
Collected matrix derivative results for forward
and reverse mode AD

M. B. Giles

Abstract This paper collects together a number of matrix derivative results which
are very useful in forward and reverse mode AD. It highlights in particular the re-
markable contribution of a 1948 paper by Dwyer and Macphail which derives the
linear and adjoint sensitivities of a matrix product, inverse and determinant, and a
number of related results motivated by applications in multivariate analysis in statis-
tics.

Key words: Forward mode, reverse mode, numerical linear algebra

1 Introduction

As the title suggests, there are no new theoretical results in this paper. Instead, it
is a collection of results on derivatives of matrix functions, expressed in a form
suitable for both forward and reverse mode algorithmic differentiation [8] of basic
operations in numerical linear algebra. All results are derived from first principles,
and it is hoped this will be a useful reference for the AD community.

The paper is organised in two sections. The first covers the sensitivity analysis for
matrix product, inverse and determinant, and other associated results. Remarkably,
most of these results were first derived, although presented in a slightly different
form, in a 1948 paper by Dwyer and Macphail [4]. Comments in a paper by Dwyer
in 1967 [3] suggest that the “Dwyer/Macphail calculus” was not widely used in
the intervening period, but thereafter it has been used extensively within statistics,
appearing in a number of books [11, 14, 15, 17] from the 1970’s onwards. For a
more extensive bibliography, see the notes at the end of section 1.1 in [12].

M.B. Giles
Oxford University Computing Laboratory, Oxford, OX1 3QD, United Kingdom
e-mail: giles@comlab.ox.ac.uk

1



2 M. B. Giles

The second section discusses Maximum Likelihood Estimation which was one
of the motivating applications for Dwyer’s work, and also comments on how the
form of the results in Dwyer and Macphail’s paper relates to the AD notation used
in this paper.

An expanded version of this paper [6] also contains material on the sensitivity of
eigenvalues and eigenvectors, singular values and singular vectors, and associated
results for matrix norms.

2 Matrix product, inverse and determinant

2.1 Preliminaries

We consider a computation which begins with a single scalar input variable SI and
eventually, through a sequence of calculations, computes a single scalar output SO.
Using standard AD terminology, if A is a matrix which is an intermediate variable
within the computation, then Ȧ denotes the derivative of A with respect to SI , while
A (which has the same dimensions as A, as does Ȧ) denotes the derivative of SO with
respect to each of the elements of A.

Forward mode AD starts at the beginning and differentiates each step of the com-
putation. Given an intermediate step of the form

C = f (A,B)

then differential calculus expresses infinitesimal perturbations to this as

dC =
∂ f
∂A

dA+
∂ f
∂B

dB. (1)

Taking the infinitesimal perturbations to be due to a perturbation in the input variable
SI gives

Ċ =
∂ f
∂A

Ȧ+
∂ f
∂B

Ḃ.

This defines the process of forward mode AD, in which each computational step is
differentiated to determine the sensitivity of the output to changes in SI .

Reverse mode AD computes sensitivities by starting at the end and working back-
wards. By definition,

dSO = ∑
i, j

Ci, j dCi, j = Tr(CT dC),

where Tr(A) is the trace operator which sums the diagonal elements of a square
matrix. Inserting (1) gives



Matrix derivative results 3

dSO = Tr
(

CT ∂ f
∂A

dA
)

+Tr
(

CT ∂ f
∂B

dB
)

.

Assuming A and B are not used in other intermediate computations, this gives

A =
(

∂ f
∂A

)T

C, B =
(

∂ f
∂B

)T

C.

This defines the process of reverse mode AD, working backwards through the se-
quence of computational steps originally used to compute SO from SI . The key there-
fore is the identity

Tr(CT dC) = Tr(AT dA)+Tr(BT dB). (2)

To express things in this desired form, the following identities will be useful:

Tr(AT ) = Tr(A),
Tr(A+B) = Tr(A)+Tr(B),

Tr(AB) = Tr(BA).

