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Introduction

Quantitatively sound risk management practices come
with formidable computational challenges and a high
operational cost. Risk management of complex portfo-
lios requires the deployment of computationally inten-
sive numerical schemes such as Monte Carlo (MC) sim-
ulations or Partial Differential Equations (PDE) solvers.
Moreover, standard approaches for the calculation of risk
require repeating the calculation of the Profit & Loss
(P&L) of a portfolio under hundreds of market scenar-
ios in order to form finite differences estimators of the
required sensitivities. In many cases, even after deploy-
ing vast amounts of computer power, these calculations
cannot be completed in a practical amount of time (An-
dreasen, 2023). Since the total cost of the through-the-
life risk management can determine whether it is prof-
itable to execute a new trade, solving this technology
problem is critical to allow a securities firm to remain
competitive in the market.

Several faster alternative methods for the calculation of
price sensitivities, especially in the context of MC simu-
lations, have been proposed in the literature (for a review
see, e.g., Glasserman, 2004). Among these, the pathwise
derivative method (Broadie and Glasserman, 1996) pro-
vides unbiased estimates at a computational cost that in
some specific applications is smaller than the one of stan-
dard finite difference approaches. However, in the major-
ity of the problems encountered in practice the standard
pathwise derivative method provides limited computa-
tional gains.

A much more efficient implementation of the pathwise
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derivative method was proposed in Giles and Glasser-
man, 2006 in the context of the Libor Market Model for
European payouts. Although they cited the relevance of
computer science research on algorithmic differentiation
(Griewank, 2000), which Giles had used in engineering
design optimisation (Giles et al., 2003; Giles and Pierce,
2000), the paper illustrated the adjoint methodology us-
ing an algebraic approach which was later generalized to
Bermudan options by Leclerc et al., 2009 and extended
by Denson and Joshi, 2011.

However, the key to make adjoint methods generally
applicable is the adoption of algorithmic differentiation
(Giering and Kaminski, 2006; Griewank, 2000; Griewank
and Walther, 2008; Naumann, 2011) or AAD1 as ex-
plained in several papers (Capriotti, 2008, 2011; Capri-
otti and Giles, 2010, 2012). This gives a prescriptive ap-
proach to new applications, by operating at the level of
the computer instructions in an easy-to-learn program-
matic way.

Over the past fifteen years, AAD has emerged as
tremendously effective for speeding up the calculation
of sensitivities in MC for a variety of specific appli-
cations (Antonov, 2016; Capriotti, 2011; Capriotti and
Giles, 2012; Capriotti et al., 2017; Cesa, 2017; Geer-
aert et al., 2017; Goloubentsev and Lakshtanov, 2019;
Henrard, 2011, 2017; Huge and Savine, 2020; Naumann
and Toit, 2018) including correlation risk (Capriotti and
Giles, 2010), and counterparty credit risk management
(Capriotti et al., 2011; Huge and Savine, 2017; Silotto
et al., 2023). Although the focus of most researchers
has been in the context of MC applications, AAD, being
general in nature, can be used to compute sensitivities in

1 To the best of our knowledge the acronym AAD was first used
in (Capriotti, 2008).
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the context of any numerical scheme, such as PDE (Bain
et al., 2019; Capriotti et al., 2015; Denson and Joshi,
2010), and turns out to be especially beneficial when
applied to numerically demanding calibration schemes
(Capriotti and Lee, 2014; Goloubentsev and Lakshtanov,
2022; Goloubentsev et al., 2021b; Henrard, 2011).
In this paper, we review the ideas underlying AAD,

and discuss several examples that will illustrate how
AAD can be used as a design paradigm to implement
the pathwise derivative method, for virtually any model
or payoff of interest in finance, including path-dependent
and multi asset products. This makes the implementa-
tion of fast calculation of risk a straightforward exercise.

I. ALGORITHMIC DIFFERENTIATION

Algorithmic Differentiation (AD) is a set of program-
ming techniques first introduced in the early 60’s aimed
at computing accurately and efficiently the derivatives of
a function given in the form of a computer program. The
main idea underlying AD is that any such computer pro-
gram can be interpreted as the composition of functions
each of which is in turn a composition of basic arithmetic
(addition, multiplication etc.), and intrinsic operations
(logarithm, exponential, etc.). Hence, it is possible to
calculate the derivatives of the outputs of the program
with respect to its inputs by applying mechanically the
rules of differentiation.

What makes AD particularly attractive when com-
pared to standard (e.g., finite difference) methods for
the calculation of the derivatives, is its computational
efficiency. In fact, AD aims at exploiting the information
on the structure of the computer function, and on the
dependencies between its various parts, in order to opti-
mize the calculation of the sensitivities. In particular, in
some important cases, the calculation of the derivatives
can be highly optimized by applying the chain rule of
differentiation through the instructions of the program
in an appropriate fashion.

In the following, we will review in more detail these
ideas. In particular we will describe the two basic ap-
proaches to AD, the so-called tangent (or forward) and
adjoint (or backward) modes. These differ by how the
chain rule is applied to the composition of instructions
representing a given function, and are characterized by
different computational costs for a given set of computed
derivatives. The books Griewank, 2000, Griewank and
Walther, 2008 and Naumann, 2011 contain a complete
introduction to AD. For a discussion of the fundamental
complexity results for AD, see also (Naumann, 2008a,b,
2009).

Here, we will only recall the main results in order to
clarify how this technique is beneficial in the implemen-
tation of the calculation of sensitivities for financial prod-
ucts. We will begin by stating the results regarding the
computational efficiency of the two modes of AD, and we
will justify them by discussing in detail a toy example.

A. Tangent and Adjoint Mode

Let us consider a computer program with n inputs,
x = (x1, . . . , xn) and and m outputs y = (y1, . . . , ym),
that is defined by a composition of arithmetic and non-
linear (intrinsic) operations. Such a program can be seen
as a function of the form F : Rn → Rm,

(y1, . . . , ym)t = F (x1, . . . , xn) . (1)

In its simplest form, AD aims at producing a code evalu-
ating the sensitivities of the outputs of the original pro-
gram with respect to its inputs, i.e., at calculating the
Jacobian of the function F

Jij =
∂Fi(x)

∂xj
, (2)

with Fi(x) = yi.
The tangent mode of AD allows the calculation of the

function F and of its Jacobian with a cost – relative to the
one for F – which can be shown, under a standard compu-
tational complexity model (Griewank and Walther, 2008;
Naumann, 2011), to be bounded by a small constant, ωT ,
times the number of independent variables, namely

Cost[F&J ]

Cost[F ]
≤ ωT n . (3)

The value of the constant ωT can be also bounded using
a model of the relative cost of algebric operations, non
linear unary functions, and memory access. This analy-
sis gives (Griewank and Walther, 2008; Naumann, 2011)
ωT ∈ [2, 5/2].
The form of the result (3) appears quite natural as

it is the same computational complexity of evaluating
the Jacobian by perturbing one input variable at a time,
repeating the calculation of the function, and forming the
appropriate finite difference estimators.
Consistently with Eq. (3), the tangent mode of AD

provides the derivatives of all the m components of the
output vector y with respect to a single input xj , i.e.,
a single column of the Jacobian (2), at a cost which is
independent of the number of dependent variables, and
bounded by a small constant, ωT . In fact, the same holds
true for any linear combination of the columns of the
Jacobian, Lc(J), namely

Cost[F &Lc(J)]

Cost[F ]
≤ ωT . (4)

This makes the tangent mode particularly well suited for
the calculation of (linear combinations of) the columns of
the Jacobian matrix (2). Conversely, it is generally not
the method of choice for the calculation of the gradients
[i.e., the rows of the Jacobian (2)] of functions of a large
number of variables.
On the other hand, the adjoint mode of AD, or AAD,

is characterized by a computational cost of the form
(Griewank and Walther, 2008; Naumann, 2011)

Cost[F & J ]

Cost[F ]
≤ ωAm , (5)
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with ωA ∈ [3, 4], i.e., AAD allows the calculation of the
function F and of its Jacobian with a cost – relative to
the one for F – which is bounded by a small constant
times the number of dependent variables.
As a result, AAD provides the full gradient of a scalar

(m = 1) function at a cost which is just a small constant
times the cost of evaluating the function itself. Remark-
ably such relative cost is independent of the number of
components of the gradient. This is to be compared with
the cost of evaluating the same gradient by finite dif-
ferences or by means of the tangent mode (3), scaling
linearly with the number n of sensitivities.
For vector valued functions, AAD provides the gradi-

ent of arbitrary linear combinations of the rows of the
Jacobian, Lr(J), at the same computational cost of a
single row, namely

Cost[F &Lr(J)]

Cost[F ]
≤ ωA. (6)

This clearly makes the adjoint mode particularly well-
suited for the calculation of (linear combinations of) the
rows of the Jacobian matrix (2). When the full Jacobian
is required, the adjoint mode is likely to be more efficient
than the tangent mode when the number of independent
variables is significantly larger than the number of the
dependent ones (m≪ n).
In the following Section, we will provide justification

of these results by discussing in detail an explicit exam-
ple. In particular, we will show that the remarkable dif-
ference in computational complexity of the tangent and
adjoint mode arises from the different way of applying
the chain rule of differentiation through the instructions
of the function F .

B. How Algorithmic Differentiation Works: a Simple
Example

Let us consider, as a specific example, the function

F : R2 → R3 , (y1, y2)
t =

(
F1(x1, x2, x3), F2(x1, x2, x3)

)t
defined as(

y1
y2

)
=

(
2 log x1x2 + 2 sinx1x2

4 log2 x1x2 + cosx1x3 − 2x3 − x2

)
. (7)

1. Algorithmic Specification of Functions and Computational
Graphs

Given a value of the input vector x, the output vec-
tor y is calculated by a computer code by means of a
sequence of instructions. In particular, the execution of
the program can be represented in terms of a set of scalar
internal variables, w1, . . . , wN , such that

wi = xi , i = 1, . . . , n (8)

wi = Φi({wj}j≺i) , i = n+ 1, . . . , N . (9)

FIG. 1 Computational graph corresponding to the instruc-
tions (10) for the function in Eq. (7).

Here the first n variables are copies of the input ones, and
the others are given by a sequence of consecutive assign-
ments; the symbol {wj}j≺i indicates the set of internal
variables wj , with j < i, such that wi depends explicitly
on wj ; the functions Φi represent a composition of one
or more elementary or intrinsic operations. In this repre-
sentation, the last m internal variables are the output of
the function, i.e., yi−N+m = wi, i = N −m + 1, . . . , N .
This representation is by no means unique, and can be
constructed in a variety of ways. However, it is a useful
abstraction in order to introduce the mechanism of AD.
For instance, for the function (7), one can represent the
internal calculations as follows:

w1 = x1 , w2 = x2 , w3 = x3 ,
↓

w4 = 2 logw1w2 ,
w5 = 2 sinw1w2 ,
w6 = cosw1w3 ,
w7 = 2w3 + w2 ,

↓
y1 = w8 = w4 + w5 ,

y2 = w9 = w2
4 + w6 − w7 .

(10)

In general, a computer program contains loops that
may be executed a fixed or variable number of times, and
internal controls that alter the calculations performed ac-
cording to different criteria. Nevertheless, Eqs. (8) and
(9) are an accurate representation on how the program is
executed for a given value of the input vector x, i.e., for
a given instance of the internal controls. In this respect,
AD aims at performing a piecewise differentiation of the
program, by reproducing the same controls in the differ-
entiated code (Griewank and Walther, 2008; Naumann,
2011).

The sequence of instructions (8) and (9) can be ef-
fectively represented by means of a computational graph
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with nodes given by the internal variables wi, and con-
necting arcs between explicitly dependent variables. For
instance, for the function in Eq. (7) the instructions (10)
can be represented as in Fig. 1. Moreover, to each arc of
the computational graph, say connecting node wi and wj

with j < i, it is possible to associate the arc derivative

Di,j =
∂Φi({wk}k≺i)

∂wj
, (11)

as illustrated in Fig. 1. Crucially, these derivatives can
be calculated in an automatic fashion by applying me-
chanically the rules of differentiation instruction by in-
struction.

2. Tangent Mode

Once the program implementing F (x) is represented in
terms of the instructions Eqs. (8) and (9) (or with a com-
putational graph like the one in Fig. 1) the calculation of
the gradient of each of its m components,

∇Fi(x) = (∂x1
Fi(x), ∂x2

Fi(x), . . . , ∂xn
Fi(x))

t
, (12)

simply involves the application of the chain rule of dif-
ferentiation. In particular, by applying the rule starting
from the independent variables, one obtains the tangent
mode of AD

∇wi = ei , i = 1, . . . , n (13)

∇wi =
∑
j≺i

Di,j∇wj , i = n+ 1, . . . , N (14)

where e1, e2, . . . , en are the vectors of the canonical basis
in Rn, and Di,j are the local derivatives (11). For the
example in Eq. (7) this gives for instance:

∇w1 = (1, 0, 0)t , ∇w2 = (0, 1, 0)t , ∇w3 = (0, 0, 1)t ,
↓

D4,1 = 2w2/(w1w2), D4,2 = 2w1/(w1w2),
∇w4 = D4,1∇w1 +D4,2∇w2 ,

D5,1 = 2w2 cosw1w2, D5,2 = 2w1 cosw1w2,
∇w5 = D5,1∇w1 +D5,2∇w2 ,

D6,1 = −w3 sinw1w3, D6,3 = −w1 sinw1w3,
∇w6 = D6,1∇w1 +D6,3∇w3 ,

D7,2 = 1, D7,3 = 2,
∇w7 = D7,2∇w2 +D7,3∇w3 ,

↓
D8,4 = 1, D8,5 = 1,

∇y1 = ∇w8 = D8,4∇w4 +D8,5∇w5 ,

D9,4 = 2w4, D9,6 = 1, D9,7 = −1,
∇y2 = ∇w9 = D9,4∇w4 +D9,6∇w6 +D9,7∇w7 .

