LIBOR model

Let L_i^n denote the forward LIBOR rate for the time interval $[i \,\delta, (i+1) \,\delta)$ at time $n \,\delta \leq i \,\delta$. Taking the timestep to be equal to the LIBOR interval δ , the evolution of the forward rates L_i^n for $n = 0, \ldots, N_{mat} - 1$ is approximated by the discrete equations

$$L_{i}^{n+1} = L_{i}^{n} \exp\left(\left(\sigma_{i-n-1}S_{i} - \frac{1}{2}\sigma_{i-n-1}^{2}\right)\delta + \sigma_{i-n-1}Z^{n}\sqrt{\delta}\right), \quad i > n$$

where Z^n is the N(0, 1) random variable for the n^{th} timestep, and

$$S_i^n = \sum_{j=n+1}^i \frac{\sigma_{j-n-1}\,\delta\,L_j^n}{1+\delta\,L_j^n}, \quad i > n$$

The model treats the volatility as being a function of time to maturity. Once a rate reaches its maturity it remains fixed, so we set $L_i^{n+1} = L_i^n$ if $i \leq n$.

Swaption portfolio payoff

A portfolio of N_{opt} different swaptions with swap rates swap_n and maturity mat_n has payoff

$$P = \left\{ \prod_{i=0}^{N_{mat}-1} \frac{1}{1+\delta L_i} \right\} \left\{ \sum_{n=1}^{N_{opt}} 100 \ (1-B_{\text{mat}_n} - \text{swap}_n S_{\text{mat}_n})_+ \right\},\$$

where

$$S_m = \sum_{i=1}^m \delta B_i,$$

and

$$B_m = \prod_{i=1}^m \frac{1}{1 + \delta L_{N_{mat}+i-1}}.$$

Note that

$$1 - B_m = \sum_{i=1}^m B_{i-1} - B_i = \sum_{i=1}^m \delta L_{N_{mat}+i-1} B_i,$$

and hence

$$1 - B_m - \operatorname{swap}_n S_m = \sum_{i=1}^m \delta \left(L_{N_{mat}+i-1} - \operatorname{swap}_n \right) B_i,$$

making it clear that the swaption is concerned with a swap of the floating forward rate L_i and the fixed rate swap_n.