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Adjoint Code Developments Usingthe Exat Disrete ApproahMihael B. Giles�Mihai C. DutayJens-Dominik M�ullerzOxford University Computing LaboratoryOxford, United Kingdom OX1 3QDThis paper presents a number of algorithm developments for adjoint meth-ods using the `disrete' approah in whih the disretisation of the nonlinearequations is linearised and the resulting matrix is then transposed. With a newiterative proedure for solving the adjoint equaitons, exat numerial equivaleneis maintained between the linear and adjoint disretisations. The inorporation ofstrong boundary onditions within the disrete approah is disussed, as well asa new appliation of adjoint methods to linear unsteady ow in turbomahinery.IntrodutionThere is a long history of the use of adjointequations in optimal ontrol theory.26 In uiddynamis, the �rst use of adjoint equations fordesign was by Pironneau,33 but within the �eldof aeronautial omputational uid dynamis, theuse of adjoint equations for design optimisationhas been pioneered by Jameson19, 20, 22 for the po-tential ow, Euler and Navier-Stokes equations.The omplexity of the appliations within thesepapers has also progressed from 2D airfoil optimi-sation, to 3D wing design and �nally to ompleteairraft on�gurations.21, 34, 35 A number of otherresearh groups have also developed adjoint CFDodes3, 4, 8, 24, 39 using the same `ontinuous' ap-proah in whih the �rst step is to linearise theoriginal partial di�erential equations. The ad-joint p.d.e. and appropriate boundary onditionsare then formulated, and �nally the equations aredisretised. While this minimises the memory re-quirements and the CPU ost per iteration, itrequires one to develop an appropriate iterativesolution proedure, and this may not give as gooda onvergene rate as the original nonlinear ode.In addition, the debugging and validation of theadjoint ode is ompliated by the lak of a testsuite of benhmark testases.The alternative `disrete' approah, whih weuse, takes a disretisation of the Navier-Stokesequations, linearises the disrete equations andthen uses the transpose of the linear operator toform the adjoint problem. This approah has been�Professor, email: giles�omlab.ox.a.ukyPhD Student, email: md�omlab.ox.a.ukzRes. O�., email: jdm�omlab.ox.a.ukCopyright  2001 by M.B. Giles, M.C. Duta, J.-D. M�uller. Pub-lished by the Amerian Institute of Aeronautis and Astronautis, In.with permission.

developed by Elliott,10, 11 Anderson,1, 32 Moham-madi29 and Kim.23 The main advantage of thisapproah, in our opinion, is that the developmentbeomes a more straightforward proess. The lin-earisation of the nonlinear disrete equations aneither be performed manually or by automati dif-ferentiation software and the linear ode an bevalidated by diret omparison with the nonlinearode. Similarly, sine the adjoint ode is obtainedby transposing the linear operator, it must yieldexatly the same values for the objetive funtion,and so an be validated against the linear ode.For an exellent review of researh on both on-tinuous and disrete adjoint design methods, seethe paper by Newman et al .31In this paper we ontribute to the developmentand understanding of disrete adjoint methods in�ve respets:� Disussion of the implementation of the ad-joint ode in a way whih minimises the mem-ory and CPU requirements, and an be auto-mated using automati di�erentiation tools;� Development of an adjoint multigrid iterationproedure with preonditioned timesteppingwhih maintains exat equivalene betweenthe linear and adjoint odes at all times dur-ing the evolution of their respetive solutions;� A detailed disussion of the imposition ofstrong boundary onditions and the inlusionof visous stresses in objetive funtions andthe onsequene for the formulation of the ad-joint ode;� Development of a harmoni adjoint odewhih is the ounterpart of a linear unsteadyode for a single frequeny of unsteadiness,1 of 11Amerian Institute of Aeronautis and Astronautis Paper 2001-2596