This leads to

∇y1 = (D8,4D4,1 +D8,5D5,1, D8,4D4,2 +D8,5D5,2, 0)
t

∇y2 = (D9,4D4,1 +D9,6D6,1,

D9,4D4,2 +D9,7D7,2, D9,6D6,3 +D9,7D7,3)
t

which gives the correct result, as it can be immediately
verified.

In the relations above each component of the gradient
is computed independently. As a result, the computa-
tional cost of evaluating the Jacobian of the function F
is approximately n times the cost of evaluating one of its
columns, or any linear combination of them. For this rea-
son, the computation in the tangent mode is more conve-
niently expressed by replacing the vectors ∇wi with the
scalars

ẇi =

n∑
j=1

λj
∂wi

∂xj
, (15)

also known as tangents. Here λ is a vector in Rn spec-
ifying the chosen linear combination of columns of the
Jacobian. Indeed, with this notation, the computation
of the chain rule (13) and (14) becomes

ẇi = λi , i = 1, . . . , n (16)

ẇi =
∑
j≺i

Di,jẇj , i = n+ 1, . . . , N . (17)

At the end of the computation one finds therefore ẇi,
i = N −m+ 1, . . . , N ,

ẇi = ẏi−N+m =

n∑
j=1

λj
∂wi

∂xj
=

n∑
j=1

λj
∂yi−N+m

∂xj
(18)

i.e., a linear combination of the columns of the Jacobian.
As illustrated in Fig. 2, the computation of the chain

rule (16) and (17) allows one to associate to each node of
the computational graph, the tangent of the correspond-
ing internal variable, say ẇi. This can be calculated as a
weighted average of the tangents of the variables preced-
ing it on the graph (i.e., all the ẇj such that i ≻ j), with
weights given by the arc derivatives associated with the
connecting arcs. As a result, the tangents ‘propagate’
through the computational graph from the independent
variables to the dependent ones, i.e., in the same direction
followed in the evaluation of the original function, or for-
ward. The computation of the tangents can in fact pro-
ceed instruction by instruction, at the same time when
the function is evaluated.
It is easy to realize that the cost for the computation of

the chain rule (16) and (17), for a given linear combina-
tion of the columns of the Jacobian is of the same order
of the cost of evaluating the function F itself. Hence, for
the simple example considered here, Eq. (4) represents
an appropriate estimate of the computational cost of any
linear combination of columns of the Jacobian. On the
other hand, in order to get each column of the Jacobian
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FIG. 2 Computational graph for the tangent mode differen-
tiation of the function in Eq. (7).

one has to repeat n = 3 times the calculation of the com-
putational graph in Fig. 2, e.g., by setting λ equal to each
vector of the canonical basis in R3. As a result, the com-
putational cost of evaluating the Jacobian relative to the
cost of evaluating the function F is proportional to the
number of independent variables as predicted by Eq. (3).

We finally remark that, by performing simultaneously
the calculation of all the components of the gradient
(or, more in general, of a set of n linear combinations
of columns of the Jacobian) one can optimize the cal-
culation by reusing a certain amount of computations
(for instance the arc derivatives). This leads to a more
efficient implementation also known as tangent multi-
mode (Griewank and Walther, 2008; Naumann, 2011).
Although the computational cost for the tangent multi-
mode remains of the form (3) and (4), the constant ωT

for these implementations is generally smaller than in the
standard tangent mode see e.g., (Capriotti, 2011).

3. Adjoint Mode

The adjoint mode provides the Jacobian of a function
in a mathematically equivalent way by means of a differ-
ent sequence of operations. More precisely, the adjoint
mode results from computing the derivatives of the fi-
nal result with respect to all the intermediate variables –
the so called adjoints – until the derivatives with respect
to the independent variables are formed. Formally, the
adjoint of any intermediate variable wi is defined as

w̄i =

m∑
j=1

λj
∂yj
∂wi

, (19)

where λ is a vector in Rm. In particular, for each of the
dependent variables one has ȳi = λi, i = 1, . . . ,m, while,

FIG. 3 Computational graph for the adjoint mode differenti-
ation of the function in Eq. (7).

for the intermediate variables one has instead

w̄i =
∂y

∂wi
=
∑
j≻i

∂y

∂wj

∂wj

∂wi
=
∑
j≻i

Dj,iw̄j , (20)

where the sum runs on the indices j > i such that wj

depends explicitly on wi. At the end of the computation
one finds therefore w̄i, i = 1, . . . , n,

w̄i = x̄i =

m∑
j=1

λj
∂yj
∂wi

=

m∑
j=1

λj
∂yj
∂xi

, (21)

i.e., a given linear combination of the rows of the Jacobian
(2).
For the example in Eq. (7) this gives in particular:

w̄8 = ȳ1 = λ1 , w̄9 = ȳ2 = λ2
↓

w̄4 = D8,4w̄8 +D9,4w̄9 ,
w̄5 = D8,5w̄8 , w̄6 = D9,6w̄9 , w̄7 = D9,7w̄9 ,

↓
w̄1 = x̄1 = D4,1w̄4 +D5,1w̄5 +D6,1w̄6

w̄2 = x̄2 = D4,2w̄4 +D5,2w̄5 +D7,2w̄7

w̄3 = x̄3 = D6,3w̄6 +D7,3w̄7 .

It is immediate to verify that by setting λ = e1 and
λ = e2 (with e1 and e2 canonical vectors in R2), the
adjoints (w̄1, w̄2, w̄3) above give the components of the
gradients of ∇y1 and ∇y2, respectively.

As illustrated in Fig. 3, Eq. (20) has a clear interpre-
tation in terms of the computational graph: the adjoint
of a quantity on a given node, w̄i, can be calculated as
a weighted sum of the adjoints of the quantities that de-
pend on it (i.e., all the w̄j such that j ≻ i), with weights
given by the local derivatives associated with the respec-
tive arcs. As a result, the adjoints propagate through
the computational graph from the dependent variables



6

to the independent ones, i.e., in the opposite direction
with respect to the one of evaluation of the original func-
tion, or backward. The main consequence of this is that,
in contrast to the tangent mode, the computation of the
adjoints cannot be in general simultaneous with the exe-
cution of the function. Indeed, the adjoint of each node
depends on variables that are yet to be determined on the
computational graph. As a result, the computation of the
adjoints can in general begin only after the construction
of the computational graph has been completed, and the
information on the value and dependences of the nodes
on the graph, e.g., the arc derivatives, has been appro-
priately stored.

It is easy to realize that the cost for the computation
of the chain rule (20) for a given linear combination of
the rows of the Jacobian is of the same order of the cost
of evaluating the function F itself, in agreement with
Eq. (6). On the other hand, in order to get each row of
the Jacobian, one has to repeat m = 2 times the calcula-
tion of the computational graph in Fig. 3, e.g., by setting
λ equal to each vector of the canonical basis in R2. As a
result, the computational cost of evaluating the Jacobian
relative to the cost of evaluating the function F itself is
proportional to the number of dependent variables, as
predicted by Eq. (5).

C. Algorithmic Differentiation Tools

As illustrated in the previous examples, AD gives a
clear set of prescriptions by which, given any computer
function, one can develop the code implementing the tan-
gent or adjoint mode for the calculation of its deriva-
tives. This involves representing the computer func-
tion in terms of its computational graph, calculating the
derivatives associated with each of the elementary arcs,
and computing either the tangents or the adjoints in the
appropriate direction. This procedure, being mechani-
cal in nature, can be automated (Griewank and Walther,
2008; Naumann, 2011; Savine, 2018).

Several AD tools have been developed that allow the
automatic implementation of the calculation of deriva-
tives either in the tangent or in the adjoint mode.
These tools falls in two main categories, namely source
code transformation and operator overloading. An excel-
lent source of information in the field can be found at
www.autodiff.org.
Source code transformation tools are computer pro-

grams that take as an input the source code of a function,
and return the source code implementing its derivatives.
These tools rely on parsing the instructions of the input
code and constructing a representation of the associated
computational graph. In particular, an AD tool typically
splits each instruction into the constituent unary or bi-
nary elementary operations for which the corresponding
derivatives functions are known.

In the tangent mode, for each elementary instruction,
the AD tool generates the code calculating the tangent of

the output variable given the tangents of the input ones.
This involves the mechanical application of a finite set of
rules, and encoding the derivatives of the intrinsic unary
and binary operations. For instance, for an elementary
instruction of the form

w1 = sinw2

the source code transformation tool will typically gener-
ate a code of the form

w1 = sinw2

ẇ1 = cosw2 ẇ2

evaluating simultaneously the original function, and com-
puting the associated tangents.
In the adjoint mode, AD tools typically produce first

a forward sweep that replicates the original function dec-
orated with a record of the arc derivatives (or of the re-
quired information to calculate them on the fly in the
backward sweep) in a data structure called the tape.
Then, the tool produces the backward sweep by invert-
ing the order of the instructions of the forward sweep.
For each elementary instruction, the AD tool generates
code for the calculation of the adjoint of the inputs given
the adjoint of the output and the saved value of the arc
derivatives. In the example above, the forward sweep
could be for instance of the form

w1 = sinw2

save a record for cosw2 .

The corresponding instruction in the backward sweep
would instead read

retrieve the record for cosw2

w̄2 = cosw2 w̄1 .

On the other hand, the operator overloading approach
exploits the flexibility of object oriented languages in or-
der to introduce new abstract data types suitable to rep-
resent tangents and adjoints. Standard operations and
intrinsic functions are then defined for the new types in
order to allow the calculation of the tangents and the
adjoints associated with any elementary instruction in a
code. These tools operate by linking a suitable set of li-
braries to the source code of the function to be differenti-
ated, and by redefining the type of the internal variables.
Utility functions are generally provided to retrieve the
value of the desired derivatives.
How this is possible is in fact very easy to understand

for the tangent mode, as no information needs to be
stored during the function evaluation for the calculation
of the tangents. An operator overloading implementa-
tion is based on the definition of a new data type holding
information on a certain variable w, and on its tangent
ẇ =

∑n
j=1 λj∂w/∂xj for a given vector x on which w may

depend on, and for a given set of weights λ, specifying a
linear combination of derivatives. Given such a type, it
is then easy to extend the algebra of real number in or-
der to compute consistently both components of the pair
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w̃ = (w, ẇ). This can be formally done by considering
the algebra of the dual real numbers w̃ = (w, ẇ) ≡ w+dẇ
defined by d2 = 0. This way, for instance, the ordinary
multiplication between real numbers is extended to the
new types as

w̃1 · w̃2 = (w1 + dẇ1) · (w2 + dẇ2) =

= w1w2 + d(w1ẇ2 + ẇ1w2) + d2(ẇ1ẇ2)

= (w1w2, w1ẇ2 + ẇ1w2) ,

while, for a generic function assignment w2 = f(w1) the
relation

w̃2 = f(w̃1) = f(w1) + df ′(w1)ẇ1 = (f(w1), f
′(w1)ẇ1) ,

(22)
that can be formally derived from the Taylor expansion of
f(w1+dẇ1) in w1, defines the corresponding assignment
on the new types.

Source code transformation and operator overloading
are both the subject of active research in the field of AD.
Operator overloading is appealing for the simplicity of
usage that boils down to linking some libraries, redefin-
ing the types of the variables, and calling some utility
functions to access the derivatives. The main drawback
is the lack of transparency, and the fact that the calcula-
tion of derivatives is generally slower than in the source
code transformation approach, and more memory inten-
sive. Source code transformation involves more work but
it is generally more transparent as it provides the code
implementing the calculation of the derivatives as a se-
quence of elementary instructions. This simplicity facili-
tates compiler optimization thus generally resulting in a
faster execution.

In the context of computational finance, the applica-
tion of several tools to financial software has been doc-
umented see, e.g., (Goloubentsev and Lakshtanov, 2019;
Naumann and Toit, 2018).

