
Lecture 1: an introduction to CUDA
Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 1 – p. 1/33

Overview

hardware view

software view

CUDA programming

first practical

Course materials are available at:

https://people.maths.ox.ac.uk/gilesm/cuda/index.html

Lecture 1 – p. 2/33

Hardware view

At the top-level, a PCIe graphics card with a many-core
GPU and high-speed graphics “device” memory sits inside
a standard PC/server with one or two multicore CPUs:

DDR4 GDDR6
or HBM

PCIe

motherboard
“host”

graphics card
“device”

Lecture 1 – p. 3/33

Hardware View

An NVIDIA GPU is modular

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

SM = Streaming Multiprocessor – there can be many more
than shown here!

Lecture 1 – p. 4/33

Hardware view

New HPC & professional graphics cards every 2 years,
roughly. HPC cards have excellent double precision (DP)
capabilities – both have special “tensor cores” for AI/ML

Ampere (compute capability 8.0):
A100 released in 2020, smaller A30 later
A2, A10, A16, A40 (compute capability 8.6, poor DP)

Hopper (compute capability 9.0):
H100 released in 2023
L4, L40 (compute capability 8.9, poor DP) for
inference and Virtual Desktop Infrastructure

Blackwell (compute capability 10.0):
B100 announced early 2024, shipping by the end of
2024 to select customers?

Lecture 1 – p. 5/33

Hardware view

In addition there are consumer/gaming cards with excellent
single precision (SP) capabilities, ray tracing support, and
“tensor cores” for AI/ML, but much poorer on DP

Ada Lovelace (compute capability 8.9):
GeForce RTX 4060 / 4060 Ti
GeForce RTX 4070 / 4070 Ti
GeForce RTX 4080
GeForce RTX 4090

(Blackwell?) RTX 5000 series GPUs due end of 2024?

Lecture 1 – p. 6/33

Hardware view

The key building block in an NVIDIA GPUs is a “streaming
multiprocessor” (SM) – the A100 has 108 of them each with:

32 FP64 cores + 64 FP32 cores + 64 INT32 cores

64k registers

192KB of shared memory/L1 cache

up to 2K threads per SM

In addition the A100 has:

40MB of L2 cache

bandwidth of 1.6TB/s to external HBMe memory

optional 600GB/s NVlink to other GPUs
Lecture 1 – p. 7/33

Multithreading

Key hardware feature is that the cores in a SM are SIMT
(Single Instruction Multiple Threads) cores:

groups of 32 cores execute the same instructions
simultaneously, but with different data

similar to AVX vectorisation on Intel Xeons

32 threads all doing the same thing at the same time

natural for graphics processing and much scientific
computing

SIMT is also a natural choice for many-core chips to
simplify each core

Lecture 1 – p. 8/33

Multithreading

Lots of active threads is the key to high performance:

no “context switching”; each thread has its own
registers (up to 255 of them), which limits the number of
active threads

threads on each SM execute in groups of 32 called
“warps” – execution alternates between “active” warps,
with warps becoming temporarily “inactive” when
waiting for data

Lecture 1 – p. 9/33

Multithreading

originally, each thread completed one operation before
the next started to avoid complexity of pipeline overlaps

✲

time1 2 3 4 5✲✲ ✲

1 2 3 4 5✲✲ ✲

1 2 3 4 5✲✲ ✲

however, NVIDIA have now relaxed this, so each thread
can have multiple independent instructions overlapping

memory access from device memory has a delay of
200-400 cycles; with 40 active warps this is equivalent
to 5-10 operations, so enough to hide the latency?

Lecture 1 – p. 10/33

Software view

At the top level, we have a main process which runs on the
CPU and performs the following steps:

1. initialises card

2. allocates memory in host and on device

3. copies data from host to device memory

4. launches multiple instances of execution “kernel” on
device

5. copies data from device memory to host

6. repeats 3-5 as needed

7. de-allocates all memory and terminates

Lecture 1 – p. 11/33

Software view

At a lower level, within the GPU:

each instance (or copy) of the kernel executes on a SM

if the number of instances exceeds the number of SMs,
then more than one will run at a time on each SM if
there are enough registers and shared memory, and the
others will wait in a queue (on the GPU) and run later

all threads within one instance can access local shared
memory but can’t see what the other instances are
doing (even if they are on the same SM)

there are no guarantees on the order in which the
instances execute

Lecture 1 – p. 12/33

CUDA

CUDA is NVIDIA’s program development environment:

based on C/C++ with some extensions

Fortran support also available

lots of sample codes and good documentation
– fairly short learning curve

AMD has developed HIP, a CUDA lookalike:

compiles to CUDA for NVIDIA hardware

compiles to ROCm for AMD hardware

Lecture 1 – p. 13/33

CUDA Components

Installing CUDA on a system, there are 2 components:

Driver
low-level software that controls the graphics card

Toolkit (currently on version 12.3)
nvcc CUDA compiler
Nsight plugin for Eclipse or Visual Studio
profiling and debugging tools
lots of libraries

In addition, NVIDIA makes available lots of sample codes in
a GitHub repository:

https://github.com/NVIDIA/cuda-samples

Lecture 1 – p. 14/33

CUDA programming

Already explained that a CUDA program has two pieces:

host code on the CPU which interfaces to the GPU

kernel code which runs on the GPU

At the host level, there is a choice of 2 APIs
(Application Programming Interfaces):

run-time
simpler, more convenient

driver
much more verbose, more flexible (e.g. allows
run-time compilation)

We will only use the run-time API in this course, and that is
all I use in my own research.

Lecture 1 – p. 15/33

CUDA programming

At the host code level, there are library routines for:

memory allocation on graphics card

data transfer to/from device memory
constants
ordinary data

error-checking

timing

There is also a special syntax for launching multiple
instances of the kernel process on the GPU.

Lecture 1 – p. 16/33

CUDA programming

In its simplest form it looks like:

kernel_routine<<<gridDim, blockDim>>>(args);

gridDim is the number of instances of the kernel
(the “grid” size)

blockDim is the number of threads within each
instance
(the “block” size)

args is a limited number of arguments, usually mainly
pointers to arrays in graphics memory, and some
constants which get copied by value

The more general form allows gridDim and blockDim to
be 2D or 3D to simplify application programs

Lecture 1 – p. 17/33

CUDA programming

At the lower level, when one instance of the kernel is started
on a SM it is executed by a number of threads,
each of which knows about:

some variables passed as arguments

pointers to arrays in device memory (also arguments)

global constants in device memory

shared memory and private registers/local variables

some special variables:
gridDim size (or dimensions) of grid of blocks
blockDim size (or dimensions) of each block
blockIdx index (or 2D/3D indices) of block
threadIdx index (or 2D/3D indices) of thread
warpSize always 32 so far, but could change

Lecture 1 – p. 18/33

CUDA programming

1D grid with 4 blocks, each with 64 threads:

gridDim = 4

blockDim = 64

blockIdx ranges from 0 to 3

threadIdx ranges from 0 to 63

r❄
blockIdx.x=1, threadIdx.x=44

Lecture 1 – p. 19/33

CUDA programming

The kernel code looks fairly normal once you get used to
two things:

code is written from the point of view of a single thread
quite different to OpenMP multithreading
similar to MPI, where you use the MPI “rank” to
identify the MPI process
all local variables are private to that thread

need to think about where each variable lives (more on
this in the next lecture)

any operation involving data in the device memory
forces its transfer to/from registers in the GPU

Lecture 1 – p. 20/33

Host code
int main(int argc, char **argv) {
float *h_x, *d_x; // h=host, d=device
int nblocks=2, nthreads=8, nsize=2*8;

h_x = (float *)malloc(nsize*sizeof(float));
cudaMalloc((void **)&d_x,nsize*sizeof(float));

my_first_kernel<<<nblocks,nthreads>>>(d_x);

cudaMemcpy(h_x,d_x,nsize*sizeof(float),
cudaMemcpyDeviceToHost);

for (int n=0; n<nsize; n++)
printf(" n, x = %d %f \n",n,h_x[n]);

cudaFree(d_x); free(h_x);
}

Lecture 1 – p. 21/33

Kernel code
#include <helper_cuda.h>

__global__ void my_first_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = (float) threadIdx.x;
}

global identifier says it’s a kernel function

each thread sets one element of x array

within each block of threads, threadIdx.x ranges
from 0 to blockDim.x-1, so each thread has a unique
value for tid

Lecture 1 – p. 22/33

CUDA programming

Suppose we have 1000 blocks, and each one has 128
threads – how does it get executed?

