of suitable periodi boundaryonditions. The small amplitude of the aerodynamiunsteadiness often allows one to neglet both theoupling and variations of strutural eigenmodes dueto the aerodynami fores.1 Therefore the inves-tigation an be arried out onsidering one stru-tural mode at a time, determined by a �nite-elementprogram and used as an input for alulating theunsteady aerodynami fores. The omplete aerody-nami analysis onsists of two phases: a) alulationof the nonlinear steady ow �eld about whih the lin-earization is performed and b) solution of the linearharmoni equations.The HYDRA suite of parallel odes developed atthe Oxford University Computing Laboratory4, 7, 14inludes both a nonlinear (hyd) and a linear har-moni (hydlin) NS solver. The solution proedurefor both hyd and hydlin an be viewed as a pre-onditioned �xed-point iteration. Usually the lin-ear ode onverges without diÆulty, but problemshave been enountered in situations in whih thesteady ow alulation itself failed to onverge to asteady state but instead �nished in a low-level limityle, often related to some physial phenomenonsuh as vortex shedding at a blunt trailing edge,unsteady shok/boundary layer or shok/wake in-teration. The main objetives of this paper are to� highlight and disuss the relationship betweenthe numerial instabilities of the linear solver forsome turbomahinery test-ases and the physi-al properties of the underlying mean ow;� demonstrate the e�etiveness of the Generalized

Minimum Residuals (GMRES) algorithm15 forretrieving the numerial stability of the linearode.Setions 2 and 3 present an overview of the steadynonlinear and unsteady linear model respetively;the main features of the GMRES algorithm andsome basi onepts onerning the numerial stabil-ity of �xed-point iterations are provided in setion 4.Finally, setion 5 presents two realisti appliations,the utter analysis of a two-dimensional turbine se-tion for subsoni and transoni working onditionsand that of a ivil engine fan from near-hoke tonear-stall operating onditions.Nonlinear ow analysisThe time-dependent Euler and Reynolds-averagedNS equations are approximated on unstruturedhybrid grids, using an edge-based disretization.13Considering the omputational domain onsisting ofall the passages of a blade-row leads to a system ofnonlinear ordinary di�erential equations (ODE0s) ofthe form: dUdt +R(U;Ub;X; _X) = 0: (1)where t is the physial time, U is the vetor of prim-itive ow variables, R is the nodal residual, X and_X are the vetors of nodal oordinates and veloi-ties respetively. The vetor Ub is used to enforetime-dependent disturbanes at the inow and out-ow boundaries suh as wakes shed by an upstreamblade row. Eah edge of the grid ontributes onlyto the residuals orresponding to the two nodes ateither end and the residual vetor R depends alsoon the nodal veloities _X, beause the grid an de-form following the blade vibration. The system (1)has size (Neqs � N0), where N0 is the number ofgrid nodes, Neqs = 5 for the invisid ow model andNeqs = 6 for turbulent ows. The 6th omponentin the latter ase is the turbulene variable, deter-mined with the Spalart-Almaras turbulene model.The residuals R also inlude the soure terms dueto the entrifugal and Coriolis fores, sine the equa-tions refer to the relative frame of referene.The �rst stage of the aeroelasti analysis requiresthe omputation of the mean steady ow U aboutwhih the linearization of the unsteady terms will bearried out. Negleting the time-dependent terms inthe governing equations (1) and denoting by X themean nodal oordinates yieldsR(U;X) = 0: (2)2 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085