In particular, recent developments in the runtime code
generation approach (Goloubentsev and Lakshtanov,
2019) combine code transformation, operator overload-
ing, and just-in-time compilation. Here, the operator
overloading approach is used to extract the computation
graph that represents the function at run-time, and then
a new program is compiled to represent the function and
its adjoint. This results in an optimized program for the
original function because it is largely freed from high-
level programming language abstractions, and only con-
tains mathematical operations, and inlines specific pa-
rameters known at runtime. As a result, such optimized
function can be much faster to execute than the original
function even before applying the AAD transformations.
Such function can be used for the forward sweep whether
or not AAD sensitivities are required. The compilation
time is a fixed run-time cost, which can be negligible if
the function is computed a large number of times, e.g.
as part of Monte Carlo sampling. As a result, in such
situations the cost of computing sensitivities via AAD
using the optimized function as a basis can be smaller

than computing the original function (Goloubentsev and
Lakshtanov, 2019).
The application of such automatic AD tools on large

inhomogeneous computer codes, like the ones used in fi-
nancial practice, is challenging. Indeed, pricing applica-
tions are rarely available as self contained packages, e.g.,
that can be easily parsed by an automatic AD tool. On
the contrary, pricing applications generally consist of sev-
eral independent components that are typically reusable
in different contexts. Furthermore, they are possibly
written in more than one programming language in an
often heterogeneous programming environment, involv-
ing GPU, FPGA and cloud computing. In some cases
the source code may not be even available as in the case
when a third party library is used.
Fortunately, as we will discuss in the next Section, the

principles of AD can be used as a programming paradigm
for any algorithm and hand coding adjoints is a perfectly
viable software development strategy when the analytics
library is in a stable state, as it is usually the case in
practice for mature, production standard, libraries. AD
tools remain very useful nonetheless for the parts of the
code that are self contained, especially if they are subject
to frequent changes, like the implementation of the payoff
functions, which are often tweaked to meet the demands
of investors.

D. An introduction to the AAD Design Principles

An easy way to illustrate the adjoint design paradigm
is to consider an arbitrary function

Y = FUNCTION(X) (23)

mapping a vector X in Rn to a vector Y in Rm through
a sequence of steps

X → . . . → U → V → . . . → Y, (24)

and to imagine that this represents a certain high level
algorithm that we want to differentiate. Here, the real
vectors U and V represent intermediate variables used in
the calculation and each step can be a distinct high-level
function or even an individual instruction.
The adjoint mode of AD results from computing the

derivatives of the final output with respect to all the in-
termediate variables – the so called adjoints – until the
derivatives with respect to the independent variables are
formed. Using the standard AD notation, the adjoint of
any intermediate variable Vk is defined as

V̄k =

m∑
j=1

Ȳj
∂Yj
∂Vk

, (25)

where Ȳ is a vector in Rm. In particular, for each of the
intermediate variables Ui, using the chain rule we get,

Ūi =

m∑
j=1

Ȳj
∂Yj
∂Ui

=

m∑
j=1

Ȳj
∑
k

∂Yj
∂Vk

∂Vk
∂Ui

,
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FIG. 4 Schematic illustration of the functions in Eqs. (29)
and (30) (left) and their adjoint Eqs. (32) and (31) (right).

which corresponds to the adjoint mode equation for the
intermediate step represented by the function V = V (U)

Ūi =
∑
k

V̄k
∂Vk
∂Ui

,

namely a function of the form Ū = V̄ (U, V̄ ). Starting
from the adjoint of the outputs, Ȳ , we can apply this
rule to each step in the calculation, working from right
to left,

X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ (26)

until we obtain X̄, i.e., the following linear combination
of the rows of the Jacobian of the function X → Y :

X̄i =

m∑
j=1

Ȳj
∂Yj
∂Xi

, (27)

with i = 1, . . . , n. This calculation can be seen as the
implementation of the adjoint counterpart of the function
(23), namely

X̄ = FUNCTION b(X, Ȳ ) . (28)

As noted before, in the adjoint mode, the cost does
not increase with the number of inputs, but it is linear
in the number of (linear combinations of the) rows of the
Jacobian that need to be evaluated independently. In
particular, if the full Jacobian is required, one needs to
repeat the adjoint calculation m times, setting the vector
Ȳ equal to each of the elements of the canonical basis in
Rm. Furthermore, since the partial derivatives depend
on the values of the intermediate variables, one gener-
ally first has to compute the original calculation storing
the values of all of the intermediate variables such as U
and V , before performing the adjoint mode sensitivity
calculation.

By appropriately defining the intermediate variables,
any algorithm can be abstracted in general as a compo-
sition of functions as in (24). However, the actual calcu-
lation graph might have a more complex structure. For
instance the step U → V might be implemented in terms

of two computer functions of the form

V 1 := V1(U1) , (29)

V 2 := V2(U1, U2) , (30)

with U = (U1, U2)t and V = (V 1, V 2)t. Here the nota-
tionW = (W 1,W 2)t simply indicates a specific partition
of the components of the vector W in two sub-vectors.
As illustrated in Fig. 4, a natural way to represent the
step Ū ← V̄ in (26), i.e., the function Ū = V̄ (U, V̄ ),
can be given in terms of an adjoint calculation graph.
This adjoint graph has the same structure of the original
graph with each node/variable representing the adjoint of
the original node/variable, and it is executed in opposite
direction with respect to the original one. The relation
between the adjoint nodes is defined by the correspon-
dence between Eqs. (23) and (28), e.g., in the specific
example

(Ū1, Ū2)t := V2 b(U1, U2, V̄ 2) , (31)

Ū1 := Ū1 + V1 b(U1, V̄ 1) . (32)

Here, the above notation indicates that the adjoint Ū1

has two contributions, one for each node preceding it in
the adjoint graph.
The structure of the adjoint calculation graph as given

by equations (31) and (32) can be understood as follows.
The variable U1 is an input of two distinct functions in
the instructions (29) and (30) so that, by applying the
definition of adjoint (27) for the variable U1 as an input
of the function V = V (U1, U2) = (V 1(U1), V 2(U1, U2))t,
we get

Ū1 =
∑
j

V̄j
∂Vj
∂U1

=
∑
k

V̄ 1
k

∂V 1
k

∂U1
+
∑
k

V̄ 2
k

∂V 2
k

∂U1
(33)

where we have simply partitioned the components of the
vector V as (V 1, V 2)t for the second equality. Similarly,
one has for Ū2

Ū2 =
∑
j

V̄j
∂Vj
∂U2

=
∑
k

V̄ 2
k

∂V 2
k

∂U2
, (34)

where we have used the fact that V 1 has no dependence
on U2. Therefore, one can realize that the adjoint calcu-
lation graph implementing the instructions in (31) and
(32) indeed produces the adjoint Ū = (Ū1, Ū2)t.
The adjoint instructions (31) and (32) depend on the

variables U1 and U2. As a result, as previously men-
tioned, the adjoint algorithm (26) can be executed only
after the original instructions (24) have been executed
and the necessary intermediate results have been com-
puted and stored. This is the reason why the adjoint
of a given algorithm generally contains a forward sweep,
which reproduces the steps of the original algorithm, plus
a backward sweep, which computes the adjoints.
The construction described above can be applied re-

cursively for each of the functions involved in the calcu-
lation, see e.g., Fig. 5. Here it is clear that one needs to
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FIG. 5 Schematic illustration of recursive application of AAD
design principles.

define an adjoint counterpart to each function of the orig-
inal program with the dependencies among their inputs
and outputs defined by the rules described above. Fol-
lowing this design paradigm it is therefore easy to write
the blueprint of any numerical algorithm.

In particular, each adjoint function, taken in isolation,
contains in turn a forward sweep recovering the infor-
mation that is necessary for the computation of the ad-
joints. However, this is clearly suboptimal since all the
information necessary to perform the adjoint of the algo-
rithm is computed when performing the forward sweep
of the algorithm as a whole. Hence, this information
could be saved during this stage. This way, when the
adjoint functions are invoked during the backward sweep
there is no need to perform the functions’ forward sweeps
again. Strictly speaking, this is necessary to ensure that
the computational cost of the overall algorithm remains
within the expected bounds. However, there is a trade-
off between the time and space necessary to store and
retrieve this information and the time to recalculate it
from scratch. Thus, in practice it is useful to store in the
forward sweep only the results of relatively expensive cal-
culations (for more details about this technique, known
as “checkpointing” please see (Capriotti and Giles, 2012)
and the reference text books (Griewank, 2000; Naumann,
2011)).

In the next section we will illustrate how these ideas
can be employed for the efficient implementation of the
pathwise derivative method.

II. MONTE CARLO APPLICATIONS

A. Pathwise Derivative Method

Option pricing problems can be typically formulated
in terms of the calculation of expectation values of the

form

V = EQ

[
P (X(T1), . . . , X(TM ))

]
. (35)

Here X(t) is a N -dimensional vector and represents the
value of a set of underlying market factors (e.g., stock
prices, interest rates, foreign exchange pairs, etc.) at
time t. P (X(T1), . . . , X(TM )) is the discounted pay-
out function of the priced security, and depends in gen-
eral on M observations of those factors. In the fol-
lowing, we will indicate the collection of such obser-
vations with a d = N × M dimensional state vector
X = (X(T1), . . . , X(TM ))t, and with Q(X) the appro-
priate risk neutral distribution according to which the
components of X are distributed.
The expectation value in (35) can be estimated by

means of MC by sampling a number NMC of random
replicas of the underlying state vector X[1], . . . , X[NMC],
sampled according to the distribution Q(X), and evalu-
ating the payout P (X) for each of them. This leads to
the estimate of the option value V as

V ≃ 1

NMC

NMC∑
iMC=1

P (X[iMC]) . (36)

Due to the central limit theorem, the standard error is
Σ/
√
NMC, where Σ2 = EQ[P (X)

2
] − EQ[P (X)]2 is the

variance of the sampled payout.
The pathwise derivative method allows the calculation

of the sensitivities of the option price V (35) with re-
spect to a set of Nθ parameters θ = (θ1, . . . , θNθ

), with a
single simulation. Indeed, whenever the payout function
is regular enough, e.g., Lipschitz-continuous, and under
additional conditions that are often satisfied in financial
pricing (see, e.g., Glasserman, 2004), one can write the
sensitivity ⟨θ̄k⟩ ≡ ∂V/∂θk as

⟨θ̄k⟩ = EQ

[∂Pθ (X)

∂θk

]
(37)

where we have added the subscript θ to P to allow for
the possibility of an explicit dependence of the payout on
θ.
In general, the calculation of Eq. (37) can be performed

by applying the chain rule and averaging on each MC
path the so-called pathwise derivative estimator

θ̄k ≡
∂Pθ(X)

∂θk
=

d∑
j=1

∂Pθ(X)

∂Xj
× ∂Xj

∂θk
+
∂Pθ(X)

∂θk
. (38)

The second term in Eq. (38) arises due to the explicit
dependence of the payout on θ.
As an example we can consider the special case in

which the state vectorX = (X(T1), . . . , X(TM )) is a path
of a N -dimensional diffusive process, of the form

dX(t) = µ(X(t), t, θ) dt+ σ(X(t), t, θ) dWt, (39)
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with X(t0) = X0. Here the drift µ(X, t, θ) and volatility
σ(X, t, θ) are anN -dimensional vector andN×N matrix,
respectively, and Wt is a N -dimensional Brownian mo-
tion with instantaneous correlation matrix ρ(t) defined
by ρ(t) dt = EQ [dWtdW

t
t ]. In this case, the pathwise

derivative estimator (38) may be rewritten as

θ̄k =

M∑
l=1

N∑
j=1

∂ Pθ(X(T1), . . . , X(TM ))

∂Xj(Tl)

∂Xj(Tl)

∂θk

+
∂Pθ(X)

∂θk
, (40)

where we have relabeled the d components of the
state vector X grouping together different observations
Xj(T1), . . . , Xj(TM ) of the same (j-th) asset.
The pathwise derivative estimators of the sensitivities

are mathematically equivalent2 to the finite difference
estimators (in the following also referred to as “bump
and reval” or “bumping”) defined using the same ran-
dom numbers in both simulations, and for a vanishingly
small perturbation. As a result, the implementation ef-
fort associated with the pathwise derivative method is
generally justified if the computational cost of the esti-
mator (38) is less than the corresponding one associated
with bumping.

Apart from simple applications, näıve implementations
of the pathwise derivative method do not generally lead
to significant computational savings with respect to finite
difference estimators. This is typically the case when
the perturbation of a model parameter affects in a non
trivial way a large number of components of the tangent
process, as it is typically the case in interest rate, credit
and commodity models.

For non path dependent options in the context of Libor
Market Models, Giles and Glasserman, 2006 have shown
that that the pathwise derivative method can be effi-
ciently implemented by expressing the calculation of the
estimator (38) in terms of linear algebra operations, and
utilize adjoint methods to reduce the computational com-
plexity by rearranging appropriately the order of the cal-
culations. Recently these algebraic adjoint approaches,
have been successfully generalized by Leclerc et al., 2009
for the case of Bermudan swaptions , and by Denson and
Joshi, 2011 for more accurate simulation schemes.

B. AAD and the Pathwise Derivative Method

General Design

AAD provides a general design and programming
paradigm for the efficient implementation of the path-
wise derivative method.