In considering different operations f (A,B), in each case we first determine the
differential identity (1) which immediately gives the forward mode sensitivity, and
then manipulate it into the adjoint form (2) to obtain the reverse mode sensitivities.
This is precisely the approach used by Minka [13] (based on Magnus and Neudecker
[11]) even though his results are not expressed in AD notation, and the reverse mode
sensitivities appear to be an end in themselves, rather than a building block within
an algorithmic differentiation of a much larger algorithm.

2.2 Elementary results

2.2.1 Addition

If C = A+B then obviously
dC = dA+dB

and hence in forward mode
Ċ = Ȧ+ Ḃ.

Also,
Tr(CT dC) = Tr(CT dA)+Tr(CT dB)

and therefore in reverse mode

A = C, B = C.



4 M. B. Giles

2.2.2 Multiplication

If C = AB then
dC = dA B+A dB

and hence in forward mode
Ċ = ȦB+AḂ.

Also,

Tr(CT dC) = Tr(CTdAB)+Tr(CTAdB) = Tr(BCTdA)+Tr(CTAdB),

and therefore in reverse mode

A = C BT , B = AT C.

2.2.3 Inverse

If C = A−1 then

C A = I =⇒ dC A+C dA = 0 =⇒ dC =−C dA C.

Hence in forward mode we have

Ċ =−C ȦC.

Also,
Tr(CT dC) = Tr(−CT A−1dAA−1) = Tr(−A−1CT A−1dA)

and so in reverse mode

A =−A−T CA−T =−CT CCT .

2.2.4 Determinant

If we define Ã to be the matrix of co-factors of A, then

detA = ∑
j

Ai, jÃi, j, A−1 = (detA)−1ÃT .

for any fixed choice of i. If C = detA, it follows that

∂C
∂Ai, j

= Ãi, j =⇒ dC = ∑
i, j

Ãi, j dAi, j = C Tr(A−1dA).

Hence, in forward mode we have



Matrix derivative results 5

Ċ = C Tr(A−1Ȧ),

while in reverse mode C and C are both scalars and so we have

C dC = Tr(CC A−1dA)

and therefore
A = CC A−T .

Note: in a paper in 1994 [10], Kubota states that the result for the determinant is
well known, and explains how reverse mode differentiation can therefore be used to
compute the matrix inverse.

2.3 Additional results

Other results can be obtained from combinations of the elementary results.

2.3.1 Matrix inverse product

If C = A−1B then

dC = dA−1 B+A−1 dB =−A−1dAA−1B+A−1 dB = A−1(dB−dAC),

and hence
Ċ = A−1(Ḃ− ȦC),

and

Tr(CT dC) = Tr(CT A−1dB)−Tr(CT A−1dAC)

= Tr(CT A−1dB)−Tr(CCT A−1dA)

=⇒ B = A−T C, A =−A−T CCT =−BCT .

2.3.2 First quadratic form

If C = BT AB, then
dC = dBT AB+BT dAB+BT AdB.

and hence
Ċ = ḂT AB+BT ȦB+BT AḂ,

and



6 M. B. Giles

Tr(CT dC) = Tr(CT dBT AB)+Tr(CT BT dAB)+Tr(CT BT AdB)

= Tr(CBT AT dB)+Tr(BCT BT dA)+Tr(CT BT AdB)

=⇒ A = BC BT , B = ABCT +AT BC.

2.3.3 Second quadratic form

If C = BT A−1B, then similarly one gets

Ċ = ḂT A−1B−BT A−1ȦA−1B+BT A−1Ḃ,

and
A =−A−T BC BT A−T , B = A−1BCT +A−T BC.

2.3.4 Matrix polynomial

Suppose C = p(A), where A is a square matrix and p(A) is the polynomial

p(A) =
N

∑
n=0

anAn.