whih an be solved for a single blade-passage, asthe mean ow is irumferentially periodi. The sys-tem (2) has size (N �Neqs) where N = N0=Nbladesand Nblades is the number of blades in the blade-row. The boundary onditions to whih the system(2) is subjet an be of three types: inow/outow,periodi and invisid/visous wall. The inow andoutow boundaries are handled through uxes whihinorporate presribed ow information and thusthey beome part of the residual vetor R. Theperiodiity ondition is applied enforing identialow variables at mathing pairs of periodi nodeson the lower and upper periodi boundary, exeptfor the appropriate rotation of the veloity vetorsaounting for the annular nature of the ow do-main. Combining ux residuals at the two periodinodes in a suitable manner to maintain periodiity,this boundary ondition an also be inluded in thede�nition of the ux residual vetor R.A no-slip boundary ondition is applied to vis-ous walls disarding the momentum residuals andreplaing these equations by the spei�ation of zeroveloity at the boundary nodes. The omputation ofthe ux residuals at nodes on invisid walls is basedon zero mass ux through the boundary faes, butin addition ow tangeny is enfored by setting thenormal omponent of the surfae veloity to zero anddisregarding the normal omponent of the momen-tum residuals. Applying these strong wall boundaryonditions3 to the system (2) yields:(I�B) R(U;X) = 0B U = 0 (3)where B is a projetion matrix whih extrats themomentum/veloity omponents at the wall bound-aries. The disrete equations (3) are solved usingRange-Kutta time-marhing aelerated by Jaobipreonditioning and multigrid.13Linear unsteady ow analysisDue to the small level of unsteadiness, the time-dependent variables an be written as the sum of amean steady part and a small amplitude perturba-tion:X(t) = X+ ~x(t); jj~xjj � jjXjjUb(t) = Ub + ~ub(t); jj ~ubjj � jjUbjjU(t) = U+ ~u(t); jj~ujj � jjUjjwhere the perturbations are overlined with a tildesymbol. Linearizing equations (1) about the meansteady onditions (X;U) yieldsd~udt + L~u = ~f1 + ~f2 (4)

where the linearization matrix L and the vetors ~f1and ~f2 are given byL = �R�U ; ~f1 = ���R�X ~x+ �R� _X _~x� ;~f2 = � �R�Ub ~ubThe unsteady periodi ow ould be determined bysolving the linear equations (4), but due to linearityan be deomposed into a sum of omplex harmonisof the form ~uk(t) = <(eik!tûk), eah of whih anbe omputed separately. The omplex elements ofûk de�ne the amplitude and phase of the unsteadi-ness at frequeny !. Analogous expansions hold for~x(t), _~x(t) and ~ub(t). Inserting suh expressions inequation (4) and onsidering only the mode k = 1for simpliity, yields the harmoni equations(i! + L)û = f̂1 + f̂2 (5)whih an be viewed as the frequeny domain oun-terpart of equations (4). The linear system (5) isomplex and it has size (N �Neqs). The vetors f̂1and f̂2 are its right-hand-side and they give the sen-sitivity of the residuals to harmoni deformations ofthe mesh and to inoming harmoni perturbationsrespetively. The linear equations are solved withthe same pseudo time-marhing approah adoptedfor the solution of the nonlinear steady equations,that is by introduing a �titious time-derivativedû=d� and time-marhing the solution of the systemof linear ODE's:dûd� = � h(i! + L)û = f̂1 + f̂2iuntil dû=d� vanishes. Disretizing suh time-derivative leads to the linear �xed-point iterationdisussed in greater detail in the following setion.In the utter ase, the objet of the analysis is toassess the stability of a partiular strutural mode.The frequeny ! and the blade mode shape are al-ulated with a �nite-element program and used todetermine f̂1, whih is non-zero throughout the om-putational domain sine the grid deforms followingthe harmoni vibration of the blade, while f̂2 is setto zero. The phase between the motion of adjaentblades (Inter-blade Phase-Angle or IBPA) is an ad-ditional parameter of the analysis. It is given by�j = 2�j=Nblades and the index j usually allednodal diameter an take any integer value between 0and (Nblades�1), though the ritial values are usu-ally the �rst few ones.1 Equations (5) an then be3 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085



