Lecture 8: looking to the future

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Keeping up-to-date

Important in scientific computing to keep an eye on what is happening with both hardware and software

(I am self-taught through reading lots of blogs and websites, as well as academic papers on scientific computing)

Remember: at times the business aspects are as important as the technical in thinking about how things are developing

Current market capitalization (i.e. company value)

NVIDIA: \$ 1150 bn

AMD: \$ 187 bn

Intel: \$ 148 bn

10 years ago the order would have been reversed!

NVIDIA high-end GPU performance and bandwidth

Compute / bandwidth ratio

Roofline model (image copyright Rambus Inc.)

Lecture 8 – p. 5/26

Increasing energy consumption by NVIDIA GPUs – moving to chilled-water cooling blocks

Market Summary > NVIDIA Corp

1.08 trillion USD

Market capitalisation

More about NVIDIA Corp →

- Volta came out in 2017/18:
 - V100 for HPC
 - 80 SMs
 - 32GB HBM2 memory
 - special "tensor cores" for machine learning
 - much faster for TensorFlow & PyTorch
- Ampere came out in 2020:
 - A100 for HPC
 - 108 SMs
 - 40-80 GB HBM2 memory
 - wider range of "tensor core" capabilities

NVIDIA DGX Station A100

https://www.nvidia.com/en-us/data-center/dgx-station-a100/

- 4 NVIDIA A100 GPUs, each with 80GB HBM2
- 64-core AMD CPU
- 512 GB DDR4 memory, 10 TB SSD
- 600GB/s NVlink interconnect between the GPUs

NVIDIA DGX A100 Deep Learning server

https://www.nvidia.com/en-us/data-center/dgx-a100/

- 8 NVIDIA A100 GPUs, each with 80GB HBM2
- 2 × 64-core AMD "Rome" CPUs
- 2 TB DDR4 memory, 30 TB SSD
- 600GB/s NVlink interconnect between the GPUs

- Hopper has come out in 2023:
 - H100 for HPC
 - 228-264 SMs
 - 80GB HBM2 memory
 - 40MB L2 cache
 - NVlink improvements up to 50% faster, 900GB/s
 - **▶** PCle v5.0 $2 \times$ improvement
- Grace CPU has also arrived in 2023:
 - Arm-based
 - up to 72 cores
 - 550GB/s bandwidth to LPDDR5X memory
 - 900GB/s NVlink connection to Hopper GPU

Current status:

- big AI companies are competing to buy huge numbes (10,000+) of Hopper H100 GPUs – some orders are worth over \$1bn
- supply is limited, prices have become inflated, and it's very difficult for academics to get any
- emergence of Grace CPU is significant gives NVIDIA freedom to design their own combined CPU/GPU offerings with high bandwith interconnect, like AMD

(maybe also signifies ARM breakthrough into the server market?)

Market Summary > Advanced Micro Devices, Inc.

174.19 billion USD

Market capitalisation

More about Advanced Micro ... →

Top500

Top 5 on Top500 list, June 2023:

- #1 Frontier (DoE/ORNL, USA)
 - HPE: 40,000 AMD MI250X GPUs
- #2 Fugaku (RIKEN, Japan)
 - Fujitsu: 160,000 Fujitsu/ARM CPUs with vector units
- #3 Lumi (EuroHPC/CSC, Finland)
 - HPE: 10,000 AMD MI250X GPUs
- #4 Leonardo (EuroHPC/CINECA, Italy)
 - Atos: 14,000 NVIDIA A100 GPUs
- #5 Summit (DoE/ORNL, USA)
 - IBM: 28,000 NVIDIA V100 GPUs

Frontier: #1 supercomputer based on Linpack performance

- sited at Oak Ridge National Laboratory (DoE)
- 1.7 Exaflops, 21 MW
- system from HPE; CPUs and GPUs from AMD
- 9,472 compute nodes, each with one EPYC CPU, four MI250X GPUs and 4TB of flash memory Lecture 8 p. 14/26

- over past decade AMD has had excellent CPUs and GPUs (and pioneered chiplet packaging) but has not invested enough in software – that is changing
- hired lots of software specialists in the past 2 years, including many of the NAG team responsible for ACML (AMD's version of Intel's MKL libraries)
- "Genoa" Zen4 EPYC CPUs:
 - up to 64 cores with vector units and 384MB L3
 - now getting about 20% share of server market
- Frontier has previous generation "Trento" Zen3 EPYC CPUs

Instinct GPUs:

- MI250X has 220 Compute Units, each with 64 stream procs, and 128 GB HBM2e memory with up to 3.2 TB/s bandwidth: comparable to A100 GPU, including for PyTorch
- new MI300X will be broadly competitive with H100, depending on price and availability
- programmed using AMD's ROCm (very similar to CUDA) with extensive library support
- portability provided through HIP (Heterogeneous computing Interface for Portability) with compilation to either CUDA or AMD's ROCm:

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html

AMD's ROCm eco-system:

AMD's HIP – some example code:

```
char* inputBuffer;
char* outputBuffer;
hipMalloc((void**)&inputBuffer, (strlength+1)*sizeof(char));
hipMalloc((void**)&outputBuffer, (strlength+1)*sizeof(char));
hipMemcpy(inputBuffer, input, (strlength+1)*sizeof(char),
          hipMemcpyHostToDevice);
hipLaunchKernelGGL (helloworld, dim3(1), dim3(strlength), 0, 0,
                   inputBuffer, outputBuffer );
hipMemcpy (output, outputBuffer, (strlength+1) *sizeof(char),
          hipMemcpyDeviceToHost);
hipFree (inputBuffer);
hipFree (outputBuffer);
```

Now for some kernel code:

```
__global___ void helloworld(char* in, char* out)
{
int num = hipThreadIdx_x + hipBlockDim_x * hipBlockIdx_x;
out[num] = in[num] + 1;
}
```

Can see why it is fairly easy for AMD's HIPIFY tool to convert most simple CUDA code to HIP – this is another reason to avoid "exotic" CUDA features as much as possible.

Warning: AMD GPUs have a warp size of 64, not 32, so use warpSize variable in your code rather than hard-coding a warp size of 32.

- ROCm and HIP look <u>very</u> similar to CUDA probably required to win the major DoE and EU contracts
- pricing and availability of GPUs are both much better than NVIDIA currently, especially for academics
 (major AI companies are placing \$1bn orders with NVIDIA so no GPUs left for us!)
- AMD's software eco-system is still maturing will take at least another 5 years to get close to CUDA
- still, very good to see competition in the marketplace

Intel

Market Summary > Intel Corporation

144.07 billion USD

Market capitalisation

Intel

- current "Sapphire Rapids" Xeon-SP CPUs:
 - up to 60 cores, each with one or two 512-bit
 AVX-512 vector units per core (512 bits = 16 floats)
 - up to 112.5MB L3 (shared), 2MB L2 per core
 - up to 250 GB/s memory bandwidth
 - CPU Max variants have up to 64 GB HBM2e
- "Ponte Vecchio" a.k.a. Data Center GPU Max:
 - ightharpoonup 128 Xe cores, each with 16 imes 256-bit vector units
 - 400MB L2 cache, 64GB HBM2 with 8192-bit bus
 - shipping now, but limited software support

Intel

Intel is pushing their Data Parallel C++ implementation of SYCL (an "open standard" that no-one else is adopting)

- part of Intel's OneAPI software which aims to support all hardware platforms
- translation code (from Codeplay) enables execution on NVIDIA and AMD GPUs
- I have no experience with it, but Intel has a bad record of pushing novel hardware/software for a few years then abandoning it, so I fully expect them to axe their new Data Center GPU Max chips
- their standard C/C++ compilers and MKL libraries remain very good for multithreaded/vectorized CPU execution

Others

Special designs, solely for the needs of Machine Learning:

- Google: Tensor Processing Unit (TPU)
- Graphcore: Colossus Intelligent Processing Unit
- Cerebras: in-memory computing (lots of computing elements interspersed within a huge amount of memory in wafer-scale chips)

It seems unlikely that Google will get into the hardware business in a big way, and if any startup makes real progress they'll be bought out by NVIDIA, AMD or Intel.

Outlook

My current software assessment:

- CUDA is dominant in HPC because of
 - ease-of-use
 - NVIDIA dominance of hardware, with huge sales in machine learning in particular
 - extensive library support
 - support for many different languages (Fortran, Python, R, MATLAB, etc.)
 - extensive eco-system of tools
- HIP is a real threat to that dominance by offering platform independence with compilation to both CUDA and AMD's ROCm

Final words

- NVIDIA holds a dominant market position, maybe hard to justify their huge market valuation but they're the leader for a good reason – they have excellent hardware and software, and focussed early of the needs of ML
 - Even as the gaming market shrinks, the auto market is the next big one they're working on
- By addressing their software weakness, AMD is back in the game for both HPC and ML – great to have competition again
- I remain unconvinced by Intel's new hardware and software products, though traditional Xeon CPUs remain powerful and sell well
- Other vendors are unlikely to break through significantly