2 Provided that the state vector is a regular enough function of θ
(Glasserman, 2004).

In a MC simulation, the evolution of the process X
is usually simulated, possibly by means of an approxi-
mate discretization scheme (Glasserman, 2004), by sam-
pling X(t) on a discrete grid of points, 0 = t0 < t1 <
. . . < tn < · · · < tNs , a superset of the observation times
(T1, . . . , TM ). Here t0 = 0 indicates the time the expec-
tation values (35) are conditional on, e.g., usually the
time the expectation value is calculated. The left panel
of Fig. 6 illustrates schematically the sequence of oper-
ations that are typically performed in order to generate
each sample X[iMC] in Eq. (36). Here the state vector at
time tn+1 is obtained by means of a function of the form

X(tn+1) = PROPn[{X(tm)}m≤n, Z(tn), θ], (41)

mapping the set of state vector values on the discretiza-
tion grid up to tn, {X(tm)}m≤n, into the value of the
state vector at time tn + 1. Note that, in general, this is
a function of the model parameters θ and of the particu-
lar time step considered. Here Z(tn) indicates the vector
of uncorrelated random numbers which are used for the
MC sampling in the step n→ n+1. Note that, the initial
values of the state vector X(t0) are known quantities at
the beginning of the simulation. As a result, they can be
considered as components of the model parameter vector
so that the n = 0 step is of the form,

X(t1) = PROP0[Z(t0), θ], (42)

as also indicated schematically in the figure.
Once the full set of state vector values on the simula-

tion time grid {X(tm)}m≤Ns is obtained, the subset of
values corresponding to the observation dates is passed
to the payout function, evaluating the payout estimator
Pθ(X) for the specific random sample X

(X(T1), . . . , X(TM ))→ Pθ(X(T1), . . . , X(TM )). (43)

Overall, the evaluation of a MC sample of a pathwise
estimator can be seen as an algorithm implementing a
function of the form θ → P (θ). As a result, it is pos-
sible to design its adjoint counterpart (θ, P̄ ) → (P, θ̄)
which gives (for P̄ = 1) the pathwise derivative estima-
tor in Eq. (37). The right panel of Fig. 6 illustrates the
structure of the adjoint algorithm. This can be simply
obtained by reversing the flow of the computations, and
associating to each function its adjoint counterpart. In
particular, the first step of the adjoint algorithm is the
adjoint of the payout evaluation. This is a function of
the form

(X̄, θ̄) = P̄ (X, θ), (44)

where X̄ = (X̄(T1), . . . , X(TM )) is the adjoint of the
state vector on the observation dates, and θ̄ is the ad-
joint of the model parameters vector, respectively

X̄(Tm) =
∂Pθ(X)

∂X(Tm)
, (45)

θ̄ =
∂Pθ(X)

∂θ
, (46)
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FIG. 6 Schematic illustration of the general AAD implemen-
tation of the pathwise derivative method.

for m = 1, . . . ,M . The adjoint of the state vector on the
simulation dates corresponding to the observation dates
are initialized at this stage. The remaining ones are ini-
tialized to zero.

The adjoint state vector is then calculated backwards
in time through the adjoint of the propagation method
(41), namely

({X̄(tm)}m≤n, θ̄)+=

PROP bn[{X(tm)}m≤n, Z(tn), θ, X̄(tn+1)], (47)

for n = Ns − 1, . . . , 1 , giving

X̄(tm)+=

N∑
j=1

X̄j(tn+1)
∂Xj(tn+1)

∂X(tm)
, (48)

with m = 1, . . . , n,

θ̄+=

N∑
j=1

X̄j(tn+1)
∂Xj(tn+1)

∂θ
, (49)

where we have used the notation += for the standard
addition assignment operator. Here, according to the
principles of AAD, the adjoint of the propagation method
takes as arguments the inputs of its forward counterpart,
namely the state vectors up to time tn, {X(tm)}m≤n,
the vector of random variates Z(tn), and the θ vector.
The additional input is the adjoint of the state vector at
time tn+1, X̄(tn+1). The return values of PROP bn are
the contributions associated with the step n + 1 → n to
the adjoints of i) the state vector {X̄(tm)}m≤n, Eq. (48);
ii) the model parameters θ̄k, k = 1, . . . , Nθ, Eq. (49).
The final step of the backward propagation corre-

sponds to the adjoint of (42), giving

θ̄+= PROP b0[Z(t0), θ, X̄(t1)], (50)

i.e., the final contribution to the adjoints of the model
parameters. It is easy to verify that the final result is
the pathwise derivative estimator in Eq. (38). The ex-
amples discussed in the following will provide a concrete
examples for the steps described above.

C. Correlation Risk

In the description above we have assumed that the
components of the vectors Z(tn), are uncorrelated stan-
dard normal random variables. Since these variables do
not carry sensitivities to any model parameter, their ad-
joint is not calculated by PROP bn. In a typical financial
simulation setup, these variables are mapped into cor-
related counterparts Z ′(tn) and then used to implement
the propagation step X(tn)→ X(tn+1) so that the prop-
agation step (41) is modified as

Z ′(tn) = CORRELATE(Z(tn), θ) (51)

X(tn+1) = PROPn[{X(tm)}m≤n, Z
′(tn), θ] , (52)

where we have included the correlation parameters in the
vector θ. The corresponding adjoint steps in the back-
ward propagation read therefore

({X̄(tm)}m≤n, θ̄, Z̄
′(tn))+=

PROP bn[{X(tm)}m≤n, Z
′(tn), θ, X̄(tn+1)] . (53)

and

θ̄+= CORRELATE b(Z(tn), θ, Z̄
′(tn)), (54)

The quantities {X̄(tm)}m≤n and θ̄ in Eq. (53) are given
respectively by Eqs. (48) and (49) and

Z̄ ′(tn)+=

N∑
j=1

X̄j(tn+1)
∂Xj(tn+1)

∂Z ′(tn)
. (55)

Equation (54) corresponds instead to

θ̄+=

N∑
j=1

Z̄ ′
j(tn)

∂Z ′
j(tn)

∂θ
(56)

updating the adjoints of the correlation model param-
eters. In the common situation in which the variable
Z ′(tn) are jointly normal, the last step typically involves
accumulating the adjoint of the Cholesky factor as dis-
cussed in (Capriotti and Giles, 2010).
We recall that the Cholesky factorization of a correla-

tion matrix ρ produces a lower triangular matrix C such
that ρ = CCt so that one can write Z ′ = CZ. The nat-
ural AAD approach would average the values of C̄ from
each of the MC paths:

C̄ = Z̄ ′Z ′ t . (57)

This average C̄ can be converted into derivatives with
respect to the entries of the correlation matrix ρ by means



12

FIG. 7 Pseudocode implementing the propagation method
PROPn (41) for the Libor Market Model of Eq. (63) for dW = 1,
under the predictor corrector Euler approximation (64), and
the volatility parameterization (62).

of the adjoint of the Cholesky factorization (Smith, 1995),
namely a function of the form

ρ̄ = CHOLESKY B(ρ, C̄) (58)

providing

ρ̄i,j =

N∑
l,m=1

∂Cl,m

∂ρi,j
C̄l,m . (59)

The pseudocode for the adjoint Cholesky factorization is
given in (Capriotti and Giles, 2010). It is important to
note that because the Cholesky factor is a path invariant
quantity the Cholesky factorization and its adjoint are
executed once per simulation.

D. Examples

1. Libor Market Model Simulation

As a second example, in order to make the connec-
tion with previous algebraic implementations of adjoint
methods (Denson and Joshi, 2011; Giles and Glasserman,
2006; Leclerc et al., 2009), we discuss the implementation
of AAD in the Libor Market Model. Here we indicate
with Ti, i = 1, . . . , N +1, a set of N +1 bond maturities,

with spacings δ = Ti+1 − Ti, assumed constant for sim-
plicity. The dynamics of the Libor rate as seen at time t
for the interval [Ti, Ti+1), Li(t), takes the form

dLi(t)

Li(t)
= µi(L(t))dt+ σi(t)

tdWt, (60)

0 ≤ t ≤ Ti, and i = 1, . . . , N , where Wt is a dW -
dimensional standard Brownian motion, L(t) is the N -
dimensional vector of Libor rates, and σi(t) the dW -
dimensional vector of volatilities, at time t. Here the
drift term in the spot measure, as imposed by the no
arbitrage conditions (Brace et al., 1997), reads

µi(L(t)) =

i∑
j=η(t)

σt
iσjδLj(t)

1 + δLj(t)
, (61)

where η(t) denotes the index of the bond maturity imme-
diately following time t, with Tη(t)−1 ≤ t < Tη(t). As is
common in the literature, to keep this example as simple
as possible, we take each vector σi to be a function of
time to maturity

σi(t) = σi−η(t)+1(0) = λ(i− η(t) + 1). (62)

Equation (60) can be simulated by applying a Euler
discretization to the logarithms of the forward rates, e.g.,
by dividing each interval [Ti, Ti+1) into Ns steps of equal
width, h = δ/Ns. This gives

Li(tn+1)

Li(tn)
= exp

[(
µi(L(tn))− ||σi(tn)||2/2

)
h

+ σt
i(n)Z(tn)

√
h
]
, (63)

for i = η(nh), . . . , N , and Li(tn+1) = Li(tn) if i < η(nh).
Here Z is a dW -dimensional vector of independent stan-
dard normal variables.
In a recent paper, Denson and Joshi, 2011 extended the

original adjoint implementation to the propagation of the
Libor under the predictor-corrector drift approximation,
consisting in replacing the drift in (61) with

µpc
i (L(tn)) =

1

2

i∑
j=η(nh)

(
σt
iσjδLj(tn)

1 + δLj(tn)

+
σt
iσjδL̂j(tn+1)

1 + δL̂j(tn+1)

)
(64)

where L̂j(tn+1) is calculated from Lj(tn) using the evo-
lution (63), i.e., with the simple Euler drift (61).
The pseudocode for the propagation of the Libor rates

for dW = 1, corresponding to the function PROP in (41),
is shown in Fig. 7. Here, as discussed in Giles and
Glasserman, 2006, the computational cost of implement-
ing Eq. (63) is minimized by first evaluating

vi(tn) =

i∑
j=η(nh)

σjδLj(tn)

1 + δLj(tn)
, (65)
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FIG. 8 Adjoint of the propagation method PROP bn (47) for
the Libor Market Model of Eq. (60) for dW = 1, under the pre-
dictor corrector Euler approximation (64), and the volatility
parameterization (62). The corresponding forward method is
shown in Fig. 7. The instructions commented are the forward
counterpart to the adjoint instructions immediately after.

as a running sum for i = η(nh), . . . , N , so that µi = σt
ivi.

The algebraic formulation discussed in Denson and
Joshi, 2011 comes with a significant analytical effort. In-
stead, as illustrated in Fig. 8, the AAD implementation
is quite straightforward. According to the general de-
sign of AAD, this simply consists of the adjoints of the
instructions in the forward sweep executed in reverse or-
der. In this example, the information computed by PROP
that is required by PROP b is stored in the vectors scra
and hat scra. By inspecting the structure of the pseu-
docode it also appears clear that the computational cost
of PROP b is of the same order as evaluating the original
function PROP.

As a standard test case in the literature, here we have
considered contracts with expiry Tn to enter in a swap
with payments dates Tn+1, . . . , TN+1, with the holder of

the option paying a fixed rate K

V (Tn) =

N+1∑
i=n+1

B(Tn, Ti)δ(Sn(Tn)−K)+, (66)

where B(Tn, Ti) is the price at time Tn of a bond matur-
ing at time Ti

B(Tn, Ti) =

i−1∏
l=n

1

1 + δLl(Tn)
, (67)

and the swap rate reads

Sn(Tn) =
1−B(Tn, TN+1)

δ
∑N+1

l=n+1B(Tn, Tl)
. (68)

Here we consider European style payouts. The extension
to Bermuda options of Leclerc and collaborators (Leclerc
et al., 2009) can be obtained with a simple modification
of the original algorithm.
The remarkable computational efficiency of the imple-

mentation discussed above is illustrated in Fig. 9. Here
we plot the execution time for the calculation of all the
Delta, ∂V/∂Li(0), and Vega, ∂V/∂σi(n), relative to the
calculation of the swaption value as obtained with the
implementation above and by finite differences. As the
maturity of the swaption increases, the number of risk to
compute also increases.
In practical terms, results as shown in Fig. 9 mean that

AAD produces orders of magnitude speed ups with re-
spect to bumping. As a result, a calculation that would
ordinarily take many hours can be performed, on the
same hardware, in a matter of a few minutes. By the
same token, calculations for which a large amount of
computer power is generally deployed in order to achieve
an acceptable performance, can be executed with a frac-
tion of the computational resources and energy consumed
(Andreasen, 2023). This significantly reduces the costs
and the environmental impact of financial institutions.

2. Correlation Risk and Binning

The complication with the implementation discussed
in Sec.II.C is that it gives an estimate for the correlation
risk, but it does not provide a corresponding confidence
interval. An alternative approach would be to convert C̄
to ρ̄ for each individual path, and then compute the av-
erage and standard deviation of ρ̄ in the usual way. How-
ever, this is in general rather costly (Capriotti and Giles,
2010). An excellent compromise between these two ex-
tremes is to divide the NMC paths into Nb ’bins’ of equal
size. For each bin, an average value of C̄ is computed
and converted into a corresponding value for ρ̄. These
Nb estimates for ρ̄ can then be combined in the usual
way to form an overall estimate and confidence interval
for the correlation risk.
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FIG. 9 Ratio of the CPU time required for the AAD calcu-
lation of the Delta and Vega and the time to calculate the
option value for the swaption in Eq. (66) as a function of the
option expiry Tn. The time to calculate Delta and Vega using
bumping is also shown. Lines are guides for the eye.

