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Warp divergence

Threads are executed in warps of 32, with all threads in the
warp executing the same instruction at the same time.

What happens if different threads in a warp need to do
different things?

if (x<0.0)

z = x-2.0;

else

z = sqrt(x);

This is called warp divergence – CUDA will generate correct
code to handle this, but to understand the performance you
need to understand what CUDA does with it

Lecture 3 – p. 2/36



Warp divergence

This is not a new problem.

Old CRAY vector supercomputers had a logical merge
vector instruction

z = p ? x : y;

which stored the relevant element of the input vectors x,y
depending on the logical vector p, equivalent to

for(i=0; i<I; i++) {

if (p[i]) z[i] = x[i];

else z[i] = y[i];

}
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Warp divergence

Similarly, NVIDIA GPUs have predicated instructions which
are carried out only if a logical flag is true.

p: a = b + c; // computed only if p is true

In the previous example, all threads compute the logical
predicate and two predicated instructions

p = (x<0.0);

p: z = x-2.0; // single instruction

!p: z = sqrt(x);
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Warp divergence

Note that:

sqrt(x) would usually produce a NaN when x<0, but
it’s not really executed when x<0 so there’s no problem

all threads execute both conditional branches, so
execution cost is sum of both branches
=⇒ potentially large loss of performance
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Warp divergence

Another example:

if (n>=0)

z = x[n];

else

z = 0;

x[n] is only read here if n>=0

don’t have to worry about illegal memory accesses
when n is negative

Lecture 3 – p. 6/36



Warp divergence

If the branches are big, nvcc compiler inserts code to
check if all threads in the warp take the same branch
(warp voting) and then branches accordingly.

p = ...

if (any(p)) {

p: ...

p: ...

}

if (any(!p)) {

!p: ...

!p: ...

}
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Warp divergence

Note:

doesn’t matter what is happening with other warps
– each warp is treated separately

if each warp only goes one way that’s very efficient

warp voting costs a few instructions, so for very simple
branches the compiler just uses predication without
voting
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Warp divergence

In some cases, can determine at compile time that all
threads in the warp must go the same way

e.g. if case is a run-time argument

if (case==1)

z = x*x;

else

z = x+2.3;

In this case, there’s no need to vote
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Warp divergence

Warp divergence can lead to a big loss of parallel efficiency
– one of the first things I look out for in a new application.

In worst case, effectively lose factor 32× in performance if
one thread needs expensive branch, while rest do nothing

Typical example: PDE application with boundary conditions

if boundary conditions are cheap, loop over all nodes
and branch as needed for boundary conditions

if boundary conditions are expensive, use two kernels:
first for interior points, second for boundary points
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Warp divergence

Another example: processing a long list of elements where,
depending on run-time values, a few require very expensive
processing

GPU implementation:

first process list to build two sub-lists of “simple” and
“expensive” elements

then process two sub-lists separately

Note: none of this is new – this is what we did 35 years ago
on CRAY and Thinking Machines systems.

What’s important is to understand hardware behaviour and
design your algorithms / implementation accordingly
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Synchronisation

Already introduced __syncthreads(); which forms a
barrier – all threads wait until every one has reached this
point.

When writing conditional code, must be careful to make
sure that all threads do reach the __syncthreads();

Otherwise, can end up in deadlock
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Typical application

// load in data to shared memory

...

...

...

// synchronisation to ensure this has finished

__syncthreads();

// now do computation using shared data

...

...

...
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Synchronisation

There are other synchronisation instructions which are
similar but have extra capabilities:

int __syncthreads_count(predicate)

counts how many predicates are true

int __syncthreads_and(predicate)

returns non-zero (true) if all predicates are true

int __syncthreads_or(predicate)

returns non-zero (true) if any predicate is true

I’ve not used these, and don’t currently see a need for them
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Warp voting

There are similar warp voting instructions which operate at
the level of a warp:

int __all(predicate)

returns non-zero (true) if all predicates in warp are true

int __any(predicate)

returns non-zero (true) if any predicate is true

unsigned int __ballot(predicate)

sets n
th bit based on n

th predicate

Again, I’ve never used these
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Atomic operations

Occasionally, an application needs threads to update a
counter in shared memory.

__shared__ int count;

...

if ( ... ) count++;

In this case, there is a problem if two (or more) threads try
to do it at the same time

Lecture 3 – p. 16/36



Atomic operations

Using standard instructions, multiple threads in the same
warp will only update it once.