solved for a single passage, introduing the omplexphase shift ei�j between the two periodi bound-aries. The output of interest is the net energy uxfrom the struture to the working uid over one yleof vibration, de�ned by the worksum integralW = Z T0 ZS publade � dSdtin whih T is the period of vibration, p and ubladeare the time-dependent blade stati pressure and ve-loity respetively, dS is the elemental blade surfaewith outward normal and S is the overall blade sur-fae. A positive sign indiates stability as energy istransfered from the struture to the uid, whereas anegative sign indiates the ourrene of utter. Inthe engineering ommunity, the logarithmi dere-ment Æ is a more frequently used stability parameter.Provided that a suitable normalization of the stru-tural eigenmode is used,6 its expression isÆ = W!2In fored response, the objet of the analysis is todetermine the unsteady fores ating on the bladedue to any of the harmoni omponents, into whihthe inoming time-periodi gust an be deomposed.The IBPA depends on the geometri properties ofthe problem. In the ase of foring oming fromirumferentially periodi wakes, the blades and thewakes may have di�erent pithes and hene there is adi�erene in the times at whih neighbouring wakesstrike neighbouring blades. Therefore the IBPAof the fundamental harmoni is 2�Nwakes=Nblades.Again the linear harmoni equations (5) an besolved for a single blade passage using omplex pe-riodi boundary onditions. The vetor f̂1 is zerothroughout the domain beause the mesh is station-ary and the vetor f̂2 is non-zero only at the inletor outlet boundaries, where the harmoni pertur-bation is presribed. The unsteady aerodynamifore ating on the blade an be alulated in apost-proessing step for eah strutural mode usingthe unsteady pressure �eld determined with the har-moni analysis.The linear unsteady analysis is ompleted by en-foring suitable linearized boundary onditions. Theinow, outow and (omplex) periodi boundaryonditions an all be symbolially inluded intoequations (5). Taking into aount the linearizedstrong wall boundary ondition, however, the sys-tem to be solved beomes:(I�B) h(i! + L)û� f̂1 � f̂2i = 0B û = b (6)

The omponent b of the linear ow veloity at thewall is zero for both invisid and visous walls in thefored response problem as the grid does not deform,while is non-zero for both wall types in the utterproblem, due to the surfae displaements and inthe invisid ase also to the rotation of the wall nor-mals.3 Equations (6) are then solved using the samepreonditioned pseudo time-marhing method as forthe nonlinear equations.GMRES stabilizationThe linearized harmoni NS equations (6) an beviewed as a simple linear system of the formAx = b (7)Though equations (6) are omplex, hydlin has beenwritten using real arithmeti, that is onsidering realvetors of size (2�Neqs �N) with the fator 2 a-ounting for real and imaginary part, rather thanomplex vetors of size (Neqs �N). This hoie hasbeen made beause of errors often introdued byhighly optimized FORTRAN ompilers when deal-ing with omplex arithmeti. Therefore the system(7) has also dimension (2�Neqs �N) and the odefor its solution an be regarded as the �xed-pointiteration: xn+1 = (I �M�1A)xn +M�1b (8)in whih M�1 is a preonditioning matrix result-ing from the Runge-Kutta time-marhing algorithm,the Jaobi preonditioner and the multi-grid sheme.Linear stability analysis of (8) shows that neessaryondition for its onvergene is that all the eigenval-ues of (I �M�1A) lie within the unit irle entredat the origin in the omplex plane or equivalentlythat all the eigenvalues of M�1A lie in the unit disentred at (1; 0). For most aeroelasti problemsof pratial interest, this ondition is ful�lled andthe linear ode onverges without diÆulty. How-ever an exponential growth of the residual has beenenountered in situations in whih the steady owalulation itself failed to onverge to a steady-statebut instead �nished in a small-amplitude limit yle,related to some physial phenomenon suh as sep-aration bubbles, orner stalls and vortex sheddingat a blunt trailing edge. The solution proedureof the nonlinear steady equations (3) is not time-aurate beause of the loal time-stepping teh-nique and the Jaobi preonditioner used for theintegration, but it nevertheless reets some physialproperties of the ow �eld due to the pseudo time-marhing strategy assoiated with the Runge-Kutta4 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085