and whih has appliations in turbomahin-ery blade design for redued vibration due tofored response;� A numerial investigation indiating the po-tential for problems with strong shoks.This researh forms part of the development ofthe HYDRA suite of odes. The foundation is anonlinear ode whih approximates the Reynolds-averaged Navier-Stokes equations on unstruturedhybrid grids, using an edge-based disretisation.The solution proedure uses Runge-Kutta time-marhing aelerated by Jaobi preonditioningand multigrid,30 with dual-timestepping for un-steady ows.The seond ode in the suite is for the linearanalysis of unsteady ows. This is based on a lin-earisation of the unsteady ow equations aroundthe steady-state ow onditions alulated by thenonlinear ode. Due to linearity, unsteady peri-odi ows an be deomposed into a sum of har-moni terms, eah of whih an be omputed inde-pendently. Thus, the linear harmoni ode onsid-ers just one partiular frequeny of unsteadiness,resulting in a formulation in whih the objetiveis to ompute a omplex ow solution whih rep-resents the amplitude and phase of the unsteadyow. This is explained in greater detail later inthis paper.The third ode is the steady adjoint ode, whihagain is based on a linearisation of the ow equa-tions around the nonlinear steady-state ow on-ditions. The fourth ode, whih is an extensionof the third, is the adjoint ounterpart of the lin-ear harmoni ode. It is the development of theseodes whih is the subjet of this paper.Disrete adjoint formulationWe start by onsidering the disrete nonlinearEuler equations with a weak imposition of bound-ary onditions on solid walls through the spei-�ation of zero mass ux through faes on thesurfae. If the far-�eld boundary onditions arealso imposed through far-�eld uxes then the dis-rete system of equations whih is solved is of theform R(U; �) = 0:Here U is the vetor of ow �eld variables, � rep-resents one or more design variables whih ontrolthe geometry of the airfoil or wing (and hene thegrid oordinates) and R(U) represents the disreteux residuals whih are driven to zero by the iter-ative solution proess.If there is just one design variable, then linearis-ing the steady-state equations with respet to a

hange in that design variable yieldsLu = f;where L � �R�U ; u � dUd� ; f � ��R�� :The orresponding perturbation in a nonlinearobjetive funtion J(U; �) iseJ = gTu+ �J�� ;where gT � �J�U :In the adjoint approah, this same quantity anbe obtained by evaluatingeJ = vT f + �J�� ;where the adjoint solution v satis�es the equationLT v = g:The equivalene of this formulation omes fromthe following identity.vT f = vTLu = (LT v)Tu = gTu:The bene�t of the adjoint approah is that ifthere are many design variables then eah givesrise to a di�erent vetor f , whereas if there is onlyone objetive funtion there is only one vetor g.Thus the adjoint approah requires just one ad-joint alulation to obtain the sensitivity of oneobjetive funtion to any number of design vari-ables. Implementation of adjointdisretisationIn the implementation, the linear operator L issplit into two parts,Lu = C u+Du: (1)The �rst part represents the onvetive uxes dueto a Galerkin �nite element disretisation. Theseond part represents the smoothing uxes (towhih the visous uxes are added later for theNavier-Stokes equations) and the operator D anbe further broken down into the produt of twooperators, Du = V Gu;where G omputes the gradient and a pseudo-Laplaian of u at eah node, in addition to u itself.2 of 11Amerian Institute of Aeronautis and Astronautis Paper 2001-2596



