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Abstract. Astrophysical radio transients are excellent probes of extreme physical
processes originating from compact sources within our Galaxy and beyond. Radio fre-
quency signals emitted from these objects provide a means to study the intervening
medium through which they travel. Next generation radio telescopes are designed to
explore the vast unexplored parameter space of high time resolution astronomy, but re-
quire High Performance Computing (HPC) solutions to process the enormous volumes
of data that are produced by these telescopes. We have developed a combined soft-
ware/hardware solution (code named ARTEMIS) for real-time searches for millisecond
radio transients, which uses GPU technology to remove interstellar dispersion and de-
tect millisecond radio bursts from astronomical sources in real-time. Here we present
an introduction to ARTEMIS. We give a brief overview of the software pipeline, then
focus specifically on the intricacies of performing incoherent de-dispersion. We present
results from two brute-force algorithms. The first is a GPU based algorithm, designed
to exploit the L1 cache of the NVIDIA Fermi GPU. Our second algorithm is CPU based
and exploits the new AVX units in Intel Sandy Bridge CPUs.

1. Introduction

ARTEMIS stands for Advanced Radio Transient Event Monitor and Identification Sys-

tem. It is a project being carried out at Oxford (Astrophysics, OeRC, Engineering
Science) aimed at the real-time processing of high-time resolution data from radio as-
tronomy (Karastergiou et al. in preparation). The project aims to develop the software
and piece together the hardware for surveys of fast transients and pulsars using next
generation radio telescopes such as LOFAR and MeerKAT. Real-time processing is es-
sential to ensure that broadband data streams are reduced to manageable rates both for
storage and further processing. The ARTEMIS servers perform (in real-time) all the
operations necessary to discover short duration radio pulses from pulsars and fast tran-
sients (Wayth et al. 2011), thanks to a modular software structure operating in a C++
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scalable framework (PELICAN, developed at the OeRC). AMPP (ARTEMIS Modular
PELICAN Pipelines) is the software that we have developed for receiving the data, for
further channelisation in finer frequency, generation of Stokes parameters, excision of
radio frequency interference, integration, real-time dispersion searches and detection of
interesting signals across multiple telescopes, in high-throughput CPU and GPU code.
This article describes the results of the GPU implementation of the real-time incoher-
ent de-dispersion aspect and gives a comparison to a CPU implementation. Recently
incoherent de-dispersion (MDSM). Here we present a new, optimised kernel, which we
have used with the MDSM wrapper.

2. Searching for Radio Transients

The quadratic cold plasma dispersion law of the interstellar medium results in radio
pulses at lower frequencies arriving at Earth later than their high frequency counter-
parts (Lorimer & Kramer 2005). To take advantage of the fact that astrophysical radio
bursts are typically broadband, integration over frequency is essential to increase signal
to noise. Incoherent de-dispersion is the process of shifting the (power) data inside each
individual frequency channel to counter the effect of interstellar dispersion before fre-
quency integration. Given the quadratic relationship between time delay and frequency,
the phenomenon is governed by a single free parameter, known as the dispersion mea-
sure (DM), which is the integrated electron number density along the line of sight to the
source. Figure 1 shows simulated filterbank data (using the SIGPROC package), with
a dispersed radio signal sitting in noise. In a blind search for dispersed radio bursts, the
DM is unknown. A large range of DM values is typically searched, by shifting each
frequency channel by the appropriate amount of time for each DM being searched. This
results in each data point (in the frequency-time domain) being used many times for all
the dispersion curves that it contributes to, a useful quality for GPU acceleration.

3. Acceleration via GPU Computing

In order to produce a GPU kernel that can achieve a significant proportion of the peak
performance of the GPU we need to ensure three things. The first is that the accumulator
that stores the integrated value of the intensity (along the trial dispersion curve) sits in
the fastest area of memory. The second is that the correct data from the ( f , t ) domain
is always available to the streaming multiprocessors. The third is that the shifting value
is calculated using as few operations as possible. The GPU algorithm presented is
designed to exploit the new fast L1 cache present on the NVIDIA Fermi hardware.
The algorithm is designed to reuse cache-lines that are present in the L1 cache, vastly

Figure 1. An example of a test data-set (total intensity as a function of ( f , t )) for
496 channels. A weak signal can be seen moving from top left to bottom right.
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Figure 2. Left: A single thread loads data from cache-lines of constant frequency,
contiguous time and increments accumulators for multiple points in (DM, t ) space.
Right: Each thread-block processes an area of (DM, t ) space.

reducing the need to transfer the same data from main graphics memory multiple times.
This is achieved by each thread processing several time elements for its given value of
dispersion, holding these values in local registers (Figure 2, left). This gives rise to
each thread-block processing a rectangular area of the dispersion-time (DM, t ) space,
ensuring cache-lines of ( f , t ) data are reused multiple times (Figure 2, right).

4. Comparisons of GPU and CPU Algorithms

In this section we present results from our GPU kernel and compare these results to
a vector-parallel CPU code that exploits the SSE registers on a multiprocessor Intel
Xeon machine, or the AVX registers on a new Intel i7 Sandy Bridge based machine
(Overclocked from 3.2GHz to 4.2GHz, employing 1600MHz DDR3 SD-RAM). The
CPU code has been designed with maximum cache-line usage in mind and use the Intel
intrinsics in the vector parts of the code. Results from a vectorised code using the Intel
auto-vectorizer have not been presented because they are consistently slower (approxi-
mately 3x, in our region of interest) compared with our vectorised code. Figure 3 shows
results from the CPU code, demonstrating results that are in exact agreement with our
simulated data. In Figure 4 (left) we present the proportion of real-time taken by the
CPU/GPU codes (including different platforms) against a varying number of frequency
channels. Importantly we hold the maximum dispersion measure at 200. However to
ensure that we do not sub-sample the data we set the total number of dispersion mea-
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Figure 3. Left: The result of a dispersion search on simulated data with a DM of
50 pc cm−3. Right: The square pulse signal recovered at the identified DM has all
the characteristics of the simulated signal.
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Figure 4. Left: Plot varying the number of channels showing execution time as
percentage of real-time. Here we hold the total number of trial dispersion searches
equal to the number of channels. Right: Plot varying the maximum dispersion mea-
sure, whilst holding the total number of trial dispersions constant (number of chan-
nels = number of trial dispersion searches = 2000).

sures equal to the total number of channels. Figure 4 (right) shows how the different
codes perform as we increase the maximum value of the dispersion measure with a fixed
number of frequency channels. Here we hold the number of dispersion measures equal
to the number of channels but we change the value of the equally spaced dispersion
curves. In both cases we observe better performance from the GPU code.

5. Conclusions and Future Work

With typical parameters of a dispersion search (∼2000 frequency channels and dis-
persion measures to search), we estimate our kernel achieves approximately 40% –
50% of peak GPU performance. This leaves little margin for improvement for GPU
based, brute-force, incoherent dedispersion algorithms and makes real-time dispersion
searches a possibility under many different observing situations. Our kernel has been
tested successfully in a real environment within ARTEMIS. To try and achieve a bal-
ance between the CPU and GPU computing powers our future work will focus on
implementing vectorisation in the poly-phase filter using AVX registers and the Intel
intrinsics.
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