algorithm. Physial small-amplitude limit yles donot prevent the steady solver from onverging to anaeptable level, although their e�et is sometimesvisible in small osillations of the residual. Howeverthey result in a small number of omplex onju-gate pairs of eigenvalues of the linearization matrix(I �M�1A) lying outside the unit irle (outliers)and thus ausing the exponential growth of the resid-ual of the linear equations. This problem has beenoverome by implementing a preonditioned GM-RES algorithm in hydlin. GMRES is an iterativemethod for the solution of linear systems, belongsto the family of Krylov subspae methods15 andis guaranteed to onverge even in the presene ofoutliers. The Krylov subspae of dimension m gen-erated by the preonditioned operatorM�1A and thevetor b is the vetorial spae spanned by the vetors((M�1A)jb; j = 0; : : :m� 1), that isKm =< b;M�1Ab; : : : ; (M�1A)m�1b >The GMRES algorithm is based on the progressiveredued Arnoldi fatorization8 of M�1A:M�1AQm = Qm+1 ~Hm (9)where m is the urrent GMRES iteration, ~Hm is aHessemberg matrix of size ((m + 1) � m), Qm is amatrix of size ((2�Neqs�N)�m) whosem olumnsform an orthonormal basis for the Krylov subspaeKm and Qm+1 is Qm augmented with a new Krylovvetor. It should be noted that the size of eah ol-umn of Qm is equal to that of the omplex linearow �eld. At the mth GMRES iteration the solutionof (7) is approximated by the linear ombination ofthe available m Krylov vetors whih minimizes the2-norm of the residual and for this reason the algo-rithm an be viewed as an optimization proess.The preonditioned GMRES solver uses the orepart of hydlin as a blak-box to determine theKrylov vetors whih are preonditioned with thealready existing preonditioner (multigrid+Runge-Kutta+Jaobi preonditioner) and the omputation-ally heap optimization is arried out at the toproutine level. The number of GMRES iterationsrequired for full onvergene is muh smaller thanthe size of A, but nevertheless very big with re-spet to the omputing resoures usually available.This is due to the fat that at the mth iterationall m Krylov vetors are needed to ompute thenew orthogonal vetor of the basis. This problem isoverome using the restart option, that is perform-ing nKr GMRES iterations and re-starting GMRESfrom the updated solution re-omputing from therea new set of nKr Krylov vetors. Values of nKr

between 10 and 30 make the omputation a�ord-able even for large problems and a good onvergenelevel is usually ahieved within 20 restarted yles,but unfortunately numerial stagnation of the resid-ual may our. Extensive numerial validation on avariety of turbomahinery test-ases has highlightedtwo important features: a) stagnation does not ourprovided that both nKr and the number of multigridyles per GMRES iteration nl are hosen aboveertain threshold values and b) there exists an opti-mal ombination of nl and nKr whih minimizes theCPU-time required to ahieve the same level of on-vergene. Unfortunately both the threshold limitsand the optimum of (nKr; nl) are strongly ase-dependent. It should be also noted that di�erenthoies of nl as well as other multigrid parame-ters suh as the number of iterations on the di�erentgrids lead to di�erent preonditioner M�1.Another advantage of GMRES is that it allowsthe straightforward determination of the unstableeigenmodes, as the algorithm has the property ofsolving the least stable modes �rst, that is thosewhose eigenvalues are farthest from the entre ofthe unit irle in the omplex plane. As shown innext setion, this enables one to relate the soureof numerial instability to the physial unsteadinesswhih auses it. In order to establish the relationshipbetween the least stable modes and the set of Krylovvetors, let us start by onsidering the partial redu-tion of M�1A based on the mth Krylov subspae:QHmM�1AQm = Hm (10)where Hm denotes the upper (m � m) portion of~Hm and the supersript H the Hermitian onjugateoperator. The eigenvalues �j of Hm are alled Ritzvalues and they are de�ned byHmyj = �jyj ; j = 1; 2; : : : ;m (11)where yj is the right eigenvetor of Hm assoiatedwith �j . Combining equations (10) and (11) yieldsQHmM�1AQmyj = (QHmQ)�jyj (12)and onsequentlyQHm(M�1A� �jI)Qmyj = 0 (13)The m vetorsQmyj = mXl=1(yj)lql j = 1; 2; : : : ;m (14)are the Ritz vetors of A based on the mth Krylovsubspae, whih provide an approximate estimate of5 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085