❄

time

thread 0 thread 1 thread 2 thread 3

read read read read

add add add add

write write write write
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Atomic operations

With atomic instructions, the read/add/write becomes a
single operation, and they happen one after the other

❄

time

thread 0 thread 1 thread 2 thread 3

read/add/write

read/add/write

read/add/write

read/add/write
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Atomic operations

Several different atomic operations are supported:

addition / subtraction
atomicAdd, atomicSub

minimum / maximum
atomicMin, atomicMax

increment / decrement
atomicInc, atomicDec

exchange / compare-and-swap
atomicExch, atomicCAS

bitwise AND / OR / XOR
atomicAnd, atomicOr, atomicXor

Fast for variables in shared memory, only slightly slower for
variables in device global memory (operations performed in
L2 cache) Lecture 3 – p. 19/36



Atomic operations

Compare-and-swap:

int atomicCAS(int* address,int compare,int val);

if compare equals old value stored at address then
val is stored instead

in either case, routine returns the value of old

seems a bizarre routine at first sight, but can be very
useful for atomic locks
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Global atomic lock

// global variable: 0 unlocked, 1 locked

__device__ int lock=0;

__global__ void kernel(...) {

...

if (threadIdx.x==0) {

// set lock

do {} while(atomicCAS(&lock,0,1));

...

// free lock

lock = 0;

}

} Lecture 3 – p. 21/36



Global atomic lock

Problem: when a thread writes data to device memory the
order of completion is not guaranteed, so global writes may
not have completed by the time the lock is unlocked

__global__ void kernel(...) {

...

if (threadIdx.x==0) {

do {} while(atomicCAS(&lock,0,1));

...

__threadfence(); // wait for writes to finish

// free lock

lock = 0;

}
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__threadfence

__threadfence_block();

wait until all global and shared memory writes are
visible to

all threads in block

__threadfence();

wait until all global and shared memory writes are
visible to

all threads in block

all threads, for global data
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Summary

lots of esoteric capabilities – don’t worry about most of
them

essential to understand warp divergence – can have a
very big impact on performance

__syncthreads() is vital – will see another use of it
in next lecture

the rest can be ignored until you have a critical need
– then read the documentation carefully and look for
relevant NVIDIA sample codes
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Key reading

CUDA C++ Programming Guide:

Section 5.4.2: control flow and predicates

Section 5.4.3: synchronization

Section 7.5: __threadfence() and variants

Section 7.6: __syncthreads() and variants

Section 7.14: atomic functions

Section 7.19: warp voting
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2D Laplace solver

Jacobi iteration to solve discrete Laplace equation on a
uniform grid:

for (int j=0; j<J; j++) {

for (int i=0; i<I; i++) {

id = i + j*I; // 1D memory location

if (i==0 || i==I-1 || j==0 || j==J-1)

u2[id] = u1[id];

else

u2[id] = 0.25*( u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I] );

}

}
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2D Laplace solver

How do we tackle this with CUDA?

each thread responsible for one grid point

each block of threads responsible for a block of the grid

conceptually very similar to data partitioning in MPI
distributed-memory implementations, but much simpler

(also similar to blocking techniques to squeeze the best
cache performance out of CPUs)

great example of usefulness of 2D blocks and 2D “grid”s
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2D Laplace solver

❅❅
��
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2D Laplace solver
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2D Laplace solver
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Each block of threads processes one of these grid blocks,
reading in old values and computing new values
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2D Laplace solver

__global__ void lap(int I, int J,

const float* __restrict__ u1,

float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

int j = threadIdx.y + blockIdx.y*blockDim.y;

int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {

u2[id] = u1[id]; // Dirichlet b.c.’s

}

else {

u2[id] = 0.25 * ( u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I] );

}

}
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2D Laplace solver

Assumptions:

I is a multiple of blockDim.x

J is a multiple of blockDim.y

hence grid breaks up perfectly into blocks

Can remove these assumptions by testing whether
i, j are within grid

Lecture 3 – p. 32/36



2D Laplace solver

threads

✲ I

✻

J

real grid
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2D Laplace solver

__global__ void lap(int I, int J,

const float* __restrict__ u1,

float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;

int j = threadIdx.y + blockIdx.y*blockDim.y;

int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {

u2[id] = u1[id]; // Dirichlet b.c.’s

}

else if (i<I && j<J) {

u2[id] = 0.25f * ( u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I] );

}

}
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2D Laplace solver

How does cache function in this application?
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if block size is a multiple of 32 in x-direction, then
interior corresponds to set of complete cache lines

“halo” points above and below are full cache lines too

“halo” points on side are the problem – each one
requires the loading of an entire cache line

optimal block shape has aspect ratio of roughly 8:1 if
cache line is 32 bytes == 8 floats
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3D Laplace solver

practical 3

each thread does an entire line in z-direction

x, y dimensions cut up into blocks in the same way
as 2D application

laplace3d.cu and laplace3d kernel.cu

follow same approach described above

this used to give the fastest implementation, but a new
version uses 3D thread blocks, with each thread
responsible for just 1 grid point

the new version has lots more integer operations, but
is still faster, perhaps due to many more active threads
– in either case the application is probably
bandwidth-limited
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