The orresponding adjoint operator isLT v = CT v +DT v;with DT v = GT V T v;indiating that the adjoint gradient routine is ap-plied after the adjoint smoothing routine, whihat �rst seems ounter-intuitive.At an even more detailed level, the ation ofeah of the operators C, V and G is omputedby a loop over all edges in the unstrutured grid.Therefore, taking Cu as an example, we an ex-press it as a sum of elemental edge matries whoseonly non-zero entries orresponds to the two nodesat either end of the edge,C u =Xe Ceu:The adjoint version of this is simplyCT v =Xe CTe v;orresponding to a similar loop over all edges.For the onvetive uxes, it is easy to omputethe edge produt CTe v diretly without expliitlyforming the matrix Ce. The transposed gradientoperatorGT is also easily formulated. The diÆultone is the produt V T v. Elliott10, 11 preomputedand stored the non-zero entries in the elementalmatries Ve, and then evaluated the matrix-vetorproduts V Te v. However, the storage of these ma-tries for eah edge requires a substantial amountof memory. Anderson1 avoided the memory ostby reomputing the matries during eah iteration,but this greatly inreases the CPU ost.To minimise both the memory and CPU require-ments, it is neessary to alulate the edge produtV Te v diretly, as with CTe v. The diÆulty is inworking out how best to do this. One approahis to use AD (Automati Di�erentiation) softwaresuh as Odyss�ee,12 ADIFOR5, 7 or TAMC.13 Inforward mode, AD software takes the original non-linear ode and then uses the basi rules of lineari-sation to onstrut the ode to evaluate Veu. Inreverse mode, it produes the ode to alulateV Te v; it may seem that this is a muh harder taskbut in fat it is not. Furthermore, there are the-oretial results whih guarantee that the numberof oating point operations is no more than threetimes that of the original nonlinear ode.16Mohammadi used Odyss�ee to generate muh ofhis adjoint ode29 but a lot of hand-oding wasstill required. In our work we have written theadjoint ode manually, but following many of the

tehniques of automati di�erentiation. To sim-plify the expressions for the partial derivatives, wehose to use the primitive variables (density, velo-ity and pressure) as our working variables, ratherthan the usual onservative variables. The equa-tions are still in onservative form so this hoieof working variables has no e�et on the �nal so-lution.The memory requirements for the adjoint odeare 20-30% greater than for the nonlinear ode,depending on the grid that is used. The CPU ostper iteration is only 10-20% greater than for thenonlinear ode, with the inreased ost of evaluat-ing the adjoint residuals partially o�set by the fatthat the Jaobian for the preonditioning remains�xed.Another important point onerns the evalua-tion of the term f , whih is the soure term for thelinear perturbation equations, and also appears inthe linearised objetive funtion in the adjoint ap-proah. Again, forward mode AD software ouldbe used, but a very muh simpler alternative is touse the `omplex variable method'37 used by An-derson and o-workers.2 The essene of the idea isthat lim�!0 I fR(U; �+i�)g� = �R�� :In this equation, R(U; �) has been taken to bea omplex analyti funtion, and the notationIf: : : g denotes the imaginary part of a omplexquantity. The equation itself is an immediateonsequene of a Taylor series expansion. Thekey is that this an be evaluated numerially us-ing � = 10�20. Unlike the usual �nite di�ereneapproximation of a linear sensitivity, there is nosubtration of two quantities whih are almostequal; therefore there is no unaeptable loss ofauray due to mahine rounding error. Apply-ing this tehnique to a FORTRAN ode requireslittle more than replaing all REAL*8 delarationsby COMPLEX*16, and de�ning appropriate om-plex analyti versions of the intrinsi funtionsmin,max,abs.We have also found this omplex variablemethod to be extremely helpful during programdevelopment. Beause we have also written a lin-ear perturbation ode, we have used it verify thateah of the linear ux subroutines is onsistentwith the original nonlinear ux subroutines, byheking the identityLu = lim�!0 I fR(U+i�u; �)g� ;for arbitrary hoies of u. The l.h.s. is omputedby the linear ux routines, and the r.h.s. is om-puted by applying the omplex variable method3 of 11Amerian Institute of Aeronautis and Astronautis Paper 2001-2596



