
Lecture 5: libraries and tools
Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 5 – p. 1/30

CUDA libraries

Originally, NVIDIA planned to provide only one or two
maths libraries, but over time these have steadily increased

CUDA math library
all of the standard math functions you would expect
(i.e. very similar to what you would get from Intel)

various exponential and log functions
trigonometric functions and their inverses
hyperbolic functions and their inverses
error functions and their inverses
Bessel and Gamma functions
vector norms and reciprocals (esp. for graphics)
mainly single and double precision – a few in half
precision

Lecture 5 – p. 2/30

CUDA libraries

cuBLAS

basic linear algebra subroutines for dense matrices
includes matrix-vector and matrix-matrix product
it is possible to call cuBLAS routines from user
kernels – device API
some support for a single routine call to do a “batch”
of smaller matrix-matrix multiplications
also support for using CUDA streams to do a large
number of small tasks concurrently
simpleCUBLAS example in Practical 5 – taken from
NVIDIA sample codes

Lecture 5 – p. 3/30

CUDA libraries

cuBLAS is a set of routines to be called by user host code:

helper routines:
memory allocation
data copying from CPU to GPU, and vice versa
error reporting

compute routines:
matrix-matrix and matrix-vector product
Warning! Some calls are asynchronous, i.e. the call
starts the operation but the host code then continues
before it has completed

cuBLASxt extends cuBLAS to multiple GPUs

Lecture 5 – p. 4/30



CUDA libraries

cuFFT
1D, 2D, 3D Fast Fourier Transform

has most variations found in FFTW and elsewhere

like cuBLAS, routines called by user host code:
helper routines include “plan” construction
compute routines perform 1D, 2D, 3D FFTs
it supports doing a “batch” of independent
transforms, e.g. applying 1D transform to a 3D
dataset

simpleCUFFT example in Practical 5 – taken from
NVIDIA sample codes

Lecture 5 – p. 5/30

CUDA libraries

cuTENSOR
tensor linear algebra library
makes extensive use of new Tensor Cores

cuSPARSE
various routines to work with sparse matrices
includes sparse matrix-vector and matrix-matrix
products
could be used for iterative solution
also has solution of sparse triangular system
note: batched tridiagonal solver is in cuBLAS not
cuSPARSE

Lecture 5 – p. 6/30

CUDA libraries

cuRAND
random number generation
XORWOW, mrg32k3a, Mersenne Twister and
Philox 4x32 10 pseudo-random generators
Sobol quasi-random generator (with optional
scrambling)
uniform, Normal, log-Normal, Poisson outputs
also device level routines for RNG within kernels

cuSOLVER:
key LAPACK dense solvers, 3 – 6x faster than MKL
sparse direct solvers, 2–14x faster than CPU
latest version uses iterative refinement with
low-precision Tensor Core operations

Lecture 5 – p. 7/30

CUDA libraries

CUB
collection of basic building blocks (e.g. sort, scan,
reduction) at three levels: device, thread block, warp

available from github.com/NVIDIA/cub

CUTLASS (CUDA Templates for Linear Algebra
Subroutines)

collection of CUDA C++ template abstractions for
implementing matrix-multiplication (GEMM)

available from github.com/NVIDIA/cutlass

AmgX
library for algebraic multigrid

available from developer.nvidia.com/amgx
Lecture 5 – p. 8/30



CUDA Libraries

NCCL
NVIDIA Collective Communications Library
multi-GPU over both PCIe and NVlink
multi-node over NVIDIA/Mellanox NICs

cuDNN
library for Deep Neural Networks

nvGraph
Page Rank, Single Source Shortest Path, Single
Source Widest Path

NPP (NVIDIA Performance Primitives)
library for imaging and video processing
includes functions for filtering, JPEG decoding, etc.Lecture 5 – p. 9/30

CUDA Libraries

Thrust
high-level C++ template library with an interface
based on the C++ Standard Template Library (STL)
very different philosopy to other libraries; users write
standard C++ code (no CUDA) but get the benefits
of GPU parallelisation
also supports x86 execution
relies on C++ object-oriented programming; certain
objects exist on the GPU, and operations involving
them are implicitly performed on the GPU
I’ve not used it, but for some applications it can be
very powerful – e.g. lots of built-in functions for
operations like sort and scan
also simplifies memory management and data
movement Lecture 5 – p. 10/30