The computational benefits can be understood by con-
sidering the computational costs for both the standard
evaluation and the adjoint pathwise derivative calcula-
tion. In the standard evaluation, the cost of the Cholesky
factorization is O(N3), and the cost of the MC sampling
is O(NMCN

2), so the total cost is O(N3 + NMCN
2).

SinceNMC is always much greater thanN , the cost of the
Cholesky factorization is usually negligible. The cost of
the adjoint steps in the MC sampling is also O(NMCN

2),
and when using Nb bins the cost of the adjoint Cholesky
factorization is O(NbN

3). To obtain an accurate con-
fidence interval, but with the cost of the Cholesky fac-
torisation being negligible, requires that Nb is chosen so
that 1 ≪ Nb ≪ NMC/N . Without binning, i.e., us-
ing Nb = NMC , the cost to calculate the average of the
estimators (59) is O(NMCN

3), and so the relative cost
compared to the evaluation of the option value is O(N).

The remarkable computational efficiency of AAD is il-
lustrated in Fig. 10 for the Second to Default Swap. Here
we plot the ratio of the CPU time required for the cal-
culation of the value of the option, and all its pairwise
correlation sensitivities, and the CPU time spent for the
computation of the value alone, as functions of the num-
ber of names in the basket. As expected, for standard
finite-difference estimators, such ratio increases quadrat-
ically with the number of names in the basket. With-
out the use of binning, i.e., if we perform the adjoint of
the Cholesky factorization on each MC path, the relative
cost of the AAD calculation scales linearly with N . With
binning the relative cost of AAD is constant (see inset of
Fig. 10). Already for medium sized basket (N ≃ 20) the

FIG. 10 Ratios of the CPU time required for the calculation of
the option value, and correlation Greeks, and the CPU time
spent for the computation of the value alone, as functions
of the number of names in the basket. Symbols: Bumping
(one-sided finite differences) (triangles), AAD without bin-
ning (i.e. Nb = NMC) (stars), AAD with binning (Nb = 20)
(empty circles). Lines are guides for the eye, and the MC
uncertainties are smaller than the symbol sizes.

cost associated with bumping is over 100 times more ex-
pensive than the one of AAD (Capriotti and Giles, 2010).
The binning procedure described above can be gener-

alized to any situation in which the standard solution
procedure involves a common preprocessing step before
any of the path calculations are performed. Other ex-
amples would include calibration of model parameters to
market prices, or a cubic spline construction of a local
volatility surface. In each case, there is a linear relation-
ship between the forward mode sensitivities before and
after the preprocessing step, and therefore a linear rela-
tionship between the corresponding adjoint sensitivities.

E. Discontinuous Payoffs

The biggest limitation of the pathwise derivative
method (both in its näıve and in its adjoint implementa-
tion) is that it cannot handle discontinuous payoffs be-
cause of the previously mentioned regularity conditions
required to take the derivative inside the expectation as
in Eq. (37). This requirement is generally cited in the
literature as a shortcoming of the pathwise derivative
method. Indeed, it potentially limits the practical utility
of the method to a great extent as the majority of the
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payout functions commonly used for structured deriva-
tives contains discontinuities, e.g., in the form of digital
features, random variables counting discrete events, or
barriers (Hull, 2002). A similar limitation appears when
trying to apply the pathwise derivative method to com-
pute second order risk of piecewise differentiable payoffs
(such those typically used in practice).

Fortunately, the Lipschitz requirement turns out to be
more of a theoretical than a practical limitation. Indeed,
a practical way of addressing non-Lipschitz payouts is
to smooth out explicitly the payoff at hand replacing the
Heaviside functions it contains with a smooth alternative
(Capriotti, 2011). This comes at the cost of introducing
a finite bias in the sensitivity estimates. However, such
bias can generally be reduced to levels that are considered
acceptable in financial practice.

In some circumstances it is reasonably straightforward
to perform some analytical work and integrate exactly
the singularities introduced by differentiating under ex-
pectation Heaviside functions. Indeed, in a distributional
sense, differentiating an Heaviside function gives rise to a
Dirac’s delta which is easy to integrate. Examples of such
an approach are (Joshi and Kainth, 2004) and (Capriotti
et al., 2011). This approach has the additional benefit of
removing some, often a significant part, of the variance of
the payoff estimator thus reducing the number of Monte
Carlo simulations required to achieve the same level of
accuracy (Capriotti et al., 2011). However, this analyt-
ical work, being payout dependent, is often too onerous
to be of practical utility in a practitioner’s context.

A third type of approach is using conditional expecta-
tions to smooth out the payoff (Glasserman, 2004). This
can easily be illustrated for digital options, where one can
stop the path simulation one time step before maturity
TM = tNs

. Conditional on the value X(tNs−1), an Euler
discretization for the final time step has the form

X(tNs
) = X(tNs−1) + µ (X(tNs−1), tNs−1, θ)hNs−1

+ σ (X(tNs−1), tNs−1, θ)∆WtNs−1
(69)

where ∆WtNs−1
=WtNs

−WtNs−1
, which defines a (multi-

variate) distribution for X(tNs). A path simulation can
be performed in the usual way for the first Ns − 1 time
step, while on the final time step, one instead considers
the full distribution of possible values for ∆WtNs−1

. This
gives a Gaussian distribution for X(tNs

), which, in the
scalar case, reads

pθ (X(tNs
) | X(tNs−1))

=
1√

2πσ2
W

exp

(
− (X(tNs

)− µW )
2

2σ2
W

)
(70)

where

µW (X(tNs−1)) = X(tNs−1) + µ (X(tNs−1), tNs−1, θ)hNs−1,

σW (X(tNs−1)) = σ (X(tNs−1), tNs−1, θ)
√
hNs−1 . (71)

Hence, the conditional expectation for the value of a dig-
ital payoff with strike K,

P (X(TM )) = 1(X(TM )−K) ≡

{
1, X(TM ) > K

0, X(TM ) ≤ K
,

where 1() is the Heaviside theta function, reads

E [P (X(t(Ns)) | X(tNs−1)]

=

∫ ∞

−∞
1 (z −K) pθ (z | X(tNs−1)) d = Φ

(
µW −K
σW

)
(72)

where Φ(·) is the cumulative Normal distribution func-
tion. The MC estimator for the option value is now

V̂ =
1

NMC

NMC∑
iMC=1

E
[
P (X(tNs) | X(t

(iMC)
Ns−1)

]
.

and because the conditional expectation
E [P (X(tNs) | X(tNs−1)] is a differentiable function
of the input parameters (provided the drift and volatility
are regular enough (Glasserman, 2004)) the pathwise
sensitivity approach can now be used.
There are two difficulties in using this form of condi-

tional expectation in real-world applications. The first is
that the integral arising from the conditional expectation
will often become a multi-dimensional integral without
an obvious closed-form value (e.g., consider a digital op-
tion based on the median of a basket of 20 stocks), and
the second is that it again requires payoff specific changes
to the MC valuation infrastructure.
One solution, dubbed ‘vibrato’ in (Giles, 2009), is to

use a Monte Carlo estimate of the conditional expec-
tation, and use the so-called Likelihood Ratio Method
(LRM) (Glasserman, 2004) to compute its sensitivities.
Going back to the simple example above one can write

∂

∂θ
E [P (X(tNs)) | X(tNs−1)]

= E
[
P (X(tNs))

(
∂ log pθ
∂θ

)
total

| X(tNs−1)

]
(73)

with (
∂ log pθ
∂θ

)
total

=
∂ log pθ

∂X(tNs−1)

∂X(tNs−1)

∂θ
+
∂ log pθ
∂θ

. (74)

Re-arranging we get

∂

∂θ
E [P (X(tNs

)) | X(tNs−1]

= E
[
P (X(tNs

))
∂ log ps

∂X(tNs−1)
| X(tNs−1)

]
∂X(tNs−1)

∂θ

+ E
[
P (X(tNs))

∂ log pθ
∂θ

| X(tNs−1)

]
. (75)



16

As as result, in the backward sweep, one can initialize
the adjoint as

X̄(tNs−1) = E
[
P (X(tNs

))
∂ log ps

∂X(tNs−1)
| X(tNs−1)

]
θ̄ = E

[
P (X(tNs

))
∂ log pθ
∂θ

| X(tNs−1)

]
(76)

and then continue backwards down the path in the usual
way (Giles, 2009).

F. Regression based Monte Carlo

An important extension of the AAD scheme presented
above is the one for derivatives with early-exercise feature
(Glasserman, 2004). Capriotti et al., 2017 presented the
AAD version of the celebrated least-square algorithms of
(Tsitsiklis and Roy, 2001) and (Longstaff and Schwartz,
2001) and, by discussing in detail examples of practical
relevance, demonstrated how accounting for the contri-
butions associated with the regression functions is cru-
cial to obtain accurate estimates of the Greeks, espe-
cially in XVA applications (Silotto et al., 2023). Sim-
ilarly, for Bermudan swaptions, Antonov, 2016 demon-
strated the significant computational advantages of the
approach with respect to brute force sensitivity calcula-
tions. Here we briefly present these extensions following
(Capriotti et al., 2017).

The value V (t) of a Bermudan option is the supremum
of the option value over all possible exercise policies:

V (t)

N(t)
= sup

τ∈T (t)

Et

[
E(τ)

N(τ)

]
(77)

where E(t) is the exercise value of the option, and N(t)
is the value of the numeraire asset at time t. We de-
note by T1, . . . , TM the exercise dates of the option,
D(t) = {Tm ≥ t} and by η(t) the smallest integer such
that Tη(t)+1 > t. An exercise policy is represented math-
ematically by a stopping time taking values in D(t). T (t)
is the set of stopping times taking values in D(t).
Given then hold value of the Bermudan-style option,

H(t)

N(t)
= Et

[
V
(
Tη(t)+1

)
N
(
Tη(t)+1

)] , (78)

the option holder, following an optimal exercise policy,
will exercise his option if the exercise value is larger than
the hold value, i.e.,

V
(
Tη(t)

)
= max

(
E
(
Tη(t)

)
, H
(
Tη(t)

))
. (79)

This, leads to the so-called dynamic programming for-
mulation (Glasserman, 2004),

H(t)

N(t)
= Et

[
max

(
E
(
Tη(t)+1

)
N
(
Tη(t)+1

) , H (Tη(t)+1

)
N
(
Tη(t)+1

))] , (80)

Backward Induction

FIG. 11 Schematic representation of the a regression based
MC algorithm.

Backward Induction Adjoint Backward Induction

FIG. 12 Schematic representation of the a regression based
MC algorithm and of its adjoint.

for Tη ≤ t < Tη+1, and η = 1, . . . ,M − 1. Starting from
the terminal condition H (TM ) ≡ 0, the equation above
defines a backward iteration in time for H(t).

If the underlying risk factor process {X(t)}0≤t≤T is
a generic k-dimensional Markov process, the hold value
H(t) is a function of the state vector at time t, namely,

Ht(x) = E
[

N(X(t))

N (X (Tm+1))
V (X (Tm+1)) | X(t) = x

]
.

(81)

Regression-based MC (Longstaff and Schwartz, 2001;
Tsitsiklis and Roy, 2001) techniques provide an effective
way of computing conditional expectation values of the
form above.

In the context of the valuation of Bermudan-style op-
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tions, the hold value on an exercise date Tm

HTm(x) = E
[
N (X (Tm))

N (X (Tm+1))
V (X (Tm+1)) | X (Tm) = x

]
.

(82)

is assumed to be of the form

Ĥm(x) = βt
mψ(x) (83)

where ψ(x) = (ψ1(x), . . . , ψd(x))
t

is a vector of d
basis functions. The vector of coefficients βm =
(β1m, . . . , βdm)

t
can be determined by regressing

N (X (Tm)) /N (X (Tm+1))V (X (Tm+1))

versus

ψ (X (Tm+1)) .

This gives

βm = Ψ−1
m Ωm, (84)

where we define the d× d matrix

Ψm = E
[
ψ (X (Tm))ψt (X (Tm))

]
(85)

and the d× 1 vector

Ωm = E
[
N (X (Tm))V (X (Tm+1))

N (X (Tm+1))
ψ (X (Tm))

]
. (86)

These equations provide a straightforward recipe to com-
pute the regression coefficients βm by substituting Ψm

and Ωm with their sample average over NMC replications.
The schematic illustration of the algorithm is displayed
in Fig. 11. Using the rules illustrated in Sec. I.D, it is
straightforward to design the AAD version of the algo-
rithm as in Fig. 12 with the implementation of the adjoint
version of the backward induction depicted in stylized
form in Fig. 13, see e.g., (Capriotti et al., 2017).
The hold value obtained by regression defines an exer-

cise policy whereby on each exercise date Tm the option
is exercised if

E (X (Tm)) > Hm (X (Tm)) ≡ βt
mψ (X (Tm)) . (87)

Such policy, corresponding in general to a suboptimal
stopping time, will result in a lower-bound estimator
for the Bermudan-style option value (Glasserman, 2004)
which is often what is used in the financial practice. The
resulting algorithm consists of a pre-simulation in which
the regression coefficients are computed and an indepen-
dent simulation evaluating the estimator

P (n) =

M∑
m=1

[
1(n) (t1, tm)1

(
E(n)

m > H(n)
m

) E(n)
m

N
(n)
m

]
(88)

where

1(n) (t1, tm) =

(
m−1∏
i=1

1
(
H

(n)
i > E

(n)
i

))
, (89)

FIG. 13 Schematic representation of the adjoint of the back-
ward induction algorithm.