the sought dominant eigenmodes. In fat, equation(13) states only that the residual of eah eigenvetorreseig = (A � �jI)Qmyj is orthogonal to the sub-spae Km. but the expression (14) would providethe exat eigenmodes only if reseig = 0. It an beproved, however, that the the 2-norm of reseig de-pends linearly on the residual of the linear equations.For all the test-ases onsidered, 150 GMRES itera-tions without restart have been suÆient to ahievea good onvergene level of the linear equations andtherefore to obtain an aurate estimate of the dom-inant modes. ResultsTwo-dimensional turbine setionOne of the test-ases that has been used for bothassessing the preditive apabilities of hydlin andtesting the implemented GMRES solver is the 2Dturbine setion of the 11th Standard Con�guration,whih is the mid-span blade-to-blade setion of anannular turbine asade with 20 blades. The an-nular test-rig and asade geometry are briey de-sribed in referene,5 whih also provides experimen-tal measurements and various omputed results ofthe steady and unsteady ow �eld due to blade-plunging with presribed IBPA. Two steady work-ing onditions are onsidered: a subsoni one withexit Mah number of 0.68 and a transoni one withexit Mah number of 0.96. The omputational gridthat we have used for the investigation has 17745nodes, sine a preliminary mesh-re�nement analysisarried out using a oarse (7869 nodes), medium-re�ned (17745 nodes) and �ne (39673 nodes) meshhas shown no di�erene of pratial interest betweenthe results obtained with the medium and �ne grids.The oarse mesh is shown in �gure 1 while �gure 2provides measured and omputed steady isentropiMah number on the blade surfae for the two work-ing onditions. The high pressure path at about20 % hord and the rapid pressure rise at about80 % hord on the sution surfae in the transoniase (�gure 2-b) are due to a separation bubble andan impinging shok respetively. This is learly vis-ible in the Mah number ontours of �gure 3, whihalso show how both the blade boundary layers andwakes thiken after passing through the shok. Themeasured and omputed amplitude and phase of theunsteady pressure oeÆient P (de�ned in refer-ene5) are provided in �gure 4. For both workingonditions, large di�erenes between measured andomputed results are visible on the sution surfaewhere most of the unsteady phenomena take plae.However the numerial results presented in this pa-

per are in a very good agreement with those in theliterature.5The stability urves (IBPA vs: Æ) for both owregimes are provided in �gure 5-a, whih shows thatthe system never beomes aeroelastially unstable.The nonlinear alulations of both the subsoni andtransoni mean steady ow onverge without diÆ-ulties to mahine epsilon (10�18). However all thelinear alulations based on the transoni mean owdiverge using the standard ode and onvergene anbe retrieved only using GMRES, as shown in theonvergene histories of hydlin in �gure 5-b, whihrefers to IBPA = 180o. The variable on the x-axisis the number of multigrid yles and that on they-axis is the logarithm in base 10 of the root-mean-square of all nodal residuals (rms). The number atthe right of the label 'GMRES' in the legend is nKr.The GMRES onvergene histories show that theoverall number of multigrid yles or equivalently ofCPU-time required for ahieving a given onvergenelevel depends on both nKr and nl and among theombinations tried for this test-ase the minimumCPU-time is obtained for nKr = 20 and nl = 3.In order to investigate the origin of the numerialinstability of the standard ode, the �rst 150 domi-nant eigenmodes of the preonditioned linearizationmatrixM�1A have been determined using the proe-dure desribed in the previous setion and they areplotted in the omplex plane of �gure 6. The twoomplex onjugate pairs of outliers labelled with 1and 2 are responsible for the exponential growth ofthe residual assoiated with the �xed-point iteration(8). In fat, its asymptoti onvergene rate is deter-mined by the spetral radius � of the linear operatorM�1A and it an be proved that the relationship be-tween the asymptoti slope of the residual urve and� is: � (log(rms))Nmg � log � (15)where Nmg is the number of multigrid yles arosswhih the variation of rms is onsidered. This equa-tion provides the theoretial relationship betweenthe slope of the exponentially growing residual urveof the standard iteration (�gure 5-b) and the spetralradius of the linear operator (radius of the out-lier 1). Inserting the omputed values in it yields46:90e � 3 � 47:53e � 3, whih demonstrates theorretness of the mathematial analysis. Figure 7-ashows that the maximum pressure amplitude of theeigenvetor assoiated with the omplex onjugatepair of outliers 1 ours at the edge of the separa-tion bubble on the sution surfae and this provesthat the origin of the numerial instability is the6 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085