to the nonlinear ux routines. Having performedthese heks, we then veri�ed that the adjoint uxroutines were onsistent with the linear routinesby heking that the identity uT (LT v) = vT (Lu)holds for any u; v.If one were developing an adjoint ode without�rst writing a linear perturbation ode, then thesetwo steps ould be ombined into one to omparethe adjoint routines to the nonlinear ux routinesto hek for onsisteny.Adjoint Solution ProedureAn important issue is how best to solve the ad-joint equations. The eigenvalues of the adjointmatrix LT are the same as those of the linearmatrix L, and therefore one is guaranteed to getthe same onvergene rate when using Krylov sub-spae iteration methods suh as GMRES, as usedby Anderson.1, 32 On the other hand, if one usesstandard time-marhing methods with multigrid,as ommonly used to solve the nonlinear equa-tions, it is not neessarily the ase that the it-erative onvergene rate for the adjoint solver willmath that of the linear solver.We have analysed this for our time-marhingmethod whih uses Jaobi preonditioning withpartial updates of the numerial smoothing uxes(and the visous uxes for the Navier-Stokes equa-tions) at seleted stages in the Runge-Kutta itera-tion.19 One full step of the M -stage proedure forthe linear equations an be expressed asu(0) = und(m) = �mDu(m�1) + (1��m) d(m�1)u(m) = u(0) + �mP �f � C u(m�1) � d(m)�un+1 = u(M)where �1=�5=1, P is the Jaobi preonditioningmatrix and C and D are again the onvetive anddi�usive matries whose sum is the linear matrixL, as in Equation (1).The outome of this analysis14 is that if theadjoint equations are solved using the followingM -stage iterative proedure,~v(M) = PH �g � LH vn�~d(M) = ��M ~v(M)~v(m) = PH ���m+1CH ~v(m+1)+�m+1DH ~d(m+1)�~d(m) = ��m~v(m) + (1��m+1) ~d(m+1)vn+1 = vn + MXm=1�m~v(m)

then the value of the linearised objetive funtionfrom the linear and adjoint odes is not only iden-tial one they have eah onverged to the �nalsteady state, but it is also idential after eahRunge-Kutta timestep. Note that this iterationuses the transpose of the Jaobi preonditioningmatrix, and works \bakwards" from m =M tom=1. If partial updating of the dissipative uxesis not used, then it an be shown that this reduesto the standard Runge-Kutta method, but withthe transposed preonditioner. However, with theuse of partial updating, whih is ommonly em-ployed to lower the CPU ost, it requires quitea lengthy analysis to determine this form for theadjoint iteration.Furthermore, the analysis also extends to theuse of multigrid, and shows that the key here isthat the restrition operator for the adjoint odemust be the transpose of the prolongation operatorfor the linear ode, and vie versa, and the numberof pre-smoothing iterations for the adjoint odemust equal the number of post-smoothing itera-tions for the linear ode, and vie versa. Providedthese two onditions are satis�ed, the linear andadjoint odes produe idential values for the fun-tional after the same number of multigrid yles.This result is important for two reasons. The�rst is that it guarantees that the adjoint odeonverges, and that it does so with the same rateof onvergene as the linear ode, whih is itselfequal to the asymptoti rate of onvergene of thenonlinear ode. Thus the adjoint ode bene�tsfrom the wealth of experiene and �ne tuning ofiterative proedures for nonlinear odes. The se-ond reason is that it provides another validationhek on the orret implementation of the adjointode. If the linear and adjoint odes do not pro-due idential values for the funtional after onetimestep, it indiates a programming error.Strong boundary onditionsAlthough it is possible to solve the Euler equa-tions with solid wall boundary onditions imposedweakly through zero mass ux through the wallfaes, it is more ommon when there are grid nodeson the wall to use strong boundary onditionsand fore the normal omponent of the veloityat surfae nodes to be zero. In doing so, the nor-mal omponent of the momentum equation uxresidual is disarded. Similarly, in disretising theNavier-Stokes equations, the entire veloity at thesurfae nodes is set to zero, and all omponents ofthe momentum residual are disarded. Thus theequations whih are solved in these two ases areatually of the form(I�B)R(U) = 0;B U = 0:4 of 11Amerian Institute of Aeronautis and Astronautis Paper 2001-2596



