
Practical 12: Streams

July 23, 2017

The main objectives in this practical are to learn about:

1. how streams work

2. how different CUDA kernels can run in parallel

3. how to overlap host-device transfers and computations

What you are to do is as follows:

1. Read through the kernel overlap.cu source file.

Note how in the first case there are nblocks kernels launched, each
with a single block of 1024 threads. Due to the strict FIFO ordering
of individual streams (including the default stream), there can be no
overlap between the do work kernels, even though no single kernel can
saturate the device.

Review the use of CUDA streams in the second part of the code,
specifically how kernels are scheduled to execute in different streams
by specifying it in the <<<...>>> construct.

2. Use Nsight or the Makefile to compile the code and then run it and
see the timings it gives.

3. See how kernels overlap by profiling the application in the NVIDIA
Visual Profiler. You can launch the profiler by typing nvvp &, then
under ”New session”, you specify the compiled executable, and leave
all other options at their defaults. After running your application,
the profiler will show you a timeline - try zooming in and selecting
individual kernels to see their details.

1



4. Read through the work streaming.cu source file and understand what
it does.

The code represents an important use-case; data is being streamed to
the GPU, then processed on the GPU, and once done, the results are
copied off of the GPU. The biggest issue is that it takes a long time to
copy data and to process it, and while data is being copied, no useful
computations are happening and vice versa.

With your knowledge of CUDA streams, try breaking up the copies
and the processing into smaller pieces, so that while a host-to-device
copy is ongoing, a kernel in a different stream can process data that
was already copied, and in yet another stream a device-to-host copy
can execute, moving data that was already processed.

Remember to use pinned memory on the host (cudaMallocHost), and
asynchronous copies (cudaMemcpyAsync).

2