small limit yle assoiated with this unstable sep-aration. The eigenmode assoiated with the outlier2 also orresponds to the separation on the sutionsurfae and therefore is not reported here. The pres-sure amplitude of the eigenvetor assoiated with theomplex onjugate pair of eigenvalues 3 is providedin �gure 7-b. Nonzero amplitudes our both in theshok and the separation bubble. The eigenvaluesof this mode lie within the unit disk, but they arequite lose to the origin. This may worsen the on-vergene properties of GMRES and explains why theonvergene rate of GMRES improves by inreasingnl (�gure 5-b). In fat, the eigenvalues of M�1Awithin the unit irle move progressively loser tothe entre of the disk at (1; 0) as nl is inreased.Finally it should be noted that the eigensystem de-sribed above has been found to be independent ofthe IBPA used for the linear alulation.Three-dimensional fanThe seond test-ase onsidered is a three-dimensional fan rotor whose geometry and surfaegrid are shown in �gure 8. This grid has only 157441nodes and is quite oarse, but all the phenomena dis-ussed in this setion have been also observed with�ner omputational meshes and for other test-ases.The linear utter analysis has been arried out for4 points of a onstant-speed working line using hydand hydlin. The omputed pressure ratio � is plot-ted versus the omputed mass ow _m in �gure 9-a.Note that both � and _m are given as perentagesof their design values. For all 4 working onditionsthe residual of the nonlinear steady equations dropsby four orders of magnitude (�gure 9-b), ending ina low-amplitude limit yle.The analysis of the utter stability of the �rst apmode has been arried out for all 4 steady workingonditions and the omputed logarithmi derementis plotted in �gure 10. As expeted, the least sta-ble aeroelasti modes are those assoiated with the�rst few IBPA's and the blades undergo utter inthe 2 nodal diameter mode at the mean ow on-ditions D, whih are the losest to stall. All linearalulations have been performed using GMRES, asthey were otherwise unstable. This is visible in theonvergene plots of hydlin reported in �gure 11,whih refer to the mean ow onditions D and toIBPA = 180o. Figure 11-a shows that the GMRESsolver stagnates if nl < 3 and an aeptable onver-gene rate an be ahieved only using nKr � 30. Thebene�ial e�et of higher values of nl on the overallnumber of multigrid iteration required for onver-gene is also visible in �gure 11-b, as the onvergene

rate with nl = 3 is higher than with nl = 1. Figure11-b also highlights that starting GMRES from thelast solution of the standard hydlin after the alula-tion has diverged, results in an initially sharp redu-tion of the residual and then in a onvergene ratesimilar to that of the desending branh of the stan-dard ode. This behaviour an be explained by thepresene of a few outliers: after a few hundred multi-grid yles needed to resolve the stable modes, theunstable modes assoiated with the outliers beomedominant and determine the exponential growth ofthe residual of the standard iteration. They are in-stead solved very rapidly restarting the alulationwith GMRES. In fat, the orresponding subset ofthe spetrum of M�1A with the �rst 150 dominanteigenvalues has 4 omplex onjugate pairs of outliers,labelled from 1 to 4 in order of dereasing distanefrom the entre of the unit dis in �gure 12. In-serting in equation (15) the omputed data relativeto the slope of the asending branh of the resid-ual urve of the standard iteration (�gure 11) andthe spetral radius of M�1A (radius of the outlier 1)yields 38:82e� 3 � 40:17e� 3, whih on�rms onemore the orretness of the mathematial analysis.The eigenmode assoiated with the pair of outliers1 is due to the hub orner stall, sine its maximumpressure amplitude ours in the small region be-tween the sution side and the hub lose to theTrailing Edge (TE) as shown in �gure 13-a. Con-tours of the same variable in a blade-to-blade setionlose to the hub are presented in �gure 13-b, while atwo-dimensional view of the ow separation ausedby the orner stall is given in �gure 16, whih showsthe veloity vetors in the same blade-to-blade se-tion. The eigenmode assoiated with the pair ofoutliers 3 takes its maximum in the Leading Edge(LE) region lose to the hub (�gures 14-a and 14-b)and it orresponds to a separation bubble as shownin �gure 17. The eigenmodes 2 and 4 are not re-ported, beause they orrespond to the same owphenomena as 1 and 3 respetively. The numerialinstabilities of the standard ode are therefore dueto the linearization of the small-amplitude limit y-les assoiated with the hub orner stall and the LEseparation.The eigenmode orresponding to the omplex on-jugate pair 5 does not ause the exponential growthof the residual as it lies in the unit dis, but it wouldbe responsible for a very low onvergene rate of thestandard ode in the absene of any outlier beauseof its proximity to the unit dis. The pressure am-plitude of this eigenmode is non-zero both at theorner between hub and sution surfae lose to the7 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085