On current hardware, would probably get 8-12 blocks
running at the same time on each SM, and each block
has 4 warps =⇒ 32-48 warps running on each SM

Each clock tick, SM warp scheduler decides which warps
to execute next, choosing from those not waiting for

data coming from device memory (memory latency)

completion of earlier instructions (pipeline delay)

Programmer doesn’t have to worry about this level of detail,
just make sure there are lots of threads / warps

Lecture 1 – p. 23/33

CUDA programming

Queue of waiting blocks:

Multiple blocks running on each SM:

SM SM SM SM

❄ ❄ ❄ ❄

Lecture 1 – p. 24/33

CUDA programming

In this simple case, we had a 1D grid of blocks, and a 1D
set of threads within each block.

If we want to use a 2D set of threads, then
blockDim.x, blockDim.y give the dimensions, and
threadIdx.x, threadIdx.y give the thread indices

and to launch the kernel we would use something like

dim3 nthreads(16,4);
my_new_kernel<<<nblocks,nthreads>>>(d_x);

where dim3 is a special CUDA datatype with 3 components
.x,.y,.z each initialised to 1.

Lecture 1 – p. 25/33

CUDA programming

A similar approach is used for 3D threads and 2D / 3D grids;
can be very useful in 2D / 3D finite difference applications.

How do 2D / 3D threads get divided into warps?

1D thread ID defined by

threadIdx.x +
threadIdx.y * blockDim.x +
threadIdx.z * blockDim.x * blockDim.y

and this is then broken up into warps of size 32.

Lecture 1 – p. 26/33

Practical 1

start from code shown above (but with comments)

test error-checking and printing from kernel functions

modify code to add two vectors together (including
sending them over from the host to the device)

if time permits, look at CUDA samples

Lecture 1 – p. 27/33

Practical 1

Things to note:

memory allocation
cudaMalloc((void **)&d x, nbytes);

data copying
cudaMemcpy(h x,d x,nbytes,

cudaMemcpyDeviceToHost);

reminder: prefix h and d to distinguish between
arrays on the host and on the device is not mandatory,
just helpful labelling

kernel routine is declared by global prefix, and is
written from point of view of a single thread

Lecture 1 – p. 28/33

Practical 1

Second version of the code is very similar to first, but uses
a header file for various safety checks – gives useful
feedback in the event of errors.

check for error return codes:
checkCudaErrors(...);

check for kernel failure messages:
getLastCudaError(...);

Lecture 1 – p. 29/33

Practical 1

One thing to experiment with is the use of printf within
a CUDA kernel function:

essentially the same as standard printf; minor
difference in integer return code

each thread generates its own output; use conditional
code if you want output from only one thread

output goes into an output buffer which is transferred
to the host and printed later (possibly much later?)

buffer has limited size (1MB by default), so could lose
some output if there’s too much

need to use either cudaDeviceSynchronize(); or
cudaDeviceReset(); at the end of the main code to
make sure the buffer is flushed before termination

Lecture 1 – p. 30/33

Practical 1

The practical also has a third version of the code which
uses “managed memory” based on Unified Memory.

In this version

there is only one array / pointer, not one for CPU and
another for GPU

the programmer is not responsible for moving the data
to/from the GPU

everything is handled automatically by the CUDA
run-time system

Lecture 1 – p. 31/33

Practical 1

This leads to simpler code, but it’s important to understand
what is happening because it may hurt performance:

if the CPU initialises an array x, and then a kernel uses
it, this forces a copy from CPU to GPU

if the GPU modifies x and the CPU later tries to read
from it, that triggers a copy back from GPU to CPU

Personally, I prefer to keep complete control over data
movement, so that I know what is happening and I can
maximise performance.

Lecture 1 – p. 32/33

Key reading

CUDA C++ Programming Guide:

Section 1: Introduction

Section 2: Programming Model

Section 5.4: performance of different GPUs

Section 6: CUDA-enabled GPUs

Sections 7.1 – 7.4: C language extensions

Section 7.33: printf output

Section 16: features of different GPUs

Lecture 1 – p. 33/33

