
Lecture 7:
tackling a new application

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 7 – p. 1/26



Initial planning

1) Has it been done before?

check with Google or ChatGPT

ask a local expert

check CUDA sample codes

sign up to the CUDA Developer Program (free)
and check out relevant Video-on-Demand talks
from the last GTC (GPU Technology Conference)

check out the NVIDIA Developer blogs:
https://developer.nvidia.com/blog

(very good for info on new hardware architectures as
well as new software features)

Lecture 7 – p. 2/26



Initial planning

2) Where is the parallelism?

efficient CUDA execution needs thousands of threads

usually obvious, but if not

go back to 1)

talk to an expert – they love a challenge

go for a long walk

may need to re-consider the mathematical algorithm
being used, and instead use one which is more
naturally parallel – but this should be a last resort!

Lecture 7 – p. 3/26



Initial planning

Sometimes you need to think about “the bigger picture”

Already considered 3D finite difference example:

lots of grid nodes so lots of inherent parallelism

even for ADI method, a grid of 2563 has 2562 tri-diagonal
solutions to be performed in parallel so OK to assign
each one to a single warp

but what if we have a 2D or even 1D problem to solve?

Lecture 7 – p. 4/26



Initial planning

If we only have one such problem to solve, why use a GPU?

But in practice, often have many such problems to solve:

different initial data

different model constants

This adds to the available parallelism

Lecture 7 – p. 5/26



Initial planning

2D:

128KB of shared memory on Ampere == 32K float

so grid of 642 could be held within shared memory

one kernel for entire calculation

each block handles a separate 2D problem; possibly
two block per SM

for bigger 2D problems, might need to split each one
across more than one block

separate kernel for each timestep / iteration

Lecture 7 – p. 6/26



Initial planning

1D:

can certainly hold entire 1D problem within shared
memory of one SM

maybe best to use a separate block for each 1D
problem, and have multiple blocks executing
concurrently on each SM

but for implicit time-marching need to solve single
tri-diagonal system in parallel – how?

Lecture 7 – p. 7/26



Initial planning

Parallel Cyclic Reduction (PCR): starting from

an xn−1 + xn + cn xn+1 = dn, n = 0, . . . N−1

with a0 = cN−1 = 0, subtract an times row n−1, and cn times
row n+1 and re-normalise to get

a∗n xn−2 + xn + c∗n xn+2 = d∗n

with a∗m=0 for m<2 and c∗m=0 for m≥N−2.

Repeating this log2N times gives the value for xn (since the
values of the final a’s and c’s will be zero) and each step
can be done in parallel.

(Practical 7 uses shared memory, but if N ≤ 32 it fits in a
single warp and can be implemented using shuffles.)

Lecture 7 – p. 8/26



Initial planning

3) Break the algorithm down into its constituent pieces

each will probably lead to its own kernels

re-check literature for each piece – sometimes the
same algorithm component may appear in widely
different applications

check whether there are existing libraries which may be
helpful

Lecture 7 – p. 9/26



Initial planning

4) Is there a problem with warp divergence?

GPU efficiency can be completely undermined if there
are lots of divergent branches

may need to implement carefully – lecture 3 example:

processing a long list of elements where, depending on
run-time values, a few involve expensive computation:

first process list to build two sub-lists of “simple” and
“expensive” elements

then process two sub-lists separately

. . . or again seek expert help

Lecture 7 – p. 10/26



Initial planning

5) Is there a problem with host <–> device bandwidth?

usually best to move whole application onto GPU,
so not limited by PCIe v4 bandwidth (32GB/s)

occasionally, OK to keep main application on the host
and just off-load compute-intensive bits

dense linear algebra is a good off-load example;

data is O(N2) but compute is O(N3) so fine if
N is large enough

Lecture 7 – p. 11/26



Initial planning

6) is the application compute-intensive or data-intensive?

break-even point is roughly 50 operations (FP and
integer) for each 32-bit device memory access
(assuming full cache line utilisation)

good to do a back-of-the-envelope estimate early on
before coding =⇒ changes approach to implementation

Lecture 7 – p. 12/26



Initial planning

If compute-intensive:

don’t worry (too much) about cache efficiency

minimise integer index operations

if using double precision, think whether it’s needed

If data-intensive:

ensure efficient cache use – may require extra coding

may be better to re-compute some quantities rather
than fetching them from device memory

if using double precision, think whether it’s needed

Lecture 7 – p. 13/26



Initial planning

Need to think about how data will be used by threads,
and therefore where it should be held:

registers (private data)

shared memory (for shared access)

device memory (for big arrays)

constant arrays (for global constants)

“local” arrays (efficiently cached)

Lecture 7 – p. 14/26



Initial planning

If you think you may need to use “exotic” features like
atomic locks:

look for NVIDIA sample codes demonstrating use of the
feature

write some trivial little test problems of your own

check you really understand how they work

Never use a new feature for the first time on a real problem!