CUDA Libraries

Kokkos
another high-level C++ template library
developed in the US DoE Labs, so considerable
investment in both capabilities and on-going
software maintenance
again I’ve not used it, but possibly worth investigating
for more information see
https://github.com/kokkos/kokkos/wiki
https://trilinos.org/packages/kokkos/

Lecture 5 – p. 11/30

Useful header files

dbldbl.h available from
https://gist.github.com/seibert/5914108
Header file for double-double arithmetic for
quad-precision (developed by NVIDIA, but published
independently under the terms of the BSD license)

cuComplex.h part of the standard CUDA distribution
Header file for complex arithmetic – defines a class and
overloaded arithmetic operations.

helper math.h available with NVIDIA sample codes
Defines operator-overloading operations for CUDA
intrinsic vector datatypes such as float4

Lecture 5 – p. 12/30



Other libraries

MAGMA
a new LAPACK for GPUs – higher level numerical
linear algebra, layered on top of CUBLAS

open source – freely available from
https://icl.utk.edu/magma/

developed by Jack Dongarra, Jim Demmel and
others

Lecture 5 – p. 13/30

Other libraries

ArrayFire from Accelereyes:
was commercial software, but now open source
supports both CUDA and OpenCL execution
C, C++ and Fortran interfaces
wide range of functionality including linear algebra,
image and signal processing, random number
generation, sorting
www.accelereyes.com/products/arrayfire

NVIDIA maintains webpages with links to a variety of CUDA
libraries:
developer.nvidia.com/gpu-accelerated-libraries
and other tools:
developer.nvidia.com/tools-ecosystem

Lecture 5 – p. 14/30

The 7 dwarfs

Phil Colella, senior researcher at Lawrence Berkeley
National Laboratory, talked about “7 dwarfs” of
numerical computation in 2004

expanded to 13 by a group of UC Berkeley professors
in a 2006 report: “A View from Berkeley”

www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

key algorithmic kernels in many scientific computing
applications

very helpful to focus attention on HPC challenges and
development of libraries and problem-solving
environments/frameworks.

Lecture 5 – p. 15/30

The 7 dwarfs

dense linear algebra

sparse linear algebra

spectral methods

N-body methods

structured grids

unstructured grids

Monte Carlo

Lecture 5 – p. 16/30



Dense linear algebra

cuBLAS

cuSOLVER

CUTLASS

MAGMA

ArrayFire

Lecture 5 – p. 17/30

Sparse linear algebra

iterative solvers:
some available in PetSc
others can be implemented using sparse
matrix-vector multiplication from cuSPARSE
NVIDIA has AmgX, an algebraic multigrid library

direct solvers:
NVIDIA’s cuSOLVER

SuperLU and STRUMPACK:
https://www.exascaleproject.org/wp-content/
uploads/2022/06/LiSherrySparseBofSlides.pdf

Lecture 5 – p. 18/30

Spectral methods

cuFFT
library provided / maintained by NVIDIA

nothing else needed?

Lecture 5 – p. 19/30

N-body methods

OpenMM

http://openmm.org/

open source package to support molecular
modelling, developed at Stanford

Fast multipole methods:
ExaFMM by Yokota and Barba:
http://www.bu.edu/exafmm/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes

-the-tortuous-progress-of-computational-research/

FMM2D by Holm, Engblom, Goude, Holmgren:
http://user.it.uu.se/∼stefane/freeware
software by Takahashi, Cecka, Fong, Darve:
onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf

Lecture 5 – p. 20/30



Structured grids

lots of people have developed one-off applications

no great need for a library for single block codes
(though possible improvements from “tiling”?)

multi-block codes could benefit from a general-purpose
library, mainly for MPI communication

Oxford OPS project has developed a high-level
open-source framework for multi-block codes,
using GPUs for code execution and MPI for
distributed-memory message-passing

all implementation details are hidden from “users”, so
they don’t have to know about GPU/MPI programming

Lecture 5 – p. 21/30

Unstructured grids

In addition to GPU implementations of specific codes there
are projects to create high-level solutions which others can
use for their application codes:

Alonso, Darve and others (Stanford)

Oxford / Imperial College project developed OP2,
a general-purpose open-source framework based on
a previous framework built on MPI

See https://op-dsl.github.io/ for both OPS
and OP2

Lecture 5 – p. 22/30

Monte Carlo

NVIDIA cuRAND library

some use examples among NVIDIA sample codes

Accelereyes ArrayFire library

nothing else needed except for more output
distributions?