TE and in the separation region at the LE lose tothe hub, but it experienes its maximum on the su-tion surfae lose to the tip (�gures 15-a and 15-b),where a strong shok ours (�gure 18). Similarlyto the turbine test-ase, the eigensystem desribedabove is independent of the IBPA.All alulations have been run with 4 grid levels ona omputer luster onsisting of 24 four-proessorSun Ultra-80 nodes, with a Sun Blade-1000 front-end. The CPU-time of one multigrid yle dependson the number of iterations performed on eah gridlevel. The values hosen for this test-ase have ledto a CPU-time of about 56 seonds for one multigridyle of hydlin using 8 proessors and the 800 ylesneeded for a good onvergene of eah linear alu-lation have thus required an overall time of about 12hours. The CPU-time of one multigrid yle of hydis about half of that needed by hydlin.ConlusionsThe paper has presented the linear analysis of tur-bomahinery aeroelastiity from a simple algebraiviewpoint, whih allows one a relatively straight-forward understanding of the relationship betweenthe numerial instabilities of the linearized solverof the Navier-Stokes equations and the small un-steady phenomena of the mean steady ow �eld.The implementation of the GMRES algorithm inthe existing linear NS solver based on a preondi-tioned �xed-point iteration has stabilized the ode,allowing the aeroelasti analysis to be arried outeven in presene of small unsteady phenomena inthe mean ow, whih are believed not to have anysigni�ant e�et on the aeroelasti behaviour of theomponent under investigation. The CPU-time re-quired for onvergene of the linear equations usingthe restarted GMRES algorithm depends on boththe number of GMRES iterations per restarted y-le and the number of multigrid yles per GMRESiterations. The optimum ombination of these twoparameters is however ase-dependent. Both theorretness of the analysis and the relationship be-tween numerial instabilities of the linear solver andunsteady phenomena of the mean ow have beendemonstrated through the linear utter analysis oftwo realisti turbomahinery test-ases.AknowledgementsThis researh has been arried out in the frame-work of the GEODISE projet supported by theEngineering and Physial Sienes Researh Coun-il under grant GR/R67705/01. The permission of