Lecture 7 – p. 15/26



Initial planning

Read NVIDIA documentation on performance optimisation:

Section 8 of CUDA C++ Programming Guide

CUDA C++ Best Practices Guide

Volta Tuning Guide

Ampere Tuning Guide

Hopper Tuning Guide

Lecture 7 – p. 16/26



Programming and debugging

Many of my comments here apply to all scientific computing

Though not specific to GPU computing, they are perhaps
particularly important for GPU / parallel computing because

debugging can be hard!

Above all, you don’t want to be sitting in front of a 50,000
line code, producing lots of wrong results (very quickly!)
with no clue where to look for the problem

Lecture 7 – p. 17/26



Programming and debugging

plan carefully, and discuss with an expert if possible

code slowly, ideally with a colleague, to avoid mistakes
but still expect to make mistakes!

code in a modular way as far as possible, thinking how
to validate each module individually

build-in self-testing, to check that things which ought to
be true, really are true

(In major projects I have a cpp flag DIAGS; the larger
the value, the more self-testing the code does)

overall, should have a clear debugging strategy to
identify existence of errors, and then find the cause

includes a sequence of test cases of increasing
difficulty, testing out more and more of the code

Lecture 7 – p. 18/26



Programming and debugging

In developing laplace3d, my approach was to

first write CPU code for validation

next check/debug CUDA code with printf statements
as needed, with different grid sizes:

grid equal to 1 block with 1 warp (to check basics)

grid equal to 1 block and 2 warps (to check
synchronisation)

grid smaller than 1 block (to check correct treatment
of threads outside the grid)

grid with 2 blocks

then turn on all compiler optimisations

Lecture 7 – p. 19/26



Programming and debugging

When working with shared memory, be careful to think
about thread synchronisation.

Very important!

Forgetting a

__syncthreads();

may produce errors which are unpredictable / rare
— the worst kind.

Also, make sure all threads reach the synchronisation point
— otherwise could get deadlock.

Reminder:
compute-sanitizer --tool racecheck

compute-sanitizer --tool synccheck

to check for race condition and deadlock
Lecture 7 – p. 20/26



Performance improvement

The size of the thread blocks can have a big effect on
performance:

often hard to predict optimal size a priori

optimal size can also vary on different hardware

with early GPUs, could gain 2× improvement by
re-optimising the block sizes

probably not as much change these days between
successive generations

(not so much change in SMs, more a change in the
number of SMs, the size of L2 cache, and new features
like Tensor Cores)

Lecture 7 – p. 21/26



Performance improvement

A number of numerical libraries (e.g. FFTW, ATLAS) now
feature auto-tuning – optimal implementation parameters
are determined when the library is installed on the specific
hardware

I think this is a good idea for GPU programming, though I
have not seen it used by others:

write parameterised code

use optimisation (possibly brute force exhaustive
search) to find the optimal parameters

an Oxford student, Ben Spencer, developed a simple
flexible automated system to do this – can try it in one
of the mini-projects

Lecture 7 – p. 22/26



Performance improvement

Use profiling to understand the application performance:

where is the application spending most time?

how much data is being transferred?

are there lots of cache misses?

there are a number of on-chip counters to provide this
kind of information

The Nsight Compute profiler is powerful

provides lots of information (a bit daunting at first)

gives hints on improving performance

The Nsight Systems profiler gives a top-level view and is
relatively easy to use.

Lecture 7 – p. 23/26



Going further

In some cases, a single GPU is not sufficient

Shared-memory option:

single system with up to 16 GPUs

GPUs linked by either PCIe (direct or via CPU) or
NVlink (much faster)

single process with a separate host thread for each
GPU, or use just one thread and switch between GPUs

can transfer data directly between GPUs – NVIDIA
software will use the fastest route, avoiding the CPU if
possible

Lecture 7 – p. 24/26



Going further

Distributed-memory option:

a cluster, with each system having 1 or 2 GPUs

systems connected by high-speed Ethernet/Infiniband
networking with PCIe network cards

simplest approach is MPI message-passing, with
separate process for each GPU

modern MPI software has full support for CUDA, with
direct data transfers (no intermediate copies in CPU)
where possible

https://developer.nvidia.com/mpi-solutions-gpus

https://developer.nvidia.com/gpudirect

Lecture 7 – p. 25/26



Final words

HPC continues to be exciting – the performance of the
latest hardware keeps advancing

coding to get a good fraction of peak performance
remains challenging – computer science objective
should be to simplify this for developers through

libraries

domain-specific high-level languages

code transformation

GPUs will remain dominant in HPC for next 10 years,
so it’s worth your effort to re-design and re-implement
your algorithms

Lecture 7 – p. 26/26


	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Programming and debugging
	Programming and debugging
	Programming and debugging
	Programming and debugging
	Performance improvement
	Performance improvement
	Performance improvement
	Going further
	Going further
	Final words