Lecture 5 – p. 23/30

Tools
Debugging using NVIDIA Compute Sanitizer:

compute-sanitizer --tool memcheck
detects array out-of-bounds errors, and mis-aligned
device memory accesses

compute-sanitizer --tool racecheck
checks for shared memory race conditions:

Write-After-Write (WAW): two threads write data to
the same memory location but the order is uncertain
Read-After-Write (RAW), Write-After-Read (WAR):
one thread writes & one reads, with uncertain order

compute-sanitizer --tool initcheck
detects reading of uninitialised device memory

compute-sanitizer --tool synccheck
detects incorrect use of syncthreads and related
intrinsics Lecture 5 – p. 24/30



Tools
Other languages:

CUDA Fortran: available from NVIDIA

Python:
https://developer.nvidia.com/cuda-python
https://numba.pydata.org/

MATLAB: can call kernels directly, or use OOP like
Thrust to define MATLAB objects which live on the GPU
https://www.mathworks.com/solutions/gpu-computing.html

Mathematica: similar to MATLAB?
https://reference.wolfram.com/language/CUDALink/tutorial/Overview.html

R:
https://developer.nvidia.com/blog/accelerate-r-applications-cuda/

http://www.r-tutor.com/gpu-computing

Lecture 5 – p. 25/30

Tools

OpenACC (“More Science, Less Programming”):

like Thrust, aims to hide CUDA programming by doing
everything in the top-level CPU code

programmer takes standard C/C++/Fortran code and
inserts pragmas saying what can be done in parallel
and where data should be located

https://www.openacc.org/

OpenMP 5.0 is similar but newer:

strongly pushed by Intel to accommodate Xeon Phi and
unify things, in some sense

https://www.openmp.org/wp-content/uploads/

20210924-OpenMP-update-for-DOE.pdf

Lecture 5 – p. 26/30

Tools

Integrated Development Environments (IDE):

Nsight Visual Studio edition – NVIDIA plug-in for
Microsoft Visual Studio
developer.nvidia.com/nsight-visual-studio-edition

Nsight Eclipse edition – IDE for Linux systems
(now distributed as plug-ins for standard Eclipse)
developer.nvidia.com/nsight-eclipse-edition

these come with editor, debugger, profiler integration

Lecture 5 – p. 27/30

Tools

NVIDIA Nsight Compute CLI profiler ncu:

standalone software for Linux and Windows systems

uses hardware counters to collect a lot of useful
information

I think only 1 SM is instrumented – implicitly assumes
the others are behaving similarly

lots of things can be measured, but a limited number of
counters, so it runs the application multiple times if
necessary to get full info

see practical 3 for an example of its use

can also visualise output using ncu-ui
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

Lecture 5 – p. 28/30



Tools

GPU Direct:

webpage:
https://developer.nvidia.com/gpudirect

software support for direct data transfers from one GPU
to another

works across PCIe within a single machine

works across PCIe-connected network adapters
between different systems

includes capabilities to work with cameras and other
video input devices (e.g. for self-driving cars)

very important in applications which might otherwise be
limited by PCIe bandwidth

Lecture 5 – p. 29/30

Summary

active work on all of the dwarfs

in most cases, significant effort to develop general
purpose libraries or frameworks, to enable users to get
the benefits without being CUDA experts

too much going on for one person (e.g. me) to keep
track of it all

NVIDIA maintains a webpage with links to CUDA
tools/libraries:
developer.nvidia.com/cuda-tools-ecosystem

the existence of this ecosystem is part of why I think
CUDA will remain more used than OpenCL for HPC

Lecture 5 – p. 30/30