Pseudo-code for the evaluation of C is as follows:

C := aNI

for n from N−1 to 0
C := AC +anI

end

where I is the identity matrix with the same dimensions as A.
Using standard forward mode AD with the matrix product results gives the cor-

responding pseudo-code to compute Ċ:

Ċ := 0
C := aNI

for n from N−1 to 0
Ċ := ȦC +AĊ
C := AC +anI

end



Matrix derivative results 7

Similarly, the reverse mode pseudo-code to compute A is:

CN := aNI

for n from N−1 to 0
Cn := ACn+1 +anI

end

A := 0

for n from 0 to N−1
A := A+CCT

n+1
C := AT C

end

Note the need in the above code to store the different intermediate values of C in the
forward pass so that they can be used in the reverse pass.

2.3.5 Matrix exponential

In MATLAB, the matrix exponential

exp(A)≡
∞

∑
n=0

1
n!

An,

is approximated through a scaling and squaring method as

exp(A)≈
(

p1(A)−1 p2(A)
)m

,

where m is a power of 2, and p1 and p2 are polynomials such that p2(x)/p1(x) is a
Padé approximation to exp(x/m) [9]. The forward and reverse mode sensitivities of
this approximation can be obtained by combining the earlier results for the matrix
inverse product and polynomial.

3 MLE and the Dwyer/Macphail paper

A d-dimensional multivariate Normal distribution with mean vector µ and covari-
ance matrix Σ has the joint probability density function

p(x) =
1√

detΣ (2π)d/2
exp

(
− 1

2 (x−µ)T
Σ
−1(x−µ)

)
.

Given a set of N data points xn, their joint probability density function is



8 M. B. Giles

P =
N

∏
n=1

p(xn).

Maximum Likelihood Estimation infers the values of µ and Σ from the data by
choosing the values which maximise P. Since

logP =
N

∑
n=1

{
− 1

2 log(detΣ)− 1
2 d log(2π)− 1

2 (xn−µ)T
Σ
−1(xn−µ)

}
,

the derivatives with respect to µ and Σ are

∂ logP
∂ µ

=−
N

∑
n=1

Σ
−1(xn−µ),

and
∂ logP

∂Σ
=− 1

2

N

∑
n=1

{
Σ
−1−Σ

−1(xn−µ)(xn−µ)T
Σ
−1

}
.

Equating these to zero gives the maximum likelihood estimates

µ = N−1
N

∑
n=1

xn,

and

Σ = N−1
N

∑
n=1

(xn−µ)(xn−µ)T .

Although this example was not included in Dwyer and Macphail’s original paper
[4], it is included in Dwyer’s later paper [3]. It is a similar application concerning the
Likelihood Ratio Method in computational finance [7] which motivated the present
author’s investigation into this subject.

Returning to Dwyer and Macphail’s original paper [4], it is interesting to note
the notation they used to express their results, and the correspondence to the results
presented in this paper. Using 〈·〉i, j to denote the (i, j)th element of a matrix, and
defining Ji, j and Ki, j to be matrices which are zero apart from a unit value for the
(i, j)th element, then their equivalent of the equations for the matrix inverse are

∂A−1

∂ 〈A〉i, j
= −A−1 Ji, j A−1,

∂ 〈A−1〉i, j

∂A
= −A−T Ki, j A−T .

In the forward mode, defining the input scalar to be SI =Ai, j for a particular choice
(i, j) gives Ȧ=Ji, j and hence, in our notation with B=A−1,

Ḃ =−A−1ȦA−1.



Matrix derivative results 9

Similarly, in reverse mode, defining the output scalar to be SO =(A−1)i, j for a par-
ticular choice (i, j) gives B=Ki, j and so

A =−A−T BA−T ,

again matching the result derived previously.

4 Validation

All results in this paper have been validated with a MATLAB code which performs
two checks.

The first check uses a wonderfully simple technique based on the Taylor series
expansion of an analytic function of a complex variable [16]. If f (x) is analytic with
respect to each component of x, and y= f (x) is real when x is real, then

ẏ = lim
ε→0

I {ε
−1 f (x+iε ẋ)}.

Taking ε =10−20 this is used to check the forward mode derivatives to machine ac-
curacy. Note that this is similar to the use of finite differences, but without roundoff
inaccuracy.