FIG. 14 Schematic representation of the lower bound algo-
rithm and of its adjoint.

and the convention 1(n) (t1, t1) = 1. This is illustrated in
Fig. 14.

The payoff estimator for Bermudan-style options (88)
is not differentiable with respect to the pathwise value of

the approximate exercise boundary H
(n)
m , and it requires

the regularization described in Sec. II.E. A common ap-
proximation is to assume that that regression exercise
boundary is close to optimality so that the value of the
contract is approximatively continuous across the exer-
cise boundary and no regularization is required. Under
this assumption, no contribution to the sensitivities is
associated with the perturbations of the exercise bound-
ary, and one can therefore keep the regression coefficients
fixed while calculating the sensitivities. The accuracy of
this approximation depends on the quality of the exer-
cise boundary. In general though, a payoff regularization
needs to be applied and the contribution of the sensitiv-
ities arising from the regression coefficients needs to be
kept into account (Capriotti et al., 2017). This is partic-
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ularly important when regression based approaches are
applied for XVA applications where omitting this step
could lead to significant mis-hedging, see e.g. (Capriotti
et al., 2017).

G. Other Monte Carlo Applications

On a different line of research, Jain et al., 2019 ex-
tended the stochastic grid bundling method (SGBM), a
“regress-later” (Glasserman and Yu, 2004) based Monte
Carlo scheme for pricing early-exercise options (Jain and
Oosterlee, 2015), with an adjoint method to compute in
an efficient manner sensitivities along the paths with an
acceptable accuracy. They also proposed the applica-
tion of the method for the efficient implementation of
the ISDA standard initial margin model, an application
also discussed in (Antonov et al., 2017).
One of the most successful applications of AAD is in

the context of XVA, as originally proposed in (Capriotti
et al., 2011), due the computational complexity associ-
ated with such portfolio risk measures. The calculation of
risk on XVA generally involves the simultaneous evalua-
tion of conditional values of large ‘netting sets’ of trades
referencing in turn a large number of market risk fac-
tors. As a result, it requires computationally intensive
MC simulations. For typical applications, AAD allows
a reduction of the computational cost by hundreds of
times allowing one to perform in minutes risk runs that
would take otherwise several hours or could not even
be performed overnight without large parallel comput-
ers. Similar results, were also obtained in (Huge and
Savine, 2017). Here the authors considered a reformu-
lation of the XVA problem in terms of a least square
regression approach to which AAD is applied, similarly
to (Capriotti et al., 2017). Similar applications were also
considered by (Fries, 2019).

AAD can also be used to obtain the Hessian of com-
puter implemented functions (Griewank and Walther,
2008; Naumann, 2011). For a scalar function, the cost
for computing the Hessian by AAD, in units of the cost
to evaluate the original function, can be shown to be
bounded by a linear function in the number of inputs
(Griewank and Walther, 2008; Naumann, 2011). For the
calculation of the full Hessian, this represents a saving
with respect to standard bumping of order number of in-
puts. However, such computational cost has the same
dependence on the number of inputs of computing gra-
dients by AAD and applying the tangent mode of AD to
the calculation of the gradient. Forming finite difference
estimators of the Hessian using AAD to compute the first
order derivatives would also share the same cost. The ap-
peal of the latter approach is the simplicity of the imple-
mentation and the fact that it does not require regularity
(Lipschitz continuity) of the gradient of the function.

Joshi and Yang, 2011 pursued an algorithmic adjoint
approach for the calculation of second order Greeks in
the context of the Libor Market Model and they showed

FIG. 15 Cost of computing Delta and Gamma relative to the
cost of computing the value for a Basket option as a function
of the number of assets in the basket.

that, as expected on general grounds, the complexity of
the Hessian calculation is a linear function of the number
of state variables times the complexity of the original al-
gorithm. Joshi and Yang, 2010 also applied a similar ap-
proach to the calculation second order of portfolio credit
derivatives such as synthetic collateralized debt obliga-
tion (CDO) tranches, while Chan et al., 2015 applied it
to different simulation schemes in the Heston model.

Other approaches for the calculation of second order
risk can be obtained by combining different methods for
the calculation of first order risk. For example, Capri-
otti, 2015 showed how AAD can be combined with the
pathwise derivative and likelihood ratio method (LRM)
(Glasserman, 2004) to construct efficient Monte Carlo
estimators of second order price sensitivities of deriva-
tive portfolios. This can be done by applying AAD to
the LRM estimators (AADLRM) or, viceversa, applying
LRM to the AAD estimators (LRMAAD). The paper
demonstrated with a numerical example how the pro-
posed technique can be straightforwardly implemented
to greatly reduce the computation time of second order
risk. As illustrated in Fig. 15 the mixed AADLRM and
LRMAAD estimators are far more efficient than using
finite-differences and significatively more efficient than
the mixed finite-difference AAD (FDAAD) approach. All
the mixed estimators result in over one order of magni-
tude savings in computation time even for medium sized
basket N ∼ 10. As expected, while the pure finite-
difference estimators display a computational complexity
scaling as O(N2), both the AADLRM and the FDAAD
approaches scale as O(N). However, the dependence on
N for the AADLRM approach is much weaker because
only a part of the estimator scales linearly with the num-
ber of assets. This is generally true also for the LRMAAD
estimator. However, for this simple problem the LR-
MAAD estimator can be computed more efficiently. This
results in the remarkable outcome that the full Gamma
matrix can be computed at a cost that is approximately
four times the cost of computing the value of the option
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irrespective of the number of underlying assets in the bas-
ket.

Similarly Pironneau et al., 2016 combined two meth-
ods, Vibrato (Giles, 2009) and AAD. They showed that
this combined technique is faster than standard finite
difference, more stable than automatic differentiation of
second order derivatives and more general than Malliavin
Calculus (Fournié et al., 1999).

III. PDE APPLICATIONS

Although we limited the discussion here to the path-
wise derivative method and MC simulations, the ideas
presented here are applicable in general to implement the
calculation of sensitivities for any numerical algorithm,
including PDEs for which the technique was first intro-
duced in computational finance by Achdou and Piron-
neau, 2005. In this section we will focus on these.

A. Option prices and backward PDEs

Option pricing problems can be often formulated in
terms of a linear parabolic PDE of second order of the
form

∂V

∂t
+ µ(x, t, θ)

∂V

∂x

+
1

2
σ2(x, t, θ)

∂2V

∂x2
− ν(x, t, θ)V = 0, (90)

where

Vt(θ) = V (xt, t, θ)

≡ E
[
exp

(
−
∫ t

t

ν(xu, u, θ)du

)
P (xT , θ)

∣∣∣xt] (91)

is the value of a derivative contract at time t; see, e.g.,
(Andersen and Piterbarg, 2010). The expectation is
taken under a suitable probability measure, depending
on the financial context, given the value of a state vari-
able xt at time t ≥ 0. At the maturity date T > t, the
value Pθ(xT ) of the financial derivative depends on the
realization of the risk factor {xt}0≤t that satisfies

dxt = µ(xt, t, θ)dt+ σ(xt, t, θ)dWt (92)

where µ(x, t, θ) and σ(x, t, θ) are the drift and the volatil-
ity functions, and {Wt}0≤t is a one-dimensional Brown-
ian motion. As before, θ = (θ1, . . . , θNθ

) represents the
vector of Nθ parameters the model is dependent on. By
supplying appropriate spatial boundary conditions, see,
e.g., (Andersen and Piterbarg, 2010), and the terminal
condition V (x, T, θ) = Pθ(x) at maturity T , Eq. (90) can
be solved backwards in time for the value V (x, t, θ) of the
derivative security at any time t ≤ T .

The Black-Scholes PDE for the price of European-style
claims (Hull, 2002) is of the form (90) where µ(x, t, θ) =
(r(t)− δ(t))x, σ(x, t, θ) = σ(t)x and ν(x, t, θ) = r(t).
Here r(t) and δ(t) denote the (deterministic) risk-free
interest rate and dividend yield, respectively.

B. Numerical solutions by finite-difference discretization for
backward PDEs

The solution Vt0(θ) = V (xt0 , t0, θ) of the PDE (90) can
be found numerically by discretization on the rectangular
domain (t, x) ∈ [t0, T ]×[xmin, xmax] where xmin and xmax

(such that xmin < xt0 < xmax) are constants obtained
by means of probabilistic considerations, see (Andersen
and Piterbarg, 2010). In particular, by denoting i) the
points on the time axis by tm = t0 + m∆t where m =
0, . . . ,M and ∆t = (T − t0)/M , and ii) the points on the
spatial axis by xj = xmin + j∆x, where j = 0, . . . , N + 1
and ∆x = (xmax − xmin)/(N + 1), one can discretise the
PDE (90) with finite-difference approximations for the
first and second derivatives. A standard discretization
scheme, see, e.g., (Andersen and Piterbarg, 2010), results
in a matrix iteration of the form3

LB(tm, ϕ, θ)V
m(θ) = RB(tm, ϕ, θ)V

m+1(θ) (93)

where V m(θ) = (V (x1, tm, θ), . . . , V (xN , tm, θ))
t and

V (tm, xj , θ) indicate the finite-difference approximation
to the solution of the PDE (90)4. We introduce theN×N
tri-diagonal matrices

LB(tm, ϕ, θ) = I− ϕ∆tD(t̃m(ϕ), θ), (94)

RB(tm, ϕ, θ) = I+ (1− ϕ)∆tD(t̃m(ϕ), θ), (95)

where t̃m(ϕ) = (1 − ϕ)tm + ϕ tm. Both expressions are
defined in terms of the tri-diagonal matrix D(t, θ) given
by

[D(t, θ)]j,j = cj(t, θ),

[D(t, θ)]j,j+1 = uj(t, θ),

[D(t, θ)]j+1,j = lj+1(t, θ), (96)

where j = 1, . . . , N in the first equation and j =
1, . . . , N − 1 for the second and third and the coefficients
cj(t, θ), uj(t, θ) and lj(t, θ) are defined in terms of the
functions µ(x,t, θ), σ(x,t, θ) and ν(xj , t, θ) in the PDE
(90) (Capriotti et al., 2015).

The parameter ϕ is bounded between ϕ = 0, corre-
sponding to the fully explicit scheme, and ϕ = 1, cor-
responding to the fully implicit scheme (Andersen and
Piterbarg, 2010).

Given the value of the derivative at maturity VM
j (θ) =

Pθ(xj), Equation (93) can be recursively solved, by uti-
lizing standard tri-diagonal solvers for m =M −1, . . . , 0,
in order to find the vector V 0

j (θ). From this, the value
of the derivative Vt0 = V (xt0 , t0, θ), corresponding to the

3 Here for simplicity of exposition we omit the boundary term, see,
e.g., (Capriotti et al., 2015)

4 To keep the notation as light as possible, we denote the exact
solution of the PDE (90) and its finite-difference approximation
with the same symbol.
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FIG. 16 Schematic illustration of an algorithm solving the
PDE (90) by finite differences.

state variable xt0 observed at time t0, can be computed
by means of, e.g., linear interpolation,

Vt0 = V 0
j⋆ +

V 0
j⋆+1 − V 0

j⋆

xj⋆+1 − xj⋆
(xt0 − xj⋆), (97)

with j⋆ such that xj⋆ ≤ xt0 < xj⋆+1. The associated
algorithm (see Fig. 16) is given as follows:

(S1) Initialize the value vector on the final time slice
VM
j (θ) = Pθ(xj) with j = 0, . . . , N :

VM = PAYOFF(θ). (98)

Note that, here and in the following we omit the
dummy dependence of the pseudocode functions on
the grid points as well as on the parameter ϕ as
we want to focus on the sensitivities of the model
parameters θ.

(S2) For m =M − 1, . . . , 0 execute the following steps:

a) Compute the coefficient vectors cm(θ) ≡
c(t̃m(ϕ), θ), um(θ) ≡ u(t̃m(ϕ), θ), and lm(θ) ≡
l(t̃m(ϕ), θ):

(cm, um, lm) = COMPUTECOEFFM(θ). (99)

b) Compute the matrices Lm
B (θ) ≡ LB(tm, ϕ, θ)

and Rm
B (θ) ≡ RB(tm, ϕ, θ) in Equations (94)

and (95) from the coefficients vectors cm(θ),
um(θ), and lm(θ):

(Lm
B , R

m
B ) = COMPUTELRB(cm, um, lm). (100)

c) Given V m+1, solve Equation (93) for V m by
calling a suitable tri-diagonal solver such as

V m = TRIDIAGSOLVER(Lm
B , R

m
B , V

m+1), (101)

FIG. 17 Schematic illustration of an adjoint (right) of the
algorithm for solving the PDE (left) in Eq. (90) by finite dif-
ferences.

which we can represent mathematically as the
following sequence of operations:

Wm+1 = Rm
BV

m+1,

V m =Wm+1/Lm
B , (102)

where we adopted the notation “B/A” to rep-
resent finding the solution X of the linear sys-
tem AX = B.