Rolls-Roye pl to publish results from the HYDRAodes is kindly aknowledged.We also aknowledge the ontributions ofM.C. Duta, P. Moinier, L. Lapworth and M. West tothe development of the HYDRA odes and the veryuseful disussions with M. Embree on the propertiesof GMRES. Referenes1M.S. Campobasso and M.B. Giles. Analysis of the e�etof mistuning on turbomahinery aeroelastiity. In Proeed-ings of the IX International Symposium on Unsteady Aerody-namis, Aeroaoustis and Aeroelastiity in Turbomahines,Lyon, September 2000.2W.S. Clark and K.C. Hall. A time-linearized Navier-Stokes analysis of stall utter. Journal of Turbomahinery,122(3):467{476, July 2000.3M.C. Duta. The use of the adjoint method for the min-imization of fored response. PhD thesis, Oxford University,2001.4M.C. Duta, M.B. Giles, and M.S. Campobasso. The har-moni adjoint approah to unsteady turbomahinery design.In Proeedings of the ICFD Conferene on Numerial Meth-ods for Fluid Dynamis, Oxford, Marh 2001.5T.H. Fransson, M. Joeker, A. Boels, and P. Ott. Visousand invisid linear/nonlinear alulations versus quasi three-dimensional experimental asade data for a new aeroelastiturbine standard on�guration. Journal of Turbomahinery,121(4):717{725, Otober 1999.6M.B. Giles and M.S. Campobasso. 3D aspets of turbo-mahinery aeroelastiity. Tehnial Note, Otober 1999.7M.B. Giles, M.C. Duta, and J.D. Mueller. Adjoint odedevelopments using the exat disrete approah. AIAA Paper2001-2696, 2001.8G.H. Golub and C.F. Van Loan. Matrix omputations.The Johns Hopkins University Press, 1996.9K.C. Hall. Deforming grid variational priniple for un-steady small disturbane ows in asades. AIAA Journal,31(5):891{900, 1993.10K.C. Hall, W.S. Clark, and C.B. Lorene. A linearizedEuler analysis of unsteady transoni ows in turbomahinery.Journal of Turbomahinery, 116(3):477{488, July 1994.11D. Hoyniak and W.S. Clark. Aerodynami damping pre-ditions using a linearized Navier-Stokes analysis. ASMEPaper 99-GT-207, 1999.12J.G. Marshall and M. Imregun. A review of aeroelasti-ity methods with emphasis on turbomahinery appliations.Journal of Fluid and Strutures, 10:237{267, 1996.13P. Moinier. Algorithm developments for an unstruturedvisous ow solver. PhD thesis, Oxford University, 1999.14P. Moinier, J.D. Mueller, and M.B. Giles. Edge-basedmultigrid and preonditioning. AIAA Paper 99-3339, 1999.15Y. Saad. Iterative methods for sparse linear systems.PWS Publishing Company, 1996.16L. Sbardella and M. Imregun. Linearized unsteady vis-ous turbomahinery ows using hybrid grids. Journal ofTurbomahinery, 123(3):568{582, July 2001.17J.M. Verdon. Review of unsteady aerodynami methodsfor turbomahinery aeroelasti and aeroaousti appliations.AIAA Journal, 31(2):235{250, February 1993.18J.M. Verdon and J.R. Caspar. A linearized unsteadyaerodynami analysis for transoni asades. Journal of FluidMehanis, 149:403{429, 1984.8 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085



Fig. 1 Mesh for the 2D turbine setion.
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Fig. 3 Mah ontours for transoni onditionsof the 2D turbine.
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a) b)Fig. 5 Flutter analysis of the 2D turbine: a)Logarithmi derement versus IBPA and b) on-vergene histories of hydlin for transoni meanow and IBPA = 180o.
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a) b)Fig. 7 Flutter analysis of the 2D turbine: pres-sure amplitude of the dominant eigenmode asso-iated with the omplex onjugate a) outlier 1and b) eigenvalue 3.

Fig. 8 Blade geometry and surfae mesh of the3D fan.
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a) b)Fig. 9 a) Constant speed working-line of the3D fan and b) onvergene histories of hyd for 4working-points.
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Fig. 10 Flutter analysis of the 3D fan: logarith-mi derement for the 4 working onditions.
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a) b)Fig. 11 Flutter analysis of the 3D fan: on-vergene histories of hydlin for mean ow D andIBPA = 180o.
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a) b)Fig. 13 Pressure amplitude of dominant eigen-mode assoiated with the omplex onjugate pair1: a) 3D view of the orner between the hub andthe sution side lose to the TE and b) blade-to-blade setion lose to the hub.

                                                                                

                                                                                
                                                                                
                                                                                

                                                                                

                                                                                
                                                                                
                                                                                

a) b)Fig. 14 Pressure amplitude of dominant eigen-mode assoiated with the omplex onjugate pair3: a) 3D view of the orner between the hub andthe sution side lose to the LE and b) blade-to-blade setion lose to the hub.

                                                                                

                                                                                
                                                                                
                                                                                

                                                                                

                                                                                
                                                                                
                                                                                

a) b)Fig. 15 Pressure amplitude of dominant eigen-mode assoiated with the omplex onjugate pair5: a) 3D view of the sution side and b) blade-to-blade setion in the LE region lose to the tip.

                                                                                

                                                                                
                                                                                
                                                                                

Fig. 16 TE veloity vetors lose to the hub.

                                                                                

                                                                                
                                                                                
                                                                                

Fig. 17 LE veloity vetors lose to the hub.

                                                                                

                                                                                
                                                                                
                                                                                

Fig. 18 LE Mah ontours lose to the tip.11 of 11Amerian Institute of Aeronautis and Astronautis Paper 2002{4085