Here I is the identity matrix and B is a projetionmatrix whih in the ase of the Euler equationsextrats the normal omponent of the boundaryveloity, and in the ase of the Navier-Stokes equa-tions extrats the entire boundary veloity. Thepresene of the term (I � B) reets the disard-ing of the appropriate ux residual omponents,to be replaed by the strong boundary onditionsBU = 0.When onsidering linear perturbations to theseequations, we obtain(I�B) (Lu� f) = 0;B u = b;where b is a boundary veloity whih is zero forthe Navier-Stokes equations but non-zero for theEuler equations due to a rotation in the surfaenormal.These two equations an be ombined to form((I�B)L+B)u = (I�B)f + b; (2)and the appropriate adjoint equation is then foundby transposing the linear operator, noting that Bis symmetri, to obtain�LT (I�B) +B� v = g: (3)At this point it is onvenient to deompose bothv and g into orthogonal omponents asv = (I�B)v +Bv = vk + v?;g = (I�B)g +Bg = gk + g?:Pre-multiplying Equation (3) by (I�B) shows thatvk satis�es the adjoint equations(I�B)LT vk = gk;B vk = 0:These are the equations whih are solved iter-atively by the adjoint ode. Then, one vkhas been omputed, v? is alulated in a post-proessing step using an equation obtained by pre-multiplying Equation (3) by B:v? = g? �BLT vk: (4)Having omputed vk and v?, the linearised fun-tional is given byeJ = vT �(I�B)f + b�+ �J��= vTk f + vT?b+ �J�� :This shows that v? gives the sensitivity of thefuntional to the boundary ondition b whiharises from the rotation of the boundary normal inthe ase of invisid ows. Note that v? does notorrespond to the normal momentum omponentof the analyti adjoint solution at the boundary.

Residual ontributions to thefuntionalIf the funtional of interest is a fore, suh as liftor drag, we have to inlude the surfae momen-tum residuals, whih are disarded in imposingthe strong boundary onditions, in order to havea omplete fore balane. Indeed, for visous al-ulations, it is the tangential omponent of theseresiduals whih orresponds to the visous shearstress. i.e. one de�nes the surfae shear stressto have the value whih is neessary to make thetangential momentum residual equal to zero. Thenonlinear funtional is thus of the formJ = Jp(U) + hTBR(U); (5)where Jp orresponds to the fore due to the pres-sure distribution on the body and h is a vetorwhih takes the omponent of the disarded mo-mentum residuals in the seleted fore diretion,e.g. the diretion normal to the freestream in thease of lift.The orresponding linearised funtional iseJ = gTp u+ hTBLu+ �J�� ; (6)where gTp � �Jp�U ; (7)so for the adjoint right hand side we need to useg = gp + LTBh: (8)Fortunately, the seond term in this equation anbe omputed in a pre-proessing step using theadjoint ux routines.Harmoni AdjointIn analysing unsteady ow in turbomahinery,it is now ommon to use linearised Euler andNavier-Stokes methods whih treat the unsteadi-ness as a linear perturbation to a nonlinear meanow.17, 18, 27, 28, 38For fored response problem, in whih the un-steadiness is due to periodi unsteady inow oroutow boundary onditions, the original nonlin-ear unsteady disrete equations may be written asMdUdt +R(U) = 0;where M is a blok-diagonal mass matrix. Ex-pressing U(t) as the sum of steady part plus asmall amplitude perturbationU(t) = U + eu(t); keuk � kUkand linearising the equations givesMdeudt + Leu = ef;5 of 11Amerian Institute of Aeronautis and Astronautis Paper 2001-2596



