
Lecture 2: Introduction to OpenMP

with application to a simple PDE solver

Mike Giles

Mathematical Institute

Mike Giles Lecture 2: Introduction to OpenMP 1 / 24

Hardware and software

Hardware:

a processor (CPU) is a single chip – a server often has two

a processor usually has many cores which operate largely
independently of each other

Software:

a process is a software program which runs on a server:
the operating system scheduler is responsible for deciding
when/where it executes on the hardware

a process often uses multiple threads, each running on a core

Mike Giles Lecture 2: Introduction to OpenMP 2 / 24

OpenMP
OpenMP is a way of writing a multi-threaded program which

uses a single thread some of the time

uses a set of threads for demanding parts of the code

time

?

?

single
thread

???????????????????????????????

team of
threads

Mike Giles Lecture 2: Introduction to OpenMP 3 / 24

OpenMP

OpenMP is a standard managed by a non-profit consortium involving
all major computer companies.

Wikipedia: https://en.wikipedia.org/wiki/OpenMP
gives a good overview of the history:

Version 1.0: 1997 – initially for Fortran; C/C++ added in 1998

Version 2.5: 2005 – unified Fortran/C/C++ spec

Version 3.0: 2008 – added tasks

Version 4.0: 2013 – added simd support for vectorisation

Version 5.0: 2018 – added support for accelerators

Version 5.2: latest version

In this lecture we will discuss only the C version – the Fortran version
is very similar.

Mike Giles Lecture 2: Introduction to OpenMP 4 / 24

OpenMP

OpenMP consists of 3 sets of components:

compiler directives (“pragmas”)

these are comments in the code which give instructions to the
compiler if it is run with the appropriate OpenMP flag

run-time library routines

these are functions which are called by the program and
defined in a header file omp.h

environment variables

these are set by the user before running the program, and give
directions to both the program (e.g. number of threads to use)
and the operating system scheduler (e.g. where to run them)

There are also compiler flags to consider, but these are not part of
the standard.

Mike Giles Lecture 2: Introduction to OpenMP 5 / 24

A simple loop

int i, m;

m = 8000;

#pragma omp parallel for \

implicit(none) shared(a,b,c,m) private(i)

for (i=0; i<m; i++) {

c[i] = a[i] + b[i];

}

If this is executed by 4 threads, then the first thread does 0 – 1999,
the second does 2000 – 3999, etc.

Also, in addition to thread parallelism, each thread will use
vectorisation (if the right compiler flags are given)

Mike Giles Lecture 2: Introduction to OpenMP 6 / 24

A simple loop

Shared variables: these are variables which are referenced by all
threads – i.e. the threads all reference the same single copy

Private variables: each thread has its own (uninitialised) copy
of the variable – this is clearly needed for the loop counter.

(By default, the values are forgotten once the loop ends.)

The implicit(none) avoids default assumptions, so everything has
to be declared shared or private – this is strongly recommended

Mike Giles Lecture 2: Introduction to OpenMP 7 / 24

A simple loop

Variables defined within the loop are automatically private, so I
prefer to use

int m = 8000;

#pragma omp parallel for \

implicit(none) shared(a,b,c,m)

for (int i=0; i<m; i++) {

c[i] = a[i] + b[i];

}

Mike Giles Lecture 2: Introduction to OpenMP 8 / 24

A simple loop

What happens if we want to sum all of the elements in an array?

int m = 8000;

double sum = 0.0;

for (int i=0; i<m; i++) {

c[i] = a[i] + b[i];

sum = sum + c[i];

}

sum can’t be a private variable, but the calculation won’t work
correctly if it is a shared variable – we discussed this in the first
lecture

Mike Giles Lecture 2: Introduction to OpenMP 9 / 24

A simple loop

Fortunately, this is so important that OpenMP has a special solution:

int m = 8000;

double sum = 0.0;

#pragma omp parallel for implicit(none) \

shared(a,b,c,m) reduction(+:sum)

for (int i=0; i<m; i++) {

c[i] = a[i] + b[i];

sum = sum + c[i];

}

The compiler creates a private copy of sum for each thread, initialised
to 0.0, and then afterwards adds them onto the sum for the main
thread

Mike Giles Lecture 2: Introduction to OpenMP 10 / 24

Nested loops

What about nested loops?

#pragma omp parallel for ...

for (int i=0; i<m; i++) {

for (int j=0; j<m; j++) {

....

}

}

Starting and stopping teams of threads is expensive, so almost
always best to parallelise outer loop.

The compiler will probably vectorise the inner loop.

Mike Giles Lecture 2: Introduction to OpenMP 11 / 24

OpenMP

You can go a long way in many applications using just
#pragma omp parallel for

We turn attention now to the other elements:

run-time functions

environment variables

compiler flags

Mike Giles Lecture 2: Introduction to OpenMP 12 / 24

OpenMP RTL

These are some of the more useful run-time library (RTL) functions:

int omp_get_max_threads() – gets number of threads

void omp_set_num_threads(int num_threads) – sets
number of threads to be used (but I prefer to use an
environment variable for this)

double omp_get_wtime() – gets wall time in seconds from
some arbitrary fixed time

All of these are usually called in the sequential part of the code which
is executed by the main thread.