The requirement that f (x) be analytic can require some creativity in applying the
check. For example, the singular values of a complex matrix are always real, and so
they cannot be an analytic function of the input matrix. However, for real matrices,
the singular values are equal to the square root of the eigenvalues of AT A, and these
eigenvalues are an analytic function of A.

The second check is that when inputs A,B lead to an output C, then the identity

Tr(CTĊ) = Tr(AT Ȧ)+Tr(BT Ḃ),

should be satisfied for all Ȧ, Ḃ and C. This check is performed with randomly chosen
values for these matrices.

5 Conclusions

This paper has reviewed a number of matrix derivative results in numerical linear
algebra. These are useful in applying both forward and reverse mode algorithmic
differentiation at a higher level than the usual binary instruction level considered
by most AD tools. As well as being helpful for applications which use numerical
libraries to perform certain computationally intensive tasks, such as solving a system
of simultaneous equations, it could be particularly relevant to those programming in
MATLAB or developing AD tools for MATLAB [1, 2, 5, 18].



10 M. B. Giles

Acknowledgements I am grateful to Shaun Forth for the Kubota reference, Andreas Griewank for
the Minka and Magnus & Neudecker references, and Nick Trefethen for the Mathai and Stewart &
Sun references.

This research was funded in part by a research grant from Microsoft Corporation, and in part
by a fellowship from the UK Engineering and Physical Sciences Research Council.

References

1. Bischof, C., Bücker, H., Lang, B., Rasch, A., Vehreschild, A.: Combining source transfor-
mation and operator overloading techniques to compute derivatives for MATLAB programs.
In: Proceedings of the Second IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2002), pp. 65–72. IEEE Computer Society (2002)

2. Coleman, T., Verma, A.: ADMIT-1: Automatic differentiation and MATLAB interface tool-
box. ACM Transactions on Mathematical Software 26(1), 150–175 (2000)

3. Dwyer, P.: Some applications of matrix derivatives in multivariate analysis. Journal of the
American Statistical Association 62(318), 607–625 (1967)

4. Dwyer, P., Macphail, M.: Symbolic matrix derivatives. The Annals of Mathematical Statistics
19(4), 517–534 (1948)

5. Forth, S.: An efficient overloaded implementation of forward mode automatic differentiation
in MATLAB. ACM Transactions on Mathematical Software 32(2), 195–222 (2006)

6. Giles, M.: An extended collection of matrix derivative results for forward and reverse mode
automatic differentiation. Tech. Rep. NA07/??, Oxford University Computing Laboratory
(2007)

7. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York
(2004)

8. Griewank, A.: Evaluating derivatives : principles and techniques of algorithmic differentiation.
SIAM (2000)

9. Higham, N.: The scaling and squaring method for the matrix exponential revisited. SIAM
Journal on Matrix Analysis and Applications 26(4), 1179–1193 (2005)

10. Kubota, K.: Matrix inversion algorithms by means of automatic differentiation. Applied Math-
ematics Letters 7(4), 19–22 (1994)

11. Magnus, J., Neudecker, H.: Matrix differential calculus with applications in statistics and
econometrics. John Wiley & Sons (1988)

12. Mathai, A.: Jacobians of matrix transformations and functions of matrix argument. World
Scientific, New York (1997)

13. Minka, T.: Old and new matrix algebra useful for statistics.
http://research.microsoft.com/˜minka/papers/matrix/ (2000)

14. Rao, C.: Linear statistical inference and its applications. Wiley, New York (1973)
15. Rogers, G.: Matrix derivatives. Marcel Dekker, New York (1980)
16. Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM

Review 10(1), 110–112 (1998)
17. Srivastava, M., Khatri, C.: An introduction to multivariate statistics. North Holland, New York

(1979)
18. Verma, A.: ADMAT: automatic differentiation in MATLAB using object oriented methods.

In: SIAM Interdiscplinary Workshop on Object Oriented Methods for Interoperability, pp.
174–183. SIAM (1998)