where L � �R�U ;and ef is zero exept at the inow and outowboundary nodes where it gives the residual per-turbations due to the inoming disturbanes.By the priniple of linear superposition, the pe-riodi input ef(t) an be deomposed into the sumof a number of harmoni terms eah of whih anbe written as the real part of a omplex quantityof the form ef(t) = Rnei!t bfo :Making a similar deomposition for the responseeu(t) yields the omplex harmoni equations(i!M + L) bu = bf:In the ase of unsteadiness due to the periodivibration of the blades, the grid nodes all osillatewith the blades. Therefore, the nonlinear equa-tions are best written asM(x) dUdt +R(U; x; _x) = 0;to emphasise that the mass matrix and residualsdepend on the grid oordinates, and the ell resid-ual has additional ux terms due to the motionof the grid. Performing the same steps of lin-earisation and harmoni substitution then yieldsthe same equations as before, with M and L be-ing based on the undisturbed grid oordinates andow, but with bf de�ned asbf = ��R�x bx� i! �R� _x bxdue to the linearised motion of the grid.One important engineering onern is the levelof vibration aused by the inoming wakes. Todetermine this, one needs to ompute a surfaeintegral known as the \worksum". Following thetheory of Lagrangian mehanis, this is the vir-tual work assoiated with the displaement of apartiular natural mode of vibration of the blade.Numerially, it requires the omputation of an in-ner produt of the formbgHbu;where the supersript H denotes the omplex on-jugate transpose, and the vetor g is non-zeroeverywhere exept at the grid nodes on the surfaeof the blade where it orresponds to the vibrationmode being onsidered.The adjoint version of this is to evaluate theinner produt bvH bf;
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Fig. 2 Mah ontours for NACA 0012 at M =0:85.
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Fig. 3 Cl vs. angle of attak for NACA 0012at M = 0:85.attak at the mid-point of the line. The agreementbetween the nonlinear and linear/adjoint resultslearly looks good. To quantify this, Table 1 showsthe nonlinear, linear and adjoint sensitivities at 0Æangle of attak. The di�erent nonlinear sensitivi-ties are obtained by �nite di�erene approximationover di�erent intervals. There is perfet agreementbetween the linear and adjoint sensitivities, andthe agreement with the nonlinear sensitivities iswithin the range one would expet give the errorsinherent in �nite di�erene approximation of thenonlinear sensitivities.An interesting situation arises at higher Mahnumbers at whih there are strong shoks. Fig-ure 2 shows the Mah ontours for the NACA0012 at an angle of attak of 1Æ and an inreasedMah number of 0:85. There are now two shoks,with the maximum loal Mah number reahingapproximately 1:45 on the supersoni side of thesution surfae shok. The irles in Figure 3 showthe nonlinear lift oeÆients over a limited rangeof angles of attak. The line in this �gure is a linearregression least-square �t of the nonlinear data.
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The results indiate a peuliar lak of smooth-ness in the nonlinear data, and this is shown morelearly in Figure 4 whih plots the di�erene be-tween the nonlinear data and the linear regression.The key point is that there is no physial jus-ti�ation for the loss of smoothness. It appearsto be a purely numerial artifat whih is prob-ably related to the displaement of the shok asthe angle of attak hanges. Therefore, the slopeof the linear regression line is probably the bestrepresentation of the true lift slope. However,the linear/adjoint odes give lift slopes whih or-respond to the loal derivative of the nonlineardata. Figure 5 plots the di�erene between thelinear/adjoint slopes and that oming from thelinear regression, and it shows a large disrep-any around 1:17Æ where the loal derivative ofthe nonlinear data di�ers signi�antly from thelinear regression value. Figure 6 plots the num-ber of multigrid yles required to onverge thenonlinear ode to a very tight tolerane. Interest-ingly, the number of yles inreases substantiallyaround 1:17Æ. This suggests the linearisation ma-trix may be almost singular, whih ties in withthe fat that small hanges in the angle of attakprodue larger hanges in the lift than one wouldotherwise expet.This observation of limitations with the applia-tion of linear methods to ows with strong shoksmay be primarily of aademi interest, and notof engineering onern. Most aeronautial appli-ations do not have suh strong normal shoks,and with weaker shoks with a peak normal Mahnumber of less than 1.3 we have not observed asimilar phenomenon. However, it may be nees-sary to look more losely at the issue of linearisedshok displaement, and to use more numerialsmoothing at shoks to obtain the orret linearsensitivity.25Turbulent ow over RAE 2822 airfoilFigure 7 presents the Mah ontours for theReynolds-averaged ow over the RAE 2822 airfoilat angle of attak � = 2:4Æ, freestream Mah num-ber M = 0:725 and Reynolds number Re = 6:5�106. The turbulene is modeled using a Spalart-Allmaras single equation model. The irles inFigure 8 show the sensitivity of the variation in thelift oeÆient with hanges in the angle of attak.The lines orrespond to the lift slopes omputedby the linear and adjoint odes, whih are again inperfet agreement with eah other. There is no ev-idene of any lak of smoothness in the nonlinearlift preditions, and the linear/adjoint odes givelift slopes whih are in very good agreement withthe nonlinear results. This is quanti�ed in Table2 using �nite di�erenes to estimate the nonlinearlift slope at � = 2:4Æ.