Remember: the program must include the OpenMP header file:

#include <omp.h>

Mike Giles Lecture 2: Introduction to OpenMP 13 / 24

OpenMP RTL

One slight problem with the RTL is if you want to compile the code
without OpenMP.

In that case, you can avoid the compilation of the RTL functions by
using CPP (the C Pre-Processor) to perform conditional compilation
based on a special variable _OPENMP defined by the compiler.

#ifdef _OPENMP

int nthreads = omp_get_max_threads();

printf("#threads = %d \n",mthreads);

#endif

(https://en.wikipedia.org/wiki/C preprocessor)

Mike Giles Lecture 2: Introduction to OpenMP 14 / 24

Environment variables

There are several environment variables which can affect the
execution of an OpenMP program

The most important two are:

OMP_PROC_BIND which specifies whether threads are pinned

OMP_NUM_THREADS which specifies the number of threads

I set both of these in my .bashrc-user and .bash profile-user

configuration files:

export OMP_PROC_BIND=true

export OMP_NUM_THREADS=36

Mike Giles Lecture 2: Introduction to OpenMP 15 / 24

Thread pinning

Thread pinning means that a thread is pinned to a particular core.

If the operating system scheduler suspends the thread for a moment
to allow another process to run, then when it starts it again it does
so on the original core.

The benefit of this is that most of the data the thread was using
is still in the caches of that core.

Mike Giles Lecture 2: Introduction to OpenMP 16 / 24

Compiler directives

Finally we come to the compilation commands.

Using Intel’s icc compiler, I use something like

icc -O3 -qopenmp -xHost prog.c -o prog -lm

-O3 forces a high degree of optimisation

-qopenmp turns on the processing of OpenMP pragmas

-xHost generates code aimed at the system on which it is
compiled; this turns on vectorisation on modern CPUs

Mike Giles Lecture 2: Introduction to OpenMP 17 / 24

Compiler directives

For the gcc compiler, the corresponding command is

gcc -O3 -fopenmp -march=native prog.c -o prog -lm

-O3 forces a high degree of optimisation

-fopenmp turns on the processing of OpenMP pragmas

-march=native generates code aimed at the system on which
it is compiled

Mike Giles Lecture 2: Introduction to OpenMP 18 / 24

Practical 1

Practical 1 concerns an approximation to the 2D parabolic PDE

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y 2
,

on a unit square with homogeneous b.c.’s.

Using a regular grid with spacing of h in each direction, and a
timestep of size k , a forward-time central-space approximation leads
to the discrete equations

Un+1
i ,j = Un

i ,j + λ
(
Un

i+1,j + Un
i−1,j + Un

i ,j+1 + Un
i ,j−1 − 4Un

i ,j

)
,

where λ ≡ k/h2 and we will keep λ ≤ 1/4 for stability.

Mike Giles Lecture 2: Introduction to OpenMP 19 / 24

Practical 1

Observations:

this is a naturally parallel mathematical application,
i.e. all of the Un+1

i ,j can be evaluated at the same time.

if the grid size (i.e. total number of unknowns) is big enough,
there should be enough work in each timestep to keep busy up
to 100 cores, each executing vectors of length 8 or 16.

there’s not a lot of compute per memory reference, so the
execution performance may be limited by data bandwidth rather
than compute capability.

Mike Giles Lecture 2: Introduction to OpenMP 20 / 24

Practical 1

Some programmers prefer to use a 2D array u[i][j] for this kind of
application. In this case, u[i] is a pointer to a contiguous block of
memory in which the values u[i][j] are stored for all values of j.

i.e. u[i][j+1] is stored next to u[i][j], but u[i+1][j] is not.

I prefer to use simple 1-dimensional arrays for storage, and map (i , j)
indices to a 1-dimensional memory index: u[i+j*I] where I is the
grid size in the i direction.

In this case, u[i+1+j*I] is stored next to u[i+j*I], but
u[i+(j+1)*I] is not.

The choice is a matter of personal preference, but it is important to
understand the layout and which pairs of indices (i , j) are neighbours.

Mike Giles Lecture 2: Introduction to OpenMP 21 / 24

Practical 1

The central part of the C implementation can be written as

for(int n=0; n<N; n++) {

for(int i=0; i<I; i++) {

for(int j=0; j<J; j++) {

int ind=i+j*I;

u2[ind] = (1.0-4.0*lambda)*u1[ind] + lambda*

(u1[ind+1]+u1[ind-1]+u1[ind+I]+u1[ind-I]);

}

}

double *tmp=u1; u1=u2; u2=tmp;

}

Mike Giles Lecture 2: Introduction to OpenMP 22 / 24

Practical 1

Notes:

old Un array is u1, new Un+1 is u2

the pointer swap is an efficient way to swap the arrays to
prepare for the next timestep – much cheaper than copying
from u2 to u1

the i and j loops could be swapped – which order is best?

where should the OpenMP pragma go?

Mike Giles Lecture 2: Introduction to OpenMP 23 / 24

Final comments

using OpenMP can be relatively easy

however, Practical 1 will show that performance can be poor
if you don’t understand what is going on

Practical 1 also illustrates the use of timing to work out the
effective GFlop rate. For important calculations I am always
interested to know what fraction of the peak capability I am
achieving – my target is usually 10-20%

Mike Giles Lecture 2: Introduction to OpenMP 24 / 24