(S3) Compute Vt0 = V (xt0 , t0, θ) with a suitable inter-
polation scheme, e.g., the scheme of (97), by calling
a method of the kind

Vt0 = COMPUTESPOTVALUE(V 0) . (103)

Since the matrix (96) is tri-diagonal, the cost of a sin-
gle iteration of Equation (93) is O(N). As a result, the
overall computation complexity of the algorithm above is
O(NM).
Incorporating intermediate cash flows, or Bermudan

optionality is also straighforward but we omit the de-
scription for simplicity referring the interested reader to
(Capriotti et al., 2015).

C. AAD and backward PDEs

The evaluation of the numerical solution of the PDE
(90) by means of the algorithm described in Section
III.B can be seen as a computer-implemented function
mapping θ → Vt0(θ). By following the principles of
AAD, it is possible to design its adjoint counterpart
(θ, V̄t0) → (Vt0 , θ̄) which gives (for V̄t0 = 1) the sensi-
tivities

θ̄k =
∂Vt0(θ)

∂θk
, (104)
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for k = 1, . . . , Nθ. The adjoint of the solution of the
backward PDE in Section III.B consists therefore of Steps
1-3 followed by their corresponding adjoint, executed in
reverse order, as illustrated in Fig. 17:

(S̄3) Set V̄t0 = 1, and execute

V̄ 0 = COMPUTESPOTVALUE b(V 0, V̄t0)

to compute

V̄ 0
j = V̄t0

∂Vt0
∂V 0

j

for j = 1, . . . , N , according to rule (97) .

(S̄2) For m = 0, . . . ,M − 1, in opposite order than in
(S2) of Section III.B, execute

c̄) Given V̄ m, execute the adjoint of function
(101), namely

(L̄m
B , R̄

m
B , V̄

m+1) =

TRIDIAGSOLVER b(Lm
B , R

m
B , V

m+1, V̄ m) , (105)

which computes

[L̄m
B ]j,l =

N∑
r=1

V̄ m
r

∂V m
r

∂[Lm
B ]j,l

, [R̄m
B ]j,l =

N∑
r=1

V̄ m
r

∂V m
r

∂[Rm
B ]j,l

,

β̄m+1
j =

N∑
r=1

V̄ m
r

∂V m
r

∂βm+1
j

, V̄ m+1
j =

N∑
r=1

V̄ m
r

∂V m
r

∂V m+1
j

,

for j = 1, . . . , N and l = 1, . . . , N .

b̄) Compute the adjoint of the function (100),
that is

(c̄m, ūm, l̄m) = COMPUTELRB b(cm, um, lm, L̄m
B , R̄

m
B ),

which produces the adjoint of the coefficient
vectors

c̄mj = [L̄m
B ]j,j

∂[Lm
B ]j,j
∂cmj

+ [R̄m
B ]j,j

∂[Rm
B ]j,j

∂cmj
,

ūmj = [L̄m
B ]j,j+1

∂[Lm
B ]j,j+1

∂umj
+ [R̄m

B ]j,j+1
∂[Rm

B ]j,j+1

∂umj
,

l̄mj+1 = [L̄m
B ]j+1,j

∂[Lm
B ]j+1,j

∂lmj+1

+ [R̄m
B ]j+1,j

∂[Rm
B ]j+1,j

∂lmj+1

,

where j = 1, . . . , N in the first equation and
j = 1, . . . , N−1 in the second and third. Here
we have used the fact that each component
of the vectors cm, um and lm appears only in
one element of the three main diagonals of the
matrices Lm

B and Rm
B . By Equations (94) and

(95) it is immediate to verify that

∂[Lm
B ]j,j
∂cmj

=
∂[Lm

B ]j,j+1

∂umj
=
∂[Lm

B ]j+1,j

∂lmj+1

= −ϕ,

∂[Rm
B ]j,j

∂cmj
=
∂[Rm

B ]j,j+1

∂umj
=
∂[Rm

B ]j+1,j

∂lmj+1

= 1− ϕ,

FIG. 18 Schematic illustration of a tri-diagonal solver and of
its adjoint counterpart.

for 0 < ϕ < 1. For the fully explicit, ϕ = 0,
(resp. the fully explicit case, ϕ = 1), Lm

B (resp.
Rm

B ) is the identity matrix and L̄m
B (resp. R̄m

B )
is identically zero.

ā) Compute the adjoints of the coefficients,

θ̄ = COMPUTECOEFFM b(θ, c̄m, ūm, l̄m). (106)

This produces the following contribution of
the adjoint of the θ̄ vector

θ̄k =

N∑
j=1

[
c̄mj

∂cmj (θ)

∂θk
+ ūmj

∂umj (θ)

∂θk
+ l̄mj

∂lmj (θ)

∂θk

]

for k = 1, . . . , Nθ, with u
m
N ≡ 0 and lm1 ≡ 0.

(S̄1) Compute the adjoint of the vector VM in (98) by
executing θ̄+= PAYOFF b(θ, V̄M ). This gives the
vector elements

θ̄k +=

N∑
j=1

V̄M
j

∂P (xj , θ)

∂θk
,

for k = 1, . . . , Nθ, associated with the explicit de-
pendence of the payoff on the model parameters θ
(if any).

One can verify that the execution of the steps above pro-
duces the sensitivities (104) of the option value with re-
spect to the parameters θ. According to the general re-
sult of AAD (6), the cost to compute all the components
of the adjoint vector θ̄ is a small multiplier of order four
times the cost of computing (S1) to (S4), therefore re-
sulting in an overall computation complexity of O(NM).
We note that obtaining the adjoint COMPUTESPOT b of

the linear scheme in Equation (97) is straightforward.
The procedure consists of setting V̄ 0

j = 0 for j /∈ {j⋆, j⋆+
1}, and allocating V̄ 0

j⋆ and V̄ 0
j⋆+1 with their coefficients
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in Equation (97), namely

V̄ 0
j⋆ = V̄t0

(
1− xt0 − xj⋆

xj⋆+1 − xj⋆
)
, V̄ 0

j⋆+1 = V̄t0
xt0 − xj⋆
xj⋆+1 − xj⋆

.

The adjoint function TRIADIAGSOLVER b, which gives the
adjoint of (102), is produced by

W̄m+1 = [Lm
B ]

−t
V̄ m,

[Lm
B ]

−1
= V̄ m

[
Wm+1

]t
,

L̄m
B = − [Lm

B ]
−t

[Lm
B ]

−1
[Lm]

−t
B ,

R̄m
B = W̄m+1

[
V m+1

]t
,

V̄ m+1 = [Rm
B ]

t
W̄m+1. (107)

Here we have used the fact that the adjoint of the linear
operation y = Ax is given by x̄ = Atȳ and Ā = ȳxt,
and the identity Ā = −A−tA−1A−t, which holds for any
invertible matrix A, see (Giles, 2008; ?). 5

The computational cost of the instructions above is
O(N2). In order to reduce the computational cost to
O(N), as in the original sequence (102), one needs to
avoid the matrix inversion in the first instruction of (107).
This is obtained by utilising the solution of a linear sys-
tem and then by combining the first three instructions of
Eq. (107) and the second of Eq. (102). We thus have:

L̄m
B = − [Lm

B ]
−t
V̄ m

[
Wm+1

]t
[Lm]

−t
B

= −W̄m+1
[
[Lm]

−1
B Wm+1

]t
= −W̄m+1 [V m]

t
.

Then, the resulting algorithm is given by

W̄m+1 = V̄ m/ [Lm
B ]

t
,

L̄m
B = −W̄m+1 [V m]

t
,

R̄m
B = W̄m+1

[
V m+1

]t
,

V̄ m+1 = [Rm
B ]

t
W̄m+1 . (108)

We emphasise that only the elements on the three main
diagonals of L̄m

B and R̄m
B contribute to the sensitivities, so

that only 3N multiplications are required for their com-
putation in the second and third instruction of Eq. (108).
The overall computational cost of the adjoint tri-diagonal
solver is O(N), exactly as for the forward counterpart
(102), and as expected from the general result (6).

The execution of the adjoint instructions (108) requires
the vector V m. This is a manifestation of the general fea-
ture of the adjoint implementation which require i) the
execution of the original code, ii) the storage of the inter-
mediate results and final outputs before the execution of
its adjoint counterpart. In this case, TRIADIAGSOLVER b

5 A collection of useful results for generic matrix functions is con-
tained in (Goloubentsev et al., 2021a).

FIG. 19 Cost of computing the sensitivities for a defaultable
discount bond option, relative to the cost of a single valuation,
as a function of the number of sensitivities.

needs to contain a forward sweep replicating the instruc-
tions (102) in order to compute V m. Alternatively, if
the values Vm were to be stored during the calculation in
the forward sweep of (S1)-(S3), then one could use the
stored values directly as inputs in TRIADIAGSOLVER b.
This scheme is more efficient as it avoids repeating the
forward sweep. The first implementation comes with a
reduced memory consumption as it does not store the
vectors V m for m = 0, . . . ,M and is an example of the
technique “checkpointing” (Capriotti and Giles, 2012).
As in the MC application, AAD results in very sig-

nificant computational savings as illustrated for instance
in Fig. 19 for a simple example discussed in (Capriotti
et al., 2015). As expected, also in this case, the cost of
computing any number of sensitivities relative to the cost
of a single valuation is constant.

D. Other PDE Applications

An analysis similar to the one presented in the previous
section can be conducted also for Kolmogorow forward
equations, such those that are satisfied by transition den-
sity and Arrow-Debreu prices (Andersen and Piterbarg,
2010). This was demonstrated in (Capriotti et al., 2015)
and used for the calibration of terms structure or default
intensity models.
Taking an algebraic approach (Denson and Joshi,

2010) demonstrates how the adjoint PDE method can
be used to compute Greeks in Markov-functional mod-
els. They demonstrated the speed and accuracy of the
method using a Markov-functional interest rate model,
also showing how the model Greeks can be converted
into market Greeks, along similar lines as in Sec. IV.
Finally, in (Bain et al., 2019), the authors proposed

a generic calibration framework to both vanilla and
no-touch options for a large class of continuous semi-
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FIG. 20 Schematic illustration of the calibration and pricing
sequence and its adjoint.

martingale models based upon a forward partial integro-
differential equation (PIDE) which allows fast compu-
tation of up-and-out call prices for the complete set of
strikes, barriers and maturities. Here they considered a
Heston-type local-stochastic volatility model with local
vol-of-vol, as well as two path-dependent volatility mod-
els where the local volatility component depends on the
running maximum.

IV. CALIBRATION ALGORITHM: AAD AND THE
IMPLICIT FUNCTION THEOREM

The valuation of a derivative security can be gener-
ally separated in two distinct steps, a calibration and a
pricing step, see Fig. 20,

θ = CALIBRATION(M), (109)

the parameters of the model θ = (θ1, . . . , θNθ
), are cal-

ibrated in order to reprice simple and liquidly-traded
financial instruments. We denote the price of such
instruments with the market parameter vector M =
(M1, . . . ,MNM

). In the pricing step, the parameters θ
are mapped to the values of the derivative security, or
portfolio of NV securities:

V = PRICING(θ), (110)

so that the concatenation of the calibration of the cali-
bration and the pricing step can be seen as a map of the
form M → θ → V .
The calibration step (109) typically involves an itera-

tive routine, e.g., performing a numerical root search or
least-square minimisation. While the calculation of the
sensitivities with respect to the internal model parame-
ters ∂V/∂θ obtained by the adjoint of the pricing step
(110), θ̄ = PRICING b(θ, V̄ ), which computes

θ̄k =

NV∑
i=1

V̄i
∂Vi
∂θk

,

for k = 1, . . . , Nθ, is sometimes useful, what is required
for the risk management of the portfolio of the deriva-
tive securities are the sensitivities ∂V/∂M with respect
to the liquid market prices because they define the size
of the hedges. These can be obtained, according to the
general principles of AAD, by reversing the order of com-
putations so the adjoint of the algorithm consists of the

FIG. 21 Cost of computing the market parameter sensitivities
for a defaultable discount bond option relative to the cost of
a single calibration and valuation for the Black-Karasinski
model (Capriotti et al., 2015).

adjoint pricing step, combined with the adjoint calibra-
tion step (see Fig. 20)

M̄ = CALIBRATION b(M, θ̄), (111)

giving

M̄m =

Nθ∑
k=1

θ̄k
∂θk
∂Mm

,

for m = 1, . . . , NM . The overall adjoint algorithm can be
seen therefore as a map of the form V̄ → θ̄ → M̄ .
The adjoint calibration step (109) can be implemented

according to the general rules of AAD (Section I.D), pay-
ing attention to its iterative nature. However, following
the work by (Christianson, 1998), (Henrard, 2011) and
(Capriotti and Lee, 2014), a much better performance
can be obtained by exploiting the so-called implicit func-
tion theorem (IFT), as described below. Here we consider
the case in which the calibration algorithm in Equation
(111) consists of the numerical solution of a system of
equations of the form

Gi(M, θ) = 0 (112)

where M ∈ RNM , θ ∈ RNθ , and i = 1, . . . , Nθ. The
function Gi(M, θ) is often of the form

Gi(M, θ) = Ti(M)− Vi(θ) (113)

where Vi(θ) is the price of the i-th calibration instrument
as produced by the model to be calibrated, and Ti(M) are
the prices of the target instruments, possibly generated
by a simpler model utilised as a quoting mechanism.
As noted above, the adjoint calibration can be imple-

mented in terms of the adjoint of the numerical scheme
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solving (112). The associated computational cost is ex-
pected to be a few times the cost of solving the numer-
ical system (112) (but approximately less than 4 times
the cost, according to the general result of AAD). Bet-
ter performance can be obtained by the IFT. Under
mild regularity conditions, the IFT says that if there is
a solution (M0, θ0) to the root finding problem (112),
such that Gi(M0, θ0) = 0, and the matrix of derivatives
[∂G/∂θ]ij = ∂Gi(M0, θ0)/∂θj is invertible, then one can
define in the vicinity ofM0 an implicit function θ = θ(M)
such that

Gi(M, θ(M)) = 0. (114)

The derivatives ∂θ/∂M of such function can be expressed
in terms of the derivatives of the objective function G.
Indeed, by differentiating (114) with respect to M , one
obtains

∂Gi

∂Mm
+

Nθ∑
j=1

∂Gi

∂θj

∂θj
∂Mm

= 0

for m = 1, . . . , NM , or equivalently

∂θk
∂Mm

= −

[(
∂G

∂θ

)−1
∂G

∂M

]
km

,

with [∂G/∂M ]ij = ∂Gi/∂Mj . This relation allows the
computation of the sensitivities of the function θ(M), lo-
cally defined in an implicit manner by Equation (112), in
terms of the sensitivities of the function G(M, θ). These
can be computed by the corresponding adjoint function
(M̄, θ̄) = Ḡ(M, θ, Ḡ) giving,

M̄m =

Nθ∑
i=1

Ḡi
∂Gi

∂Mm
, θ̄k =

Nθ∑
i=1

Ḡi
∂Gi

∂θk
.