Fig. 7 Mah ontours for a RAE 2822 pro�leat M = 0:725, Re = 6:5�106.
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Fig. 9 Convergene histories for the nonlinear,linear and adjoint odes for a RAE 2822 pro�leat M = 0:725, Re = 6:5�106.

Fig. 10 Mah ontours for ow over an M6wing at M = 0:84Figure 9 shows the onvergene histories for thenon-linear, linear and adjoint odes for the RAE2822 testase at � = 2:4Æ. As expeted, they allexhibit the same asymptoti onvergene rate.Invisid ow over M6 wingThe �nal test ase for the steady adjoint ode isthe invisid ow over the M6 wing at a freestreamMah number of 0:84. Figure 10 presents theMah ontours on the wing and the symmetryplane for the baseline geometry at a 2Æ angle of at-tak. Although not plotted here, pressure pro�lesat di�erent spanwise loations agree well with theresults from other invisid alulations. Figure 11presents the ontours of the �fth adjoint variable,whih orresponds to the adjoint energy equation.There are several interesting features in this �g-ure. One is the ontinuity in the adjoint variablesaross the shok; this is in aordane with the 3Dextension of the theory of Giles & Piere.15 An-other feature is the large magnitude of the adjointvariables near the soni line. This orresponds to

Fig. 11 Contours of �fth adjoint variable forM6 wing at M = 0:84
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∆ thicknessFig. 12 Cl plot for ow over an M6 wing atM = 0:84the fat that ow whih is nearly soni is verysensitive to perturbations. The quasi-1D Eulerequations exhibit a logarithmi singularity in theadjoint variables at a soni line,15 but in multipledimensions it appears this is spread so that it isno longer a singularity but it does exhibit largevalues and rapid variations.For these alulation we used as the design vari-able a parameter whih adjusted the thikness ofthe wing, so that a unit hange in the design pa-rameter orresponds to a 1% inrease in thiknessat midspan. Figures 12 and 13 show the varia-tion in lift and drag oeÆients as this parameteris hanged. As one would expet, there is verylittle variation in the lift oeÆient. As a onse-quene, the indued drag will also remain almostonstant so the observed drag inrease with in-reasing thikness is due to a strengthening of theshoks leading to inreased wave drag. For thelift variation, the nonlinear values agree well withthe slope given by the linear/adjoint odes, repre-9 of 11Amerian Institute of Aeronautis and Astronautis Paper 2001-2596
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Fig. 15 Bending mode worksum ompo-nents due to wake interation, versus interbladephase angle assoiated with wake pith.For further validation ases, and an example ofthe usefulness of the adjoint method for design ofblades with redued fored response, see Duta etal .6, 9 ConlusionsIn this paper we have presented a number ofalgorithm developments onerned with the for-mulation and solution of adjoint Euler and Navier-Stokes equations using the disrete approah.These inlude the treatment of strong boundaryonditions and the assoiated adjoint boundaryonditions for lift and drag funtionals, and the so-lution of the adjoint equations using a partiularform of Runge-Kutta time-marhing whih givesexat equivalene with a linear perturbation ode,not only in the �nal results but also during theiterative evolution. This guarantees the same rateof iterative onvergene, and is also very useful fordebugging and validating the adjoint ode.The harmoni adjoint algorithm for the ompu-tation of aeroelasti worksums is believed to bethe �rst time adjoint methods have been appliedto suh a problem. Although the initial valida-tion and appliation has been for fored responseproblems due to wake interation, the longer termappliation is to the predition of utter and thedesign of blades with improved utter boundaries.AknowledgementsThis researh has been supported by the En-gineering and Physial Sienes Researh Counilunder grant GR/L95700, and by Rolls-Roye pl(tehnial monitor: Leigh Lapworth) DERA (teh-nial monitor: John Calvert), and BAESystemspl (tehnial monitor: David Standingford).We also aknowledge the ontributions ofP. Moinier, M.S. Campobasso, N.A. Piere,L. Lapworth and M. West to the development ofthe HYDRA odes.10 of 11Amerian Institute of Aeronautis and Astronautis Paper 2001-2596
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