This method is far more efficient and stable than calculat-
ing the derivatives of the implicit functions M → θ(M)
by differentiating directly the calibration step either by
bumping or by applying AAD. This is because G(M, θ)
in (113) are explicit functions of the market and model
parameters, which are easy to compute and differentiate.
Moreover, by avoiding the numerical noise produced by
the finite difference approximation to the calibration pro-
cedure, the accuracy of the sensitivities is improved when
compared with the bumping scheme.

The remarkable computational gains that can be
achieved with the AAD IFT scheme are shown in Fig-
ure 21 (left, yellow column) for a credit risk application
involving the solution of the PDE for a defaultable bond
under the Black-Karasinki (B-K) model (Capriotti et al.,
2015). Here we plot the ratio of time necessary to convert
the model sensitivities into market sensitivities by both,
the ADD-IFT approach and standard finite differences,
relative to the cost of performing a single calibration and
valuation. For this application, the time necessary to
compute the Jacobian ∂θ/∂M and model parameter sen-
sitivities ∂V/∂θ by the AAD-IFT approach is just 0.8%

FIG. 22 Cost of computing the sensitivities - relative to the
cost of a single valuation - as a function of the number of
sensitivities for a portfolio of CDS (Capriotti and Lee, 2014)

the amount of time necessary to perform a single calibra-
tion and valuation, thus resulting in 3 orders of magni-
tude speed-up with respect to standard bumping (Capri-
otti et al., 2015).

V. OTHER FINANCIAL APPLICATIONS

AAD is potentially beneficial in every numerical
scheme involving the calculation of derivatives.
One of the earliest applications was a MC based cali-

bration of financial market models, for which Käbe et al.,
2009 proposed the application of adjoint methods in com-
bination with a multilayer approach. For a lognormal
variance model the authors showed how the adjoint-based
MC algorithm reduces computation time from more than
three hours (for finite difference approximation of the
gradient) to less than ten minutes.
AAD can be beneficial for the risk management of flow

credit products, which are evaluated by simple quadra-
ture methods, such as credit default swap (CDS), CDS
indices and swaptions, as demonstrated in (Capriotti and
Lee, 2014). Here the authors showed how by combining
adjoint ideas with the IFT one can avoid the necessity
of repeating multiple times the calibration of the haz-
ard rate curves which, especially for flow products, often
represent the bottle neck in the computation of spread
and interest rate risk. The remarkable computational ef-
ficiency achievable by combining AAD with the IFT is
illustrated in Fig. 22 showing how sensitivities can be
computed in ∼ 25% less time than performing a single
calibration and valuation. This typically results in or-
ders of magnitudes savings in computational time with
respect to the standard bump and reval method. In ad-
dition, since AAD produces analytical derivatives rather
than finite differences approximations the calculation is
much more robust numerically than bumping, which is
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instead often affected by the problem that arbitrary per-
turbations of credit spreads, recovery rates or of the dis-
count curve may lead to an arbitrageable hazard rate
curve.

Goloubentsev et al., 2021b recently revisited the prob-
lem of applying AAD to the IFT and illustrated how
automatic tools can be utilized to implement calibration
algorithms based on the IFT with minimal manual inter-
vention. The efficient implementation of AAD applied
to calibration processes in parallel architecture is dis-
cussed in (Brito et al., 2022; Goloubentsev and Laksh-
tanov, 2022).

Finally, there is a deep connection of machine learn-
ing (ML) and AAD. As a matter of fact the so-called
backpropagation algorithm for the calibration of artificial
neural networks (Baydin et al., 2018) is simply another
instance of AAD. More advanced applications include the
combination of ML and AAD. For instance Huge and
Savine, 2020 introduced the notion of ‘Differential ML’
combining AAD with ML in the context of risk manage-
ment of financial Derivatives. Differential ML is a general
extension of supervised learning, where ML models are
trained on examples of not only inputs and outputs but
also differentials of outputs with respect to the inputs.
Similar ideas are also discussed in (Ludkovski, 2023).
Other applications combining ML ideas and AAD include
the calibration of the rough Heston model (Rosenbaum
and Zhang, 2021) via neural networks.

VI. FROM FINANCE TO PHYSICS

Not much longer after its introduction to Finance,
AAD made its appearance in computational Physics
(Sorella and Capriotti, 2010), and in particular in the
field of simulations based on first principles quantum
mechanics – or ab-initio (Tuckerman et al., 1996) – of
strongly correlated electronic systems. For these systems,
quantum Monte Carlo allows to accurately account for
electronic correlations, which are key for the descriptions
of several materials, including high temperature super-
conductors (Fradkin et al., 2015). In particular, struc-
tural optimization and molecular dynamics at finite tem-
perature, requires the calculation of the forces acting on
atoms, e.g., in a molecule or a condensed matter sys-
tem, which can be formally expressed as the calculation
of derivatives of an energy functional with respect to the
atomic coordinates. However, because of its high compu-
tational cost, the use of quantum Monte Carlo for these
problems had been fairly limited and the prerogative of
less accurate techniques such Density Functional The-
ory (Cohen et al., 2012). In this background, (Sorella
and Capriotti, 2010) showed how by means of AAD the
calculation of forces of an atomic system can be imple-
mented in a straightforward fashion and executed much
more efficiently than with existing techniques. A sizable
and diverse literature in computational Physics has fol-
lowed this seminal work ranging from the study of the

physical properties of Hydrogen at very high pressure
(Mazzola et al., 2014) and of several other compounds
(Nakano et al., 2020), the efficient implementation of
Tensor Networks for strongly correlated lattice systems,
such as quantum antiferromagnets (Liao et al., 2019), and
even quantum computation (Kottmann et al., 2021).

VII. CONCLUSIONS

Over the past two decades, Adjoint Algorithmic Differ-
entiation (AAD) has revolutionized the way risk is com-
puted in the financial industry. Following the seminal
work by Giles and Glasserman, 2006 introducing for the
first time adjoint methods for MC applications in a finan-
cial context, several early works have illustrated (Capri-
otti, 2008, 2011; Capriotti and Giles, 2012) how the al-
gorithmic approach of AAD can be employed, making
the adjoint implementation practical in an industrial en-
vironment. Like its algebraic counterpart, the proposed
method allows the calculation of the complete risk at a
computational cost which is at most 4 times the cost of
calculating the P&L of the portfolio itself, resulting in
remarkable computational savings, often of several order
of magnitude, with respect to standard finite-differences.

In this review, we have shown how AAD can be used
to implement the adjoint calculation of price sensitivi-
ties in a straightforward manner and in wide generality
and have reviewed the most significant applications ap-
pearing in the recent literature. Among others, we have
covered Monte Carlo, Partial Differential Equation and
Calibration applications in Finance. We have also de-
scribed how AAD was recently introduced to ab-initio
Quantum Monte Carlo simulations, one of the sparse ex-
amples in which Finance, a field with a long history of
borrowing concepts and techniques from Applied Mathe-
matics and Natural Science, “gave back” some knowledge
to Physics.

In many situations, AAD allows one to perform in min-
utes risk runs that would take otherwise several hours or
could not even be performed overnight without the use
of massively parallel computers. AAD therefore makes
possible real time risk management, allowing investment
firms to hedge their positions and manage their capi-
tal allocation more effectively, reduce their infrastruc-
ture costs, and ultimately attract more business, increase
profitability and reduce their environmental impact.
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Appendix A: Adjoint programming in a nutshell

A detailed tutorial on the programming techniques
that are useful for adjoint implementations is beyond the
scope of this paper. However, when hand-coding the ad-
joint counterpart of a set of instructions it is often enough
to keep in mind just a few practical recipes. For instance:

a) Each intermediate differentiable variable U can be
used not only by the subsequent instruction but
also by several others occurring later in the pro-
gram. As a result, the adjoint of U has several con-
tributions, one for each instruction of the original
function in which U was on the right hand side of
the assignment operator. Hence, by exploiting the
linearity of differential operators, it is generally eas-
ier to program according to a syntactic paradigm
in which adjoints are always updated so that the
adjoint of an instruction of the form

V = V (U)

reads

Ūi = Ūi +
∑
k

∂Vk(U)

∂Ui
V̄k .

This implies that the adjoints have to be appropri-
ately initialized. In particular, to cope with input
variables that are changed by the algorithm (see
next point), it is generally best to initialize the ad-
joint of a given variable to zero on the instruction
in which it picks up its first contribution (i.e., im-
mediately before the adjoint counterpart of the last
instruction of the original code in which the vari-
able was to the right of the assignment operator).
For instance, the adjoint of the following sequence
of instructions where x is the input, u and v are
local variables, and y is the output

u = F (x)

v = G(x, u)

y = H(v)

can be written as:

v̄ = 0

v̄ = v̄ +
∂H(v)

∂v
ȳ

ū = 0

ū = ū+
∂G(x, u)

∂u
v̄

x̄ = 0

x̄ = x̄+
∂G(x, u)

∂x
v̄

x̄ = x̄+
∂F (x)

∂x
ū ,

where ȳ is the input, ū and v̄ are local variables,
and x̄ is the output. Note that the life-cycle of an
adjoint variable terminates after the adjoint of the
instruction that initializes the corresponding for-
ward variable. For instance, in the example above
ȳ can be reset to zero after the second adjoint in-
struction, v̄ after the sixth, and ū after the seventh.
Doing so explicitly, although somewhat redundant,
is often a helpful programming idiom.

b) In some situations the input U of a function V =
V (U) is modified by the function. As above, this
situation is easily analyzed by introducing an aux-
iliary variable U ′ representing the value of the
input after the functions evaluation. Therefore,
the original function can be thought of the form
(V,U ′) = (V (U), U ′(U)), where V (U) and U ′(U)
do not mutate their inputs, in combination with
the assignment U = U ′, overwriting the original
input U . The adjoint of this pair of instructions
clearly reads

Ū ′
i = 0

Ū ′
i = Ū ′

i + Ūi ,

where we have used the fact that the auxiliary vari-
able U ′ is not used elsewhere (so Ū ′

i does not have
any previous contribution), and

Ūi = 0

Ūi = Ūi +
∑
k

∂Vk(U)

∂Ui
V̄k +

∑
l

∂U ′
l (U)

∂Ui
Ū ′
l .

where, again, we have also used the fact that the
original input U is not used after the instruction
V = V (U) as it gets overwritten. One can there-
fore eliminate altogether the adjoint of the auxiliary
variable Ū ′ and simply write

Ūi +=
∑
k

∂Vk(U)

∂Ui
V̄k .

Very common examples of this situation are given
by increments of the form

Ui = aUi + b
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with a and b constant with respect to U . According
to the above recipe, the adjoint counterpart of this
instruction simply reads

Ūi = a Ūi .

These situations are common in iterative loops
where a number of variables are typically updated
at each iteration.

c) Each function, subroutine or method can be ab-
stracted as a function with some inputs and some
outputs even if some of these variables are im-
plicit. For instance, in an object oriented language,
a class constructor can be seen as a function whose
(implicit) outputs are the member variables of the
class. These member variables, say θ, can be also
seen as implicit inputs of all the other methods of
the class, e.g.,

Y = METHOD(X, θ) . (A1)

Hence, the corresponding adjoint methods – in ad-
dition to the sensitivities to its explicit inputs –
generally produce the sensitivities with respect to
the member variables, θ̄, e.g.,

(X̄, θ̄) += METHOD b(X, θ, Ȳ ) , (A2)

where we have used the standard addition assign-
ment operator +